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ABSTRACT
This paper demonstrates the theoretical possibility of applying ad-

vanced value-based reinforcement learning methods on sequence-

to-sequence models for the first time. This approach avoids major

issues that have emerged with supervised sequence-to-sequence

models such as loss-evaluation mismatch, exposure bias and search

error. At the same time, when compared to policy gradient meth-

ods, it does not rely on well-trained fully supervised models and is

not restricted to fine-tuning. Specifically, a sequence-to-sequence

model is introduced, which is trained in a Rainbow-like setup.While

such a model is practically still limited by its scalability, the work

contributes towards a more generally applicable approach to rein-

forcement learning in natural language processing which is beyond

the scope of fine-tuning. For this, the paper provides a theoreti-

cal and practical framework, a first baseline, and valuable insights

by studying ablated models and different approaches for utilizing

demonstration data.

KEYWORDS
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1 INTRODUCTION
Seq2seq models offer great promise for sequence generation prob-

lems such as machine translation, text summarization, or dialogue

generation. Nevertheless, fully supervised trained sequence-to-

sequence (seq2seq) models have several methodological weaknesses

which have not been completely solved. First, such models suffer

from exposure bias as they are usually trained with teacher forcing

[1, 2]. In this method, the model is conditioned on ground-truth

data as input instead of its own outputs. Secondly, word predictions

by these models do not consider the whole sequence, which intro-

duces search error. Thirdly and most importantly, the maximum

likelihood estimation (MLE) objective is often used in approximat-

ing the probability distribution 𝑃 (𝑦 |𝑥), such that the likelihood

of outputs given input is maximized. In many problems such as

machine translation utilizing this distribution may be sufficient.

However, for other problems, it differs substantially from the test

objectives and the real-world goal.

It has been shown by Li et al. [3] that when applied to the task of

dialogue generation, the aforementioned models tend to generate

highly generic, repetitive, and short-sighted responses, with "I don’t

know" among them. This outcome can be ascribed to the high

frequency of such phrases in dialogue corpora, which are then

favoured by the MLE objective.

Reinorcement learning (RL) addresses all of these issues. It al-

lows using any function as a reward, which may include non-

differentiable test metrics, human feedback, or other functions that

are closer to the real-world goal. Furthermore, RL relies on its own

outputs instead of ground-truth data, and it naturally incorporates

future rewards, thus avoiding exposure bias and search error.

However, RL is considered sample inefficient, especially in the

case of reward sparsity and large action spaces, and this is partic-

ularly true for most NLP tasks, which require dealing with huge

vocabulary sizes. Thus, most research in this area has focused on

fine-tuning supervised models. It has, therefore, also been limited to

methods that output softmax probabilities, which makes them easy

to pretrain with supervised approaches. This category includes PG

methods and actor-critic setups. For instance, REINFORCE is still

widely used in this area, although this algorithm is known to have

severe issues, such as a time-consuming training and high variance.

In contrast, value-based learning methods such as Q-learning have

received little attention, since they need to predict future rewards

for every single action and cannot be easily pretrained. However,

value-based methods have made significant progress in recent years.

Advanced methods such as Rainbow and FQFs are state-of-the-art

approaches in many fields (e.g., game-playing) and might overcome

some caveats of Q-learning making it a reasonable choice for the

area of NLP. Thus, this work investigates whether seq2seq mod-

els can be trained with Rainbow [4], which is a Q-learning-based

approach that seeks to combine several improvements made to

Deep Q-Networks (DQNs) in recent years, including prioritized

experience replay (PER) and multi-step learning.

2 RELATEDWORK
Sequence generation using RL. Motivated by the issues of fully

supervised sequence-to-sequence models, Ranzato et al. (2015) [1]

applied RL on different sequence generation problems to align

training and test measurements. The researchers utilized super-

vised training to initialize the policy, and they then introduced the

MIXER algorithm which provides an annealing schedule between

supervised training (i.e., cross-entropy loss and teacher forcing)

and reinforcement learning, using REINFORCE [5] and the model’s

own predictions.

Due to the disadvantages of REINFORCE, which include the time-

consuming training and its high variance, Bahdanau et al. (2017) [6]

took this idea one step further by employing an actor-critic setup

to train encoder-decoder models. To speed up the training process

and deal with the ample action space, the authors used several

techniques such as penalizing the variance of the value predictions

and reward shaping to provide rewards for the whole sequence.

Rennie et al. [7] (2017) introduced another variant, a Self-Critic

(SC) baseline for policy gradient (PG) methods employed in se-

quence generation. The algorithm avoids estimating a normaliza-

tion (cf. REINFORCE) or training a value function (cf. actor-critics)

for the baseline by utilizing the inference outputs.



