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Abstract
Insertion of proper segmentation and punctuation into an

ASR transcript is crucial not only for the performance of sub-
sequent applications but also for the readability of the text. In a
simultaneous spoken language translation system, the segmen-
tation model has to fulfill real-time constraints and minimize
latency as well.

In this paper, we show the successful integration of an atten-
tional encoder-decoder-based segmentation and punctuation in-
sertion model into a real-time spoken language translation sys-
tem. The proposed technique can be easily integrated into the
real-time framework and improve the punctuation performance
on reference transcripts as well as on ASR outputs. Com-
pared to the conventional language model and prosody-based
model, our experiments on end-to-end spoken language trans-
lation show that translation performance is improved by 1.3
BLEU points by adopting the NMT-based punctuation model,
maintaining low-latency.
Index Terms: spoken language translation, segmentation and
punctuation insertion, spoken language processing

1. Introduction
Insertion of proper punctuation marks into automatically gener-
ated transcripts plays a crucial role in improving readability of
the transcripts as well as the performance of subsequent appli-
cations, such as machine translation (MT). Since many of the
conventional automatic speech recognition (ASR) systems do
not generate reliable punctuation, there has been extensive re-
search on segmentation and punctuation insertion models. Es-
pecially in a simultaneous spoken language translation system,
the punctuation and segmentation component also has to ful-
fill the real-time constraints, while guaranteeing its best perfor-
mance.

Language model (LM) and prosody based system has been
one of the commonly used methods to insert punctuation marks
into ASR output as discussed in [1, 2, 3]. While it has a strong
advantage of low latency, the short context of this model of-
ten leads to underwhelming performance. Machine translation
based model, which translates non-punctuated text into punc-
tuated text [4, 5], showed its effectiveness in spoken language
translation evaluation campaigns [6, 7, 8]. While phrase-based
machine translation (PBMT) has been mainly used for this task,
using this system in an on-line setup has an extra burden of
pruning and loading of all relevant models, including phrase ta-
ble and language models.

Encoder-decoder framework with attention mechanism [9,
10] is used extensively in many sequence-to-sequence mapping.
Analysis on recent evaluation campaigns [11] also shows that
such neural machine translation (NMT) systems achieve better

performance than PBMT systems when using the same parallel
data.

Inspired by this, we model segmentation and punctuation
insertion system using the framework of encoder-decoder with
attention. While it achieves a better performance, it also offers
an advantage of compact model size.

To our knowledge, this is the first work to present segmen-
tation and punctuation insertion scheme using encoder-decoder
framework with attention mechanism, integrated into a real-
time spoken language translation. In this work, we analyze the
performance of NMT-based segmentation and punctuation sys-
tem considering real-time constraints and adapt the model for
them. In order to minimize the bottleneck at the softmax layer
at the output, we deploy a compact representation of output vo-
cabulary. The trade-off between network size and performance
is also studied. The required context length without increasing
latency is also investigated.

We build an NMT-based segmentation and punctuation
model for English, and integrate into a real-time spoken lan-
guage translation system [12]. The performance of this model
is analyzed in both offline and online scenarios. Compared to
the conventionally used language model based segmentation,
we achieve 1.3 BLEU points of improvement in English to Ger-
man translation when using the NMT-based model, maintaining
the low latency.

2. Related Work
Insertion of punctuation and segmentation into ASR transcripts
has been studied from various aspects. Using language model
probabilities with pause duration was suggested in [1]. Another
approach includes maximum entropy model [13], using lexical
and prosodic features. A sequential tagging based approach was
also applied in [14].

Punctuation prediction task was combined with the trans-
lation task in [15]. In this work, authors built a translation
model between non-punctuated source and punctuated target
languages. In [4], authors compared different mechanisms to
use a machine translation framework for punctuation prediction
task. It was concluded that the best performance is achieved
when they insert punctuation marks within the source language,
prior to the translation. In this method, however, punctuation
marks are inserted within pre-defined sentences. Thus, it was
assumed that proper sentence boundaries are already available.

Later this work is extended also to predict sentence bound-
aries in [5]. Thereby training data is prepared differently. Sen-
tences in the training data is cut randomly, so that sentence
boundaries can be observed anywhere throughout the data. For
testing, a sliding window was used. In [16], this work is re-
visited and studied considering the real-time constraints. It was
shown that monolingual translation system can be used with a
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modified input mechanism in order to decrease the overall la-
tency.

The latency issue in real-time speech translation system has
been emphasized in [17]. In this work, it was shown that latency
can be decreased by showing the initial hypothesis to the users
and allowing updates from further contexts.

Neural networks have been used for the punctuation pre-
diction task. In [18], the authors used a classifier based on a
recurrent neural network (RNN). Authors in [19] used a bidi-
rectional recurrent neural network with attention mechanism for
the punctuation prediction task.

