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Abstract:

Verbalization of past events and experiences is a key skill for autonomous robots as it increases user
trust and system transparency. Since this requires a robot to store, filter and recall information about its
former observations and actions, it needs to be equipped with an Episodic Memory (EM). Previous work
introduced the task of Episodic Memory Verbalization (EMV) and presented a neural network architec-
ture for approaching this problem. Based on an analysis of the current limitations, the present thesis
proposes a new model for EM, called the Long-Term Compressive Memory Transformer, providing both
unlimited context length as well as an EM constrained to a constant size. Furthermore, a notably larger
and more diverse EMV dataset is collected, recording a multimodal data stream from thousands of sim-
ulated robot executions. Using the dataset of Bärmann et al. (2021) in addition to the newly collected
one, the introduced model is trained and evaluated, thereby validating the feasibility of the proposed
architecture with the results surpassing both a text-only baseline as well as the previous work. Moreover,
a variant of the model featuring multiple compression levels is developed and empirically compared to
the other approaches. Eventually, ablation studies on certain aspects of the chosen approach in combi-
nation with detailed analyses of all experimental results reveal that, although significant improvements
were made, there are still unsolved problems in the EMV task. To facilitate future work in this field, the
presented dataset, models and code will be released at https://gitlab.com/lbaermann.

https://gitlab.com/lbaermann


Kurzzusammenfassung:

Verbalisierung vergangener Ereignisse und Erfahrungen ist eine Schlüsselfähigkeit für autonome Roboter
und fördert das Vertrauen des Benutzers in die Technologie. Um zu ermöglichen, dass ein Roboter Infor-
mationen über seine früheren Beobachtungen und Handlungen speichert, filtert und abruft, muss er mit
einem episodischen Gedächtnis (Episodic Memory, EM) ausgestattet werden. In vorherigen Arbeiten
wurde die Aufgabe des Verbalisierens von Robotererfahrungen (Episodic Memory Verbalization, EMV)
eingeführt und eine neuronale Netzwerkarchitektur zur Lösung dieses Problems vorgestellt. Basierend
auf einer Analyse der Grenzen des bestehenden Systems schlägt die vorliegende Arbeit ein neues Modell
names Long-Term Compressive Memory Transformer zur Erstellung von EM vor. Dieses bietet sowohl
eine unbegrenzte Kontextlänge als auch ein auf eine konstante Größe beschränktes EM. Zusätzlich
wird ein deutlich größerer und vielfältigerer EMV-Datensatz, der einen multimodalen Datenstrom aus
Tausenden von simulierten Roboterausführungen beinhaltet, präsentiert. Unter Verwendung des Daten-
satzes von Bärmann et al. (2021) sowie des neu gesammelten Datensatzes wird das vorgestellte Mod-
ell trainiert und evaluiert, wobei die Ergebnisse sowohl eine text-only-Baseline als auch die vorherige
Arbeit übertreffen. Darüber hinaus wird eine Variante des Modells mit mehreren Kompressionsstufen
entwickelt und empirisch mit den anderen Ansätzen verglichen. Schließlich zeigen Ablationsstudien
zu bestimmten Aspekten des gewählten Ansatzes in Kombination mit detaillierten Analysen aller ex-
perimentellen Ergebnisse, dass es mit Blick auf die EMV-Aufgabe trotz signifikanter Verbesserungen
noch ungelöste Probleme gibt. Um zukünftige Arbeiten auf diesem Gebiet zu erleichtern, werden der
vorgestellte Datensatz, die Modelle und der Code unter https://gitlab.com/lbaermann veröffentlicht
werden.

https://gitlab.com/lbaermann
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1. Introduction

For humans, narrating past events and experiences to other people is a key part of social interaction.
Thus, to become accepted by potential users, a humanoid robot must be able to verbalize its observations
and actions in a similarly natural way. For instance, consider a person coming home and asking her/his
autonomous kitchen robot “What did you do when I was at work?”. By responding with “I cleaned up
the table and made the dishes. You’re welcome!”, the robot makes its actions transparent and thereby
increases the user’s trust in it. Furthermore, robot experience verbalization is crucial in case of failures.
If the robot fails to execute some action (or worse, causes damage, e. g. by dropping a plate), it must be
able to tell the human that something went wrong, and ideally also provide details about how and why it
happened.