However, all above mentioned approaches rely on well-trained

supervised models, and the application of RL is limited to fine-tune

such models. Consequently, this line of research focuses on PG

methods as the provided outputs are alike (i.e., token probabili-

ties based on softmax activations). Practical and more advanced

applications of the presented approaches can be found in [3], [8],

and [9] which embed them in a more complex multi-stage training

procedure while also using multi-component reward functions.

Recurrence and memories in RL. Another related research direc-

tion seeks to equip DQN agents with a memory. The first notable

work in this area was conducted by Hausknecht et al. in 2017,

with their proposed Deep Recurrent Q-Network (DRQN) [10]. The

authors argue that most real-world applications fail to meet the

Markov property; that is, their true states are only partially observ-

able. Consequently, they propose replacing the first fully-connected

layer with an LSTM layer. With this goal in mind, Hausknecht et

al. consider two possibilities: sequential updates (replaying whole

episodes while violating DQN’s random sampling policy) and ran-

dom updates (with zeroing out hidden states). The paper concludes

that both updates work similarly well.

A more recent approach is Recurrent Replay Distributed DQN

(R2D2), developed by Kapturowski et al. (2019) [11]. The authors

store and replay fixed-length sequences (𝑚 = 80) using a mix of

mean and max for prioritization of the samples: 𝑝 = 𝜂 max𝑖 𝛿𝑖 + (1−
𝜂)𝛿 with 𝜂 = 0.9. They hypothesize two strategies for the hidden

state: storing and replaying such states or applying a burn-in period,

which involves using a part of the replay sequence to produce a

start state.

3 SEQUENCE-TO-SEQUENCE MODELS
The classic seq2seq architecture, also called encoder-decoder ar-

chitecture was first proposed by Sutskever et al. (2014) [12]. The

motivation behind this architecture is to map an input sequence

(source) to an output sequence (target), both of which can be of

arbitrary lengths. The architecture is composed of an encoder and

a decoder.

• The encoder RNN compresses the input sequence 𝑥 =

(𝑥1, 𝑥2, . . . , 𝑥𝑛𝑥 ) to a fixed-length vector 𝐶 (thought vector

or context vector), which is the final hidden state vector ℎ𝑛𝑥
of the RNN.

• The decoder’s hidden state is initialized with the fixed-length

vector 𝐶 . The decoder RNN then generates the output se-

quence 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛𝑦
).

RNN encoders and decoders are typically implemented as LSTM

[13] or GRU [14], either unidirectional or bidirectional. The de-

coder usually adds another linear layer with softmax activation

(the so-called generator) to output a probability distribution over

the vocabulary.

The outputs of the decoder network are fed into the next sequen-

tial unit as input. Consequently, mistakes at the beginning of the

sequence can lead to increasing erroneousness, which ultimately

results in slow convergence. Thus, the most common algorithm

for training the model is teacher forcing, which feeds the actual

correct sequence (the targets) into the model. This algorithm allows

parallelization as it removes the necessity to wait for the sequential

outputs to be used as inputs. The teacher forcing algorithm can also

be derived from the (conditional) maximum likelihood objective,

which is the CE loss:

L𝐶𝐸 = − log𝑝 (𝑦1, . . . , 𝑦𝑛𝑦
) = − log

𝑛𝑦∏
𝑡=1

𝑝 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1)

= −
𝑛𝑦∑
𝑡=1

log𝑝 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1)

(1)

During inference, the next output word is chosen by a greedy

left-to-right process, 𝑦𝑡+1 = argmax𝑦 𝑝 (𝑦 |𝑦𝑡 , ℎ𝑡 ), without consid-
ering the complete sequence. This approach, however, might not

produce the most likely sequence according to the abovementioned

objective, an outcome known as search error. One way to reduce the
search error is beam search, tracking 𝑘 word candidates. In addition,

this setup suffers from exposure bias because of the distribution
mismatch of ground-truth data and the model’s predictions.

4 METHODOLOGY
This research aims to apply the Rainbow DQN setup to the seq2seq

architecture. Therefore, this section addresses the question of how

the classic DQN approach can be transferred to this architecture.

With the fulfilment of this requirement, most of the DQN exten-

sions that have been used in Rainbow are also straightforwardly

transferable. Specifically, the following extensions are included:

• Double Q-learning [15].

• Prioritized experience replay [16], which is the only exten-

sion that is not transferable without significant methodolog-

ical changes.

• Dueling networks [17].

• Multi-step learning [18].

• Distributional RL; for this paper, the more recent QR-DQN

[19] is chosen over categorical DQNs [20] because it is easier

to implement and has also been shown to yield better results,

though categorical DQNs have been used for Rainbow.

• Noisy nets [21].

4.1 Reinforcement Learning Setting
In this section, the RL environment is described as it varies from

one task to another. In general, the setting is similar to those in

other sequence prediction tasks such as [1], [3], and [6], although

the perspective on the state differs substantially as these works use

policy gradient approaches.

Action space. In the context of this work, the action space A
is the vocabulary space. At each time step 𝑡 , the decoder of the

seq2seq model chooses the next action 𝐴𝑡 , which is a token in a

sequence.