Our work differentiates itself from theirs in several aspects.
First, our work deploys attentional encoder-decoder framework
where the punctuation insertion is viewed as a translation task.
Second, our model has been adapted and integrated into the
real-time spoken language translation system, maintaining the
low latency. For example, the system in [19] uses 200 word
long slices of input sequence. Once input sequence is parti-
tioned into 200 word long slices, each slice is then punctuated
and segmented using the system. While this long context is
beneficial for punctuation prediction performance, it generates
long latency in a real-time application scenario. On the other
hand, our work offers an analysis in adapting the model for the
real-time scenario.

3. NMT-based Punctuation and
Segmentation

In our work, we model the punctuation and segmentation as
a translation problem. We translated from lower-cased, non-
punctuated language into true-cased, punctuated language. Mo-
tivated by the success of NMT in recent evaluations, we used an
attention-based encoder-decoder model as our translation sys-
tem.

In this framework, the source sentence is first encoded using
a bi-direction long short-term memory (LSTM) [20] network.
The target sentence is then generated by a second RNN-model,
the decoder. A weighted sum over the source hidden states is
used as input to the decoder. Thereby, the weights are calcu-
lated by the attention layer. A detailed description can be found
in [9]. In contrast to PBMT-based systems, this architecture
needs a fixed vocabulary size. The most successful approach to
represent an open vocabulary using a fixed number of token in
NMT is the byte-pair encoding [21]. In our work, we used this
technique.

Based on this baseline system, we adapted the network to
the task of punctuation and segmentation. Since the model
should be used in a real-time speech translation system, our first
focus was to allow fast decoding. We addressed this problem
by using a compact representation of the output space. The de-
tails will be discussed in Section 3.1. Different from machine
translation for text input, the input in this task is not properly
segmented. Therefore, we needed to adapt the NMT system to
this condition. Detailed description on how our input streams
are constructed is given in Section 3.2.

3.1. Compact Representation

When analyzing the complexity of the different layers of the
neural network, the softmax layer at the output is known to be
the most complex one. For example, we used a vocabulary size
of 40K tokens in our conventional NMT setup. If we use this
setup, the calculation at the softmax layer at the output will be
very expensive. It is worth noting that in our application sce-

nario GPUs are only available during training, not in the testing
scenario. Therefore, this issue is especially problematic.

In standard NMT between two different languages, the tar-
get words are completely different from the input words. How-
ever, in our scenario, the only difference between the input and
the output sequence is the casing and the punctuation marks.
Therefore, we introduced a compact representation of the target
words using tags.

Each word in a target sentence is represented in either U, for
a uppercased word, or L, for a lowercased word, concatenated
with the punctuation mark following the word. In order to keep
the number of tokens the same for source and target side, we
concatenated all trailing punctuation marks with the tags. The
target sentence, thus, is a sequence of U, L, and one of these
concatenated with a sequence of trailing punctuation marks, i.e.
L? or L,”. In our case, this was altogether 60 tokens. Com-
pared to the 40K tokens in the original output vocabulary, this
is around 1.5% of the original size. For example, for an excerpt
stuff. and we said, “Well what about play and recess?” and we
will have the target sequence of L. L L L,“ U L L L L L?” L.

The output sequence is then replaced into a sequence of up-
percased/lowercased words and punctuation marks. If a word
exists in a pre-defined list for special casing, its uppercasing
map is applied. Otherwise, only the first character is upper-
cased.

The list is learned from the parallel training data (TED).
Throughout the corpus, we examine the most frequent upper-
casing form for each word (e.g. i→I, obama→Obama). If
the most frequent uppercasing form has only the first charac-
ter uppercased, we consider this our default uppercasing format
and therefore do not keep it in our list. Only if the most fre-
quent form includes special casing (e.g. youtube→YouTube,
ted→TED), the word is added to the list. By containing only
special casings, we obtain a compact list. Since most of words
have its uppercasing format of only first letter uppercased, the
list contains around 0.1% of all vocabularies in the training data.

This tag-based representation assumes that the number of
input tokens is the same as the number of output tokens. The
problem is that this cannot be assured by the standard NMT
model. Furthermore, we are using BPE-encoding for the in-
put. Therefore, without any specific modifications, there is a
possibility that a word is split into multiple tokens and then in-
ternal parts of the tokens are uppercased or a punctuation mark
is inserted between them. We address this problem by using
the tags for the original, complete words, not for the split sub-
word tokens. Therefore, punctuation marks can only inserted
between words, not between sub-words. Secondly, during de-
coding we only consider hypothesis which have the same length
as the original source sentence. Therefore, there can be no mis-
match between the number of tags and words in a sentence.