To realize such functionality, a robot must be equipped with a component resembling the human
episodic memory, storing and processing information about past events and their spatio-temporal rela-
tions (Tulving, 1972). Particularly, the robotic system needs to process, filter and store data from a highly
multi-modal, continuous stream of experiences, including camera images, kinematic data, symbolic ex-
ecution information, and more. Verbalization then is the process of understanding a natural language
query provided by a user, retrieving the relevant information from the robot’s episodic memory, and
synthesizing a natural language answer to fulfill the users request.

While previous work (Rosenthal et al., 2016; Zhu et al., 2017) on episodic memory verbalization
(EMV) used rule-based procedures for recording episodic memories as well as generating natural lan-
guage representations thereof, recently, Bärmann et al. (2021) proposed to use a data-driven method,
tackling the EMV task as an end-to-end learning problem. For this purpose, a basic architecture for ap-
proaching the EMV task is introduced: Episodic memory (EM) is created by feeding high-dimensional
experience vectors provided by the robotic system into an LSTM, and storing only the lower-dimensional
sequence of output hidden states. Additionally, a natural language query encoder, which is a Transformer
encoder (Vaswani et al., 2017), receives the users question and produces a latent representation. Even-
tually, the natural language decoder attends to both the query encoding as well as the sequence of latent
episodic memory entries to produce the robot’s response, using an auto-regressive Transformer decoder.

While this model already shows some promising results, it has several drawbacks and limitations:

1. As the evaluation and ablation study of Bärmann et al. (2021) indicates, the model has severe dif-
ficulties to generalize well to long histories, i. e. the episodic memory is not good at “memorizing”
longer sequences of events.

2. Although each key-frame in the stream of robot experiences is compressed to a latent, compara-
tively low-dimensional EM vector, the content of EM still grows linearly with the number N of
experiences the robot makes. This is infeasible for actually deploying this system to a robot, since
the storage consumption of the EM grows with O(N) and, even more importantly, the runtime of
Transformer decoder self-attention also scales with O(N) at query time.

3. Evaluation on a small, hand-annotated dataset additionally revealed that the model is mostly unable
to generalize to natural language variations in the user’s query.

Thus, the present thesis aims at enhancing the architecture of Bärmann et al. (2021), tackling some
of its problems and thereby improving results on the EMV task. Specifically, addressing the above
mentioned issues, the following goals are set:

1. To improve generalization to longer episodic histories, the EM encoder needs to use a more sophis-
ticated architecture than a plain LSTM. However, the requirement to keep only a constant amount
of raw experiences needs to be kept, in order to be able to handle a potentially infinite number of
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inputs1. Therefore, neither a plain Temporal Convolutional Network (Bai et al., 2018) nor a vanilla
Transformer encoder can be used, and some kind of recurrence needs to be integrated.

2. When constructing a new EM encoder model as mentioned above, it needs to be constrained to
produce an episodic memory representation with a constant space requirement. Thereby, also the
runtime cost at query time automatically reduces to O(1), which is highly desirable.

While addressing the third of the above limitations, namely the poor generalization to variations of
natural language queries, is equally desirable, it stays out of the scope of this work. Particularly, this
would require a more diverse dataset of human-annotated natural language queries and answers to be
collected, which is a cost- and work-intensive task. Thus, the focus in this thesis is on improving the
construction of episodic memory.

With these goals set, two major contributions are made: First, a far larger and more realistic dataset of
simulated robot experiences is collected (compared to the one in Bärmann et al., 2021), featuring more
diversity in involved actions and objects, as well as new grammar-generated dialogs specifically facili-
tating the training of long-term memory. Second, the base model of the previous work is extended with
a new EM encoder, honoring the O(1) space constraint as well as allowing for a theoretically unbounded
information flow path in time. For this purpose, the Long-Term Compressive Memory Transformer is
developed. Evaluation on both the existing dataset of Bärmann et al. (2021) and the new dataset reveals
the feasibility of this architecture, with the results surpassing both a text-only baseline as well as the
previous work. Furthermore, a variant of the model featuring multiple compression levels is proposed,
and empirically compared to the other approaches.

The remainder of this thesis is structured as follows: Chapter 2 begins with presenting some basics
on recurrent networks and the Transformer architecture. Then, related work with respect to both the
EMV task as well as the construction of long-term EM is reviewed in chapter 3. After that, chapter 4
presents the EMV architecture in general and the compressive-transformer-based implementation of EM
in particular. Chapter 5 first introduces datasets, evaluation methodology and training procedure, and
then discusses the experimental results in section 5.4. Finally, chapter 6 draws a conclusion and sheds
some light on possible directions of future work.

1When deploying an EMV system to a real robot, the stream of episodic inputs is unlimited. Thus, the system must not depend
on all inputs to be present before doing any