State space. The state 𝑆𝑡 at a specific time step 𝑡 includes all the

input data that is required to produce the next action 𝐴𝑡 . Since the

decoder generates its output depending on the previous hidden state

ℎ𝑡−1 and the previously chosen action 𝑦𝑡−1, [ℎ𝑡−1, 𝑦𝑡−1] may be

used as the state. Alternatively, the input sentence and all previous

actions [𝑥,𝑦1:𝑡−1] can be viewed as the state, as it is possible to

reproduce the hidden states with this information.
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Reward. The reward function 𝑟 can be any user-defined function.

For example, advanced dialogue generation models like [3] utilize

rather complex reward functions such as combinations of informa-

tion flow, semantic coherence, and ease of answering. A unique

characteristic in NLP settings compared to other RL tasks is that

the reward is always and only collected at the end of the sequence.

However, to keep the work as simple, comparable and interpretable

as possible, and to focus on the feasibility of transferring Q-learning

to seq2seq models, BLEU [22] and ROUGE-W [23] are selected as

exemplary reward functions. In addition, with such rewards, it will

be possible to provide a strong baseline for the model. The cross-

entropy (CE) objective is known to approximate these metrics quite

well. Both metrics evaluate a generated sentence against a reference

sentence. Thus, a dataset with sources and targets is required. More

details in regard to BLEU and ROUGE can be found in the appendix,

see Section A.

4.2 Experience Replay for
Sequence-to-Sequence Models

Typically, Q-learning approaches with deep neural nets (i.e., DQNs)

store transitions experienced by the agent in a buffer called expe-

rience replay. These transitions are reiterated during the training

process. A transition is defined by its state 𝑆𝑡 and action 𝐴𝑡 at

time step 𝑡 , the next state 𝑆𝑡+1, and the reward 𝑅𝑡+1 received by

the agent: (𝑆𝑡 , 𝐴𝑡 , 𝑆𝑡+1, 𝑅𝑡+1). For seq2seq models, however, this

approach has to be adjusted. As mentioned, the state is defined by

the previous hidden state of the decoder and the previous action

[ℎ𝑡−1, 𝑦𝑡−1]. However, given that the hidden state representation

is not static, but learned during the training process, it is not suit-

able to be replayed in later phases of training. Here, the alternative

state representation [𝑥,𝑦1:𝑡−1] can provide a solution. Rather than

storing single transitions, it allows for storing the entire input and

output sequence (𝑥,𝑦, 𝑅𝑇 ) to represent the states and actions of the
whole episode 𝑒 . The entry is completed by a scalar reward 𝑅𝑇 , as

only the final transition issues a reward for the full sequence.

Prioritized Experience Replay. This decision has some implica-

tions, especially for PER, one of the extensions, which has been

combined with others in [4]. In the original paper [16] by Schaul et

al., the absolute TD error 𝛿 is utilized as the criterion of importance

(i.e., priority 𝑝) for the transitions in the buffer. However, here it is

necessary to deal with whole episodes, which consist of many tran-

sitions. Consequently, there is a need to aggregate the TD errors of

the steps in episode 𝑒 . For this approach, there are several options,

with summing and averaging being the obvious ones:

• Summing the errors: 𝑝𝑒 =
∑𝑇
𝑖 𝛿𝑖

• Averaging the errors: 𝑝𝑒 = 1

𝑇

∑𝑇
𝑖 𝛿𝑖

It may be expected that the summation of errors leads to an

advantage of longer sequences at the expense of shorter ones; this

outcome could be disadvantageous for the overall success. In fact,

early experiments have indicated that averaging is superior.

4.3 Teacher Forcing
As discussed, entire episodesmust be stored in the experience replay

buffer to combine it with sequence-to-sequence models. However,

as the name suggests, it is necessary to replay the episodes. This is

where a technique that is widely used in supervised learning for

seq2seq models comes into play: teacher forcing. Instead of feeding

the decoder’s output to the input of the next sequential unit (as

in the inference stage), the ground-truth sequence is fed into the

network. The same idea can be applied to replay episodes, but in

place of the ground-truth sequence, the stored output sequence

is inputted into the recurrent units of the decoder. The essential

difference is that the output sequence does not necessarily have

to be one of the "good examples". The examples in the experience

replay buffer are usually collected by the model itself, substantially

reducing the exposure bias caused by the distributional mismatch

of decoder inputs in the training and inference stages. Here, the

model’s own predictions are replayed in the training stage, syncing

the input distributions. Consequently, while the algorithm applied is

the same for supervised learning and the RL approach taken in this

study, its aim and motivation is entirely different. Moreover, teacher

forcing has computational benefits since it allows parallelization.