3.2. Input Data Stream

In machine translation scenarios, the input has a format of prop-
erly segmented sentences. However, this is not available in the
test case of our online scenario. We addressed this challenge by
modifying input data stream differently for training and testing
(offline/online) of the model.

In training, we used an approach suggested for phrase-
based monolingual translation systems in [5]. The training
data is randomly split into segments between 20 and 30 words.
Thereby the system is able to learn to put punctuation marks at
any position within the segment.

This approach, however, cannot be applied during decoding
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as the context at the beginning of each segment is very limited.
With the limited context, the system would not be able to make
a well-grounded decision for the initial parts of each segment.
For this reason, it was suggested in [5] to use a sliding window
for testing condition. In this approach, every word is processed
several times, observed in various contexts. Although this of-
ten generates reliable and well-performant punctuation for the
subsequent applications, we can not apply this approach in the
real-time use case due to latency. For offline tests, instead, we
apply the same procedure as the training data, where the test
data is randomly cut. This also simulates our online setup more
closely, where we can no longer have the benefit of overlapping
windows.

In our application, we used a framework which allows for
dynamic updates of all models as described in [17]. In this sce-
nario, authors in [16] presented an approach to efficiently use a
punctuation system. The main idea is to always keep a context
of the previous lw words. For words in this context, we will
reuse the previously generated punctuation marks. Therefore,
the initial words of each segment would have enough context
for the punctuation prediction in the previous step.

4. System Description
In this section, we briefly describe the punctuation prediction
systems used and compared throughout this work.

4.1. Neural Machine Monolingual Translation Setup

All punctuation and segmentation insertion models are built
using the NMT framework lamtram [22], with an attention-
based encoder-decoder model. The system is trained on En-
glish TED data, around ∼197k sentences. We generated the
sub-word units using byte-pair encoding (BPE), as described in
[21], with the BPE merging operations at 40k.

Same as in [5], the training data is randomly cut so that sen-
tence boundaries as well as punctuation marks can be observed
in any location throughout the segment. For the source side, all
punctuation marks are removed and all letters are lowercased.
The target side is cleaned up so that we have only considering
punctuation marks (sentence boundary marks e.g. .?!, commas,
and double quotation marks) left. We also adopted a compact
representation on the target side, which decreases output vocab-
ulary size dramatically as discussed in Section 3.1. Test data is
prepared in the same way, abandoning the sliding window ap-
proach due to the latency issue, as discussed in [16]. The details
on test data preparation for offline and online scenario can be
found in Section 3.2.

The models were all trained with Adam, where we restarted
the algorithm twice and early stopping is applied. Details of
system architecture and our preliminary results on comparing
different network sizes are described in Section 5.1.

4.2. PBMT-based Monolingual Segmentation and Punctu-
ation

Same as the NMT system, the PBMT-based segmentation sys-
tem is trained on the TED data. Training data is prepared in the
same way as described in Section 4.1. However, since PBMT
system is compared only in offline mode, we used sliding win-
dow for test data as described in [5]. Using the sliding window,
each word can be observed in various contexts. It yielded better
performant punctuation prediction as shown in previous spoken
language translation tasks [8].

4.3. LM-based Segmentation and Punctuation

In this system, a 4-gram language model is used to measure the
probability of a punctuation given the previous two and follow-
ing two words. If the probability exceeds an empirically chosen
threshold, the punctuation mark is inserted. For prosody, pause
information is used. The details can be found in [23].

Due to its low latency, this segmentation method has
been used extensively in real-time applications such as Lecture
Translator [3, 12]. In this work, we compare the online mod-
ule of our NMT-based segmentation and punctuation against the
LM-based system.

5. Experiments and Results
In order to analyze the performance of NMT-based segmenta-
tion and punctuation model, we compared offline and online
scenarios.

For offline scenario, we used a phrase-based monolingual
translation system and compared the performance with the
NMT-based system. In this scenario, we used two input con-
ditions. First, we used manual transcript of the test data in order
to see the punctuation prediction performance without any ASR
errors and other online application constraints. The ASR tran-
script of the test data is also fed into the offline systems to show
the impact of ASR errors in the offline setup. The ASR system
description can be found in [17].

In case of the test on the manual transcripts, the punctua-
tion prediction performance is measured in F-scores for predic-
tion accuracy compared to the human-generated reference, and
BLEU [24] for its impact on machine translation performance.
In case of the test on the ASR transcript, we translated the au-
tomatically punctuated test data into German and compared the
translation performance in BLEU. For machine translation, we
used a system shown in [25].

For online scenario, we used a language model and prosody
based segmentation method. In order to consider the potential
latency, we limit the decoding time to the length of audio files.
Therefore, if there were any delayed translation due to latency,
which was not fully decoded during the audio time, it would
have not been included in our final hypothesis. However, we
have not encountered with any of undecoded sentences during
the test.