4.4 Temporal Difference Error
The concrete algorithm for calculating the temporal difference error

is depicted in Algorithm 1 and closely resembles the work of Mnih

et al. [24]. The main difference is that the algorithm handles a batch

of episodes (i.e., a sequence of transitions) instead of a batch of

transitions. Since these sequences can be of different lengths 𝑚,

padding and masking is required, as well as a normalization with𝑚.

To allow for parallelization, shifting and zero-padding is required.

Algorithm 1 TD error for a basic sequence-to-sequence DQN

Input: Source 𝑥 𝑥 ∈ N𝑁×𝐵

(Padded) Output 𝑦 𝑦 ∈ N𝑀×𝐵

Reward 𝑟𝑇 𝑟𝑇 ∈ R𝐵
Output Lengths𝑚 𝑚 ∈ N𝐵

1: 𝑜, 𝑜 = seq2seq𝜃 (𝑥,𝑦), seq2seq ¯𝜃 (𝑥,𝑦) 𝑜, 𝑜 ∈ R𝑀×𝐵×𝐻

2: 𝑞, 𝑞 = 𝑞𝜃 (𝑜), 𝑞 ¯𝜃 (𝑜) 𝑞, 𝑞 ∈ R𝑀×𝐵×|A |

3: 𝑞2:𝑀,𝑖 = max𝑎′ 𝑞2:𝑀,𝑖 (𝑎′),∀𝑖 𝑞 ∈ R𝑀−1×𝐵

4: 𝑞𝑝 = mask(𝑞(𝑦)) 𝑞𝑝 , 𝑞𝑝 ∈ R𝑀×𝐵

5: 𝑞𝑝 = concat (mask(𝑞), 01×𝐵)
6: 𝑟 = concat(0𝑀−1×𝐵, 𝑟𝑇 ) 𝑟 ∈ R𝑀×𝐵

Output: 1

𝐵

∑𝐵
𝑗=1

∑𝑀
𝑖=1

(𝑟𝑖,𝑗+𝛾𝑞𝑝𝑖,𝑗 −𝑞𝑝𝑖,𝑗 )
2

𝑚 𝑗

The presented algorithm does not include the six DQN exten-

sions. However, with the algorithm and methodology presented it is

straightforward to add them. Some more details and aspects, espe-

cially regarding multi-step learning, can be found in the appendix,

see Section B.

4.5 Utilization of Demonstration Data
Although it is highly flexible in defining its goals and rewards, RL

also has some downsides: it is usually exceedingly sample inefficient

and converges much slower than supervised learning. Furthermore,

data collection is time-consuming. This is why, as part of this work,

a methods are explored with which available information can be

utilized to accelerate convergence.
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Preloading Replay Buffer. DQNs learn from transitions being col-

lected by the agent and stored in the experience replay buffer. In

the case of this work, however, it is assumed human demonstra-

tion data is already at hand, as there are many corpora of natural

language available to use. The simplest way to leverage such data

is to preload it into the replay buffer instead of filling the buffer

with random experiences in the beginning. For practical reasons,

the experience replay buffer typically has a size limit. This is why

older transitions get replaced by more recent experiences. How-

ever, to prevent the displacement of exemplary data, such data is

excluded from the "first in, first out" replacement policy and instead

is permanently stored in the buffer.

Tranfer Learning. This approach is inspired by classic transfer

learning. As Yosinski et al. [25] have shown, layers in a deep neural

network for image classification, that were trained on a specific

task can be transferred to others to varying degrees. The newmodel

is then able to train faster. In particular, early layers in the network

are rather general, agnostic regarding the specifics of the input, and

therefore easily transferable. Similar work was conducted by [26]

for RNNs and the area of NLP. However, the authors suggest that,

in this domain, a semantic relatedness between the tasks are more

significant than in computer vision. In the context of this work,

this method entails pretraining a typical seq2seq network using

supervised learning. The parameters of this model, or specifically,

the parameters of the encoder, decoder, and the embedding layers

while discarding those of the generator, are utilized to initialize the

Q-learning model, which has its own randomly initialized generator.

Thus, the recurrence and embeddings may not have to be learned

from scratch. This approach is similar in conception to those in [1],

[6], and [3]. However, for PG methods, it is not necessary to replace

the generator because both generators produce probabilities for the

defined set of tokens. On the contrary, in DQNs, the output layer

utilizes a linear activation function. Additionally, the number of

neurons in the output layer differ when employing distributional

RL.

Multitask Learning. Transfer learning works optimally when

the training data and training objective of both tasks are similar.

In this study, however, the objectives differ substantially, as [3]

suggests. On the one hand, there is the MLE criterion; on the other

hand, Q-values, the estimated future rewards, are to be predicted.

Thus, instead of using transfer learning, it would be possible to

treat these objectives as two different tasks, but to employ a shared

"feature extractor", which, in this case, is the encoder RNN, the

decoder RNN and the embedding layers. The general idea is known

as multitask learning, and it has been successfully applied to a broad

range of applications, including NLP [27] and computer vision [28].

Originally, multitask learning was described by [29]: it is usually

implemented by sharing hidden layers between several tasks while

having task-specific output layers. These tasks are learned jointly

by alternating the optimization steps for each. The different tasks

benefit from each other as they introduce regularization and reduce

the hypothesis space.

Vocabulary Size Dataset Size Word Minimum Frequency

111 1, 311 900

201 3, 484 680

401 9, 230 130

806 18, 523 50

Table 1: Dataset vocabulary sizes

5 EXPERIMENTS
For subsequent experiments, a basic single-turn dialogue generation

task is assummed, based on the Cornell Movie Dialogue dataset

[30] and evaluated on both, BLEU and ROUGE-W. Four models are

investigated:

• As comparative model, a supervised trained seq2seq model

conditioned on the maximum likelihood objective is em-

ployed. Such a model can be considered a strong baseline

because the CE loss is known to approximate BLEU and

ROUGE quite well.

• A seq2seq network trained purely with RL, based on the

Rainbowmethod introduced in including the methodological

modifications needed presented. In this setup, the replay

buffer is preloaded with demonstration data.

• A transfer learning model is not fully evaluated because

early experiments have shown it to converge to suboptimal

solutions.

• A multitask network, which jointly trains the supervised

learning and RL models described above.

Multiple experiments have been conducted to assess the scalabil-

ity of the presented model. Generally, four settings are considered

as seen in Table 1. In each case, the action space is approximately

doubled, resulting in vocabulary sizes of 111, 201, 401 and 806. The

dataset size exhibits disproportionate growth ranging from 1,311

to 18,523 examples.

The implementation of the work conducted is available online.
1

6 RESULTS
6.1 Scalability
The results, which are displayed in Table 2, demonstrate that it is

possible to train a seq2seq network with the methods of value-based

RL. For limited problem sizes, these methods are able to match or

even surpass ambitious baselines such as supervised trained mod-

els in their stronghold settings. While conducting the experiments,

however, it became evident that the model is subject to scalability

constraints. With the initial parameter setting of 𝑁 = 21 for the

number of quantiles, it was not possible to scale to an action space

size of 401 without a drop in performance. Instead, the hyperpa-

rameter had to be reduced to 5, which seems to lift the upper limit

of its scalability to the 806 setting.

6.2 Exemplary Outputs
The evaluation in this section refers to the 401 setting, as this is

the setting for which both RL models are still able to match or

1
https://github.com/ScientiaEtVeritas/rainbow-dialogues
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Metric / Reward Model Vocabulary Size
111 201 401 806

BLEU

SL 0.71 0.70 0.77 0.77
RL 0.74 0.71 0.81 0.71

MTL

SL 0.73 0.71 0.81 0.67

RL 0.73 0.71 0.75 0.42

ROUGE

SL 0.6 0.60 0.63 0.60

RL 0.6 0.63 0.65 0.61

MTL

SL 0.58 0.61 0.64 0.49

RL 0.57 0.60 0.60 0.36

Table 2: Evaluation of presented models, namely supervised
learning (SL), reinforcement learning (RL), multitask learn-
ing (MTL) with its respective SL and RL output layers, in dif-
ferent setups to assess the scalability

surpass the supervised trained model on the respective evaluation

metric. Generally, the trainedmodels produce largely similar results.

The RL
BLEU

model outputs the same sequences as the supervised

model for 80.92 per cent of unique sources in the corpus. A similar

outcome holds for the RL
ROUGE

model with 80.80%. Even among

themselves, they share outputs in a similar order of magnitude (i.e.,

81.69%).

Nevertheless, in Table 3, ten random examples are presented

for which the models returned different sequences. From studying

these examples, possible reasons for the differences include, that the

target is still incompletely or partly learned or, given the nature of

the dataset, in which a source can have several targets, the models

simply approach different targets. Interestingly, there are also a

few examples that reveal the very distinct nature of learning. For

instance, the RL
ROUGE

model outputs "What Why?" for "What time
is it?" and scores a medium reward on the "Why?" and "What?"
target with it. However, this output sequence ultimately yields a

higher combined reward on ROUGE-W (1.51) than predicting either

of the targets (1.396). This example highlights the importance of

choosing an adequate reward function and the necessity that such

a reward function encompasses "semantic coherence" as in [3].

6.3 Ablation Study
The presented model, which is based on Rainbow, combines several

DQN improvements. In order to reach a better understanding of how

these extensions behave in this work’s high-dimensional seq2seq

setup, an ablation study was conducted. In this study, the influence

on performance and convergence of some algorithmic ingredients

was assessed by removing them one at a time from the complete

setup. The results are displayed in Figure 1.

Dueling nets. Although the dueling architecture is motivated

by problems with many similar-valued actions and larger action

spaces, the ablation study does not indicate a significant impact of

the extension on the model. No effect is observed, either in terms

of performance or in light of convergence speed. These results

are in line with findings by [4]. It is notable, however, that the

performance of the dueling architecture lags behind in the early

stages of training, although it catches up later.