As test data, we used test2013 from IWSLT evaluation cam-
paign. The manual transcript of this test data is 993 sentences in
English and the audio reaches around 2 hours and 16 minutes.

5.1. Tradeoff: Network Size vs. Performance

In a first series of preliminary experiments we analyze the trade-
off between network size and performance.

In the Baseline system, the encoder uses word embeddings
of size 256 and a bidirectional LSTM [20] with 256 hidden lay-
ers for each direction. For the attention, we used a multi-layer
perceptron with 512 hidden units. The decoder uses conditional
GRU units with 512 hidden units in order to benefit from con-
text information. We then halved the overall network size and
compared the performance, except for the word embeddings di-
mension.

Table 1 shows the results and word embedding dimension
size for each setup. For clarity, we halved the word embeddings
dimension only for the Quarter system.

Results show that while the overall performance drops
slightly as we decrease the network size, the performance of
the Quarter system is still comparable to the baseline. In our
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Table 1: Comparison of performance when adopting different
size of network.

System F-score
Baseline, wd256 61.13
Half, wd256 59.85
Quarter, wd128 59.04

preliminary experiments on another language, decreasing the
network size one step further down costed us around 10 in F-
score. For our online system, we chose Quarter system.

5.2. Context Length

In the second preliminary experiment, we wanted to analyze the
impact of the context length used during decoding in the neu-
ral network. As described in Section 3.2, one parameter of the
system is the context length during decoding. In the baseline
configuration, we used a context length of four. That means,
that the last four words are always kept, as a context, and punc-
tuation is reapplied for these words in the next step. Therefore,
a new word has a context of four previous words.

Table 2: Comparison of online segmentation and punctuation
performance in on-line setup, with different context length per-
mitted.

Context length En→De BLEU
4 13.18
16 14.20

The results can be found in Table 2. When we use this
method, we achieve a BLEU score of 13.18 in the subsequent
translation. In a second experiment, we increases this context
up to 16 words. In this case, the BLEU score is increased to
14.20. Therefore, we can conclude that the neural network
based model is able to facilitate long dependencies and only
works well, if this context is also available during decoding.

5.3. Results

First experiment is devoted to compare phrase-based monolin-
gual translation system and neural machine translation system
in an off-line mode. All punctuation marks of manual transcript
of test data are removed prior to the experiment. Once the test
data is punctuated using either one of the two systems, the accu-
racy of inserted punctuation is measured in F-score. The punc-
tuated transcript is then translated into German, in order to see
the impact of inserted punctuation marks on a subsequent appli-
cation.

Table 3: Comparison of offline segmentation and punctuation
methods on manual transcript.

System F-score En→De BLEU
PBMT-seg 59.59 18.84
NMT-seg 61.30 19.21

Table 3 shows the result. We can see that the NMT-based
system not only excels in the intrinsic evaluation, but also in the
extrinsic one, improving BLEU by 0.4 points.

In order to show the impact of ASR errors, we used the
ASR transcript of the test data as an input to PBMT-seg and

NMT-seg. The results can be found in Table 4. Due to ASR
errors, the BLEU scores drop around 4-5 points.

Table 4: Comparison of offline segmentation and punctuation
methods on ASR transcript.

System En→De BLEU
PBMT-seg 13.88
NMT-seg 13.96

Finally, Table 5 shows the results of end-to-end speech
translation performance using two different segmentation meth-
ods. As mentioned in Section 5, the decoding time is con-
strained to the audio length.

Table 5: Comparison of end-to-end real-time speech transla-
tion performance on different segmentation methods.

System En→De BLEU
LM-seg 13.37
NMT-seg 14.67

The results show that while LM-based segmentation
achieved 13.37 BLEU for the given test data, the NMT-based
segmentation achieved 14.67 BLEU points. We can observe
that by replacing the segmentation and punctuation module
from language model based one to NMT-based one improved
the translation quality by 1.3 BLEU points. Since the decoding
time was restricted for both conditions, no latency was added.

6. Conclusions
In this paper, we presented our recent work in NMT-based seg-
mentation and punctuation model. To our knowledge, this is
the first work to use the encoder-decoder framework with atten-
tion mechanism for a punctuation prediction task and integrate
it for a real-time spoken language translation system. In order
to ensure low-latency, we minimized the bottleneck at the soft-
max layer by decreasing output vocabulary. We also offer an
in-depth analysis on design choices, including network size and
context length, for an improved performance in real-time appli-
cation with low latency.

Experiments show that NMT-based segmentation and punc-
tuation model outperforms the conventional language model
and prosody based model by 1.3 BLEU points of an end to end
spoken language translation, maintaining low latency.

Future work includes expansion of this model into different
source languages. Also, this model can be combined with other
preprocessing of machine translation, i.e. disfluency removal.
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