(a) Ablated dueling nets

(b) Ablated prioritized experience replay

(c) Ablated multi-step learning

(d) Ablated distributional reinforcement learning

Figure 1: Ablation for different DQN improvements

Prioritized experience replay. This extension is an essential con-

tribution to scalability and performance, given that the results

unambiguously and significantly worsen for the ablated model. To

a certain extent, these results can also validate the modifications

made to PER in this paper. Presumably, PER is especially effective

in this setup because the memory is preloaded with demonstration

data.

Multi-step learning. Based on the ablation study, it is clear that

the most influential extension is multi-step learning. The ablated

model did not learn at all for a vocabulary size of 806, while it

performed only slightly better in a setup with 401. [4] also found

it to be the most important extension, with ablation resulting in
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Source Target(s) RL
BLEU

RL
ROUGE

SL

Of course we are. Of course. Then you’ll be my best man. Then you’ll be my best man. Then you’ll be my best, go. Then you’ll be fine.

And if I didn’t want to come? I guess I’d ask you. I guess I’d ask you to ask me. I guess I’d ask you why. I guess I’d ask you to ask me.

So did you do it? Did I kill him ? Of course not. Did I kill him? Did I kill him? Of course not! Did I kill him? Of course not!

What time is it? – Why?

– What?

Why? What Why? What?

You believe that? You don’t believe me? Okay, fine. I do if you do. No. You think bad, and bad is what you get.

Are you okay? – I’m fine.

– I’ll be fine.

– She’ll be fine.

– I think so.

– . . . (8 more targets)

I’ll be fine. I’m fine. She’ll be fine.

Yeah. 132 targets Yeah.? I like nothing I bad?. say You’re with me now.

She’s not at home? No . . . they said she was here . . . No . . . they said she was it. No . . . they said she want, that’s! No . . . they didn’t < u > here –

She’s out with a friend. Oh . . . do you know when she’ll be home? Oh . . . do you know when she’ll be back? Oh . . . do you know when she’ll be? Oh . . . do you know when she’ll be home?

Now what? – We just don’t stop.

– Now what what?

– Don’t go.

– . . . (2 more targets)

Don’t go. We don’t know it. Now what what?

Table 3: Examples for which the presented models generate different responses; the models included are the reinforcement
learning models conditioned on either BLEU or ROUGE (RLBLEU, RLROUGE) and the supervised trained model (SL).

a substantial drop in early and final performance. However, the

adverse effects of ablation are much more strongly reflected in the

paper’s setup. Presumably, the reasons for this outcome are to be

found in the different nature of the problem. Here, rewards are

issued only at the very end of the sequence, which is cataclysmic

in combination with the last action always being the end token.

In this particular case, only 𝑞(𝑠, </s>) is able to obtain immediate,

unbiased targets. Conversely, all the other actions’ targets can rely

solely on the model itself, via bootstrapping.

Distributional reinforcement learning. The quantile regression
extension exercises a noticeable effect on the performance. That

said, the model is highly sensitive to the number of quantiles 𝑁

chosen. In the original paper, [19], the authors suggested 𝑁 to be 32.

However, the researchers only probed their models on small action

spaces, which are different in magnitude compared to this paper’s

setup. In general, distributional RL requires the model to learn

more and make auxiliary predictions, increasing the difficulty of the

task while introducing synergy effects and easing approximation.

Moreover, the output layer size is defined by |A| · 𝑁 , which will

dominate the model’s size and complexity for larger action spaces,

introducing a disproportion between the problem’s complexity

and the model’s complexity. This relationship is shown in Table

4. While 𝑁 = 21 works well on vocabulary sizes of 111 and 201,

it already slightly hurts performance for 401, and it fails for 806.

For the latter two sizes, a value between 2 and 5 seems to be a

reasonable choice. By means of these parameters, distributional RL

contributes to scalability and final performance. To conclude, there

are presumably two opposite effects resulting from QR-DQN: the

model benefits from learning auxiliary tasks while a larger quantile

number leads to a larger model and more difficult prediction task,

necessitating a careful trade-off.

6.4 Utilization of Demonstration Data
This section deals with techniques intended to utilize the provided

demonstration data. The learning curves for the different models

are depicted in Figure 2.

Preloading PER.. Preloading the prioritized replay buffer is demon-

strated to be a key element in all presented settings. With preload-

ing, the model does not need to rely on random sampling only but

# Quantiles 𝑁 # Parameters (401) # Parameters (806)

No Distributional RL 4.617,305 5,306,820

2 5,020,109 6,115,434

5 6,228,521 8,541,276

21 12,673,385 21,479,100

51 24,757,505 45,737,520

Table 4: Influence of the number of quantiles 𝑁 on the num-
ber of parameters

can utilize demonstration data. The number of potential sequences

grows exponentially with the vocabulary size, which is why, with-

out preloading, the model is practically unable to learn at all in a

setting with a vocabulary size of 806, while it seems to converge

to a suboptimal solution in a 401 setting. However, this result is

notable, because in other settings like [31] preloading had less of

an impact. Moreover, in a replay buffer with up to 1 million entries,

the amount of demonstration data is vanishingly small.

Transfer learning. Transferring the weights of the supervised

learning model to the recurrent unit and embedding layers of the

RL model worsens performance significantly. While these models

tend to start slightly better compared to pure RL settings, their

learning curve quickly flattens, and they converge to suboptimal

solutions. Through transfer learning, the hypothesis space seems

to be narrowed in a disadvantageous way, hinting that predicting

token probabilities based on the CE loss and predicting Q-values

based on BLEU or ROUGE as a reward are very different tasks. This

outcome suggests the problem is more suitable to be framed in a

multitask learning than a transfer learning setup.

Multitask learning. The experiments conducted show multitask

learning models to have a strong early performance (i.e., a compa-

rably quite steep increase of the average reward yielded in early

training stages). However, these models reach a premature plateau

before they eventually diverge. Nevertheless, this result may sug-

gest there is potential in this approach, while further exploration

of multitask learning setups may help overcome the caveats in this

specific setting.

6



(a) Preloading the prioritized experience replay buffer

(b) Utilizing transfer learning

(c) Multitask learning

Figure 2: Evaluating pretraining techniques

7 CONCLUSION
In this paper, a framework was developed, allowing the applica-

tion of value-based reinforcement learning methods to sequence-

to-sequence models for the first time. This framework contrasts

sharply with existing approaches which focus solely on policy gra-

dient methods and actor-critic setups because they are easy to

pretrain. However, this work follows a long-term goal of making

reinforcement learning approaches usable in the area of natural

language processing beyond the fine-tuning of supervised trained

models.

The presented model demonstrates the theoretical possibility

of training a sequence-to-sequence model in a Rainbow setup, an

advanced single-actor DQN agent. In practice, such a model is still

highly limited by its scalability. However, it is the first step towards

a generally applicable approach and an important baseline for fu-

ture improvements. Furthermore, the ablation study included here

provides valuable insights into the behaviour of several DQN im-

provements in a high-dimensional NLP setup. More specifically,

multi-step learning, prioritized experience replay and distributional

reinforcement learning were found to be essential components en-

abling the model to learn in the investigated settings. Additionally,

the paper explored how demonstration data can be utilized. In this

context, the preloading of the replay buffer with such data was

identified as an indispensable prerequisite for learning in higher-

dimensional spaces.

8 FUTUREWORK
There are several directions in which this research can be furthered.

Particular attention should be given to the question of how scala-

bility can be improved.

Recent improvements on single-actor DQNs. While Rainbow is

still considered to be state-of-the-art, there have recently been some

major improvements in the area of distributional reinforcement

learning. Models such as IQN [32] and FQF [33] already match or

even surpass the performance of Rainbow, even without combin-

ing orthogonal enhancements. Both papers encourage using their

approaches to distributional RL in a Rainbow-like setup. Also, they

might be especially effective for high-dimensional spaces as they

avoid the excessive growth of the output layer with the number of

quantiles.

Distributed DQNs. A potential approach for significantly improv-

ing the model’s scalability is to switch to a distributed architecture.

By decoupling data collection and learning, models such as ApeX

[34], R2D2 [11], and Agent57 [35] are able to increase final per-

formance substantially while reducing wall-clock learning speed

against all single-actor agents.

Dealing with high dimensionality. Several tricks and methods

are primarily motivated by vast action spaces. Most recently, a

promising contribution was made with AQL in [36], whose method

relies on a proposal network to suggest potential actions. With

value penalties, as used in [37] or [38], an additional loss component

is added, which penalizes variance on outputs helping with rare

actions. Another idea is action branching proposed by [39], who

architecturally divide the action space into smaller chunks.

Representation of the action space. It might be beneficial for RL

problems, especially value-based methods, if actions are not formed

at word-level, but at byte-level or character-level, resulting in a

significant reduction of the action space. There is a chance that

DQNs are able to cope better with longer action sequences than an

increased action space.
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Appendices

A REWARDS
A.1 BLEU
BLEU is a metric first presented by Papineni et al. in [22]. It is pri-

marily used in machine translation and other language generation

problems. The values range from 0 to 1. BLEU calculates a modified

𝑛-gram precision 𝑝𝑛 , for which it counts the number of matches

between the 𝑛-grams of the candidate and the 𝑛-grams of the refer-

ence divided by the total number of 𝑛-grams in the candidate. In

order to prevent abundances of high-frequency words, the number

of matches for a word is clipped after its maximum reference count.

However, because this measure still enables very short candidates

to achieve high-scoring results, a brevity penalty as a multiplicative

factor is introduced to mimic some kind of recall.

BP =

{
1, if 𝑐 > 𝑟

𝑒 (1−
𝑟
𝑐
) , if 𝑐 ≤ 𝑟

(2)

It is possible to combine the scores of different 𝑛-gram sizes by

calculating the geometric mean. The final equation is given by:

BLEU = BP ·
(
𝑁∑
𝑛=1

𝑤𝑛 log(𝑝𝑛)
)

(3)

where the weight𝑤𝑛 is usually the uniform distribution 1/𝑁 .

The original definition of the brevity penalty, as indicated in

Equation 2, has no solution at 𝑐 = 0. This is particularly problematic

in this RL setting with Q-learning, as the model tends to generate

empty candidates in the early stages of training. Nevertheless, the

generated candidates require evaluation in order to add them to the

experience replay buffer. Hence, as part of this work, the brevity

penalty is defined as zero if 𝑐 = 0, which is tantamount to BLEU = 0.

BP =


0, if 𝑐 = 0

1, if 𝑐 > 𝑟

𝑒 (1−
𝑟
𝑐
) , if 0 < 𝑐 ≤ 𝑟

(4)

A.2 ROUGE
ROUGE was presented in [23] and while it has especially been

developed to evaluate text summarization tasks, it can be applied

to all kinds of language generation problems.

As part of this work, more precisely, ROUGE-W functions as

the reward and as an evaluation metric. In contrast to BLEU and

other versions of ROUGE, the longest common subsequence (LCS)

is determined instead of 𝑛-gram overlaps. This approach means

consecutive matches are not required, as it allows in-sequence

matches on sentence-level order. Moreover, no predefined 𝑛-gram

length needs to be specified, and it works for any sequence length.

One drawback, however, is that consecutive matches are assigned

the same score as non-consecutive matches. To address this issue,

with ROUGE-W weights are introduced. The F1 metric is applied

to take recall and precision equally into account.

0 0 0

𝑅

max
𝑎

𝑞ഥ𝜃(𝑆𝑡+1, 𝑎)

ො𝑞ഥ𝜃

0 1 𝑛𝑡

Target Tensor

Reward Tensor

Estimate of 
optimal 
future value

…2

Figure 3: Calculating targets for multi-step Q-learning in a
seq2seq setup

B IMPLEMENTATION
B.1 Episodes
Most of the implementation effort is required because the presented

model does not work with batches of single transitions as in Rain-

bow reference implementations, but rather with batches of whole

episodes (i.e., sequences of transitions). This difference adds another

dimension to the tensors and calculations.

The additional complexity can be observed, for instance, when

calculating the target 𝑞
𝜃
for multi-step learning:

𝑞
𝜃
= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + . . . + 𝛾 (𝑛) max

𝑎′
𝑞 ¯𝜃 (𝑆𝑡+𝑛, 𝑎

′) (5)

This procedure requires the combination of the reward tensor 𝑅 and

the tensor for estimates of optimal future values max𝑎′ 𝑞 ¯𝜃 (𝑆𝑡+𝑛, 𝑎′),
as visualized in Figure 3. Due to taking multi-steps, a window of

𝑛 rewards must be considered at a specific time step 𝑡 while there

is a 𝑛 − 1 shift for the value estimate tensor. To obtain the target

via simple addition of the tensors, the estimates tensor can be

transformed to be of the same shape, discarding the first 𝑛 − 1 steps

while zero-padding 𝑛 final states. The reward tensor, conversely,

can be dewindowed utilizing convolutions (see Section B.3).

Furthermore, the differences in length of the episodes necessitate

the careful application of sequence padding and masking as one

proceeds.

B.2 Normalization
Inmany implementations of seq2seqmodels, bucketing and padding

of sequences is applied. However, bucketing cannot be used in

conjunction with an experience replay buffer which samples whole

episodes (i.e., sequences instead of single transitions). The lengths

of sequences in a batch are completely randomized, which may lead

to a considerable gap between minimum and maximum sequence

length in a batch. In early experiments, this led to the effect that

normalization of the loss by the number of tokens is superior to

normalization by the batch size or no normalization at all.

B.3 Multi-Step Learning as Convolution
For the multi-step learning case, the target is obtained by 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + . . .+𝛾 (𝑛) max𝑎′ 𝑞 ¯𝜃 (𝑆𝑡+𝑛, 𝑎′). Thus, instead of utilizing a sin-
gle reward, the next 𝑛 steps are summed while being exponentially

decayed using the discount factor 𝛾 . However, in sharp contrast
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to most applications of multi-step learning, this paper works with

batches of sequences, which allows viewing the term as a convolu-

tion. Specifically, it is a one-dimensional, axis-aligned convolution

whose input array’s values beyond the edge are filled with a con-

stant value of 0. The kernel can be calculated in advance with

[𝛾𝑛−1, 𝛾𝑛−2, . . . , 𝛾, 1].

10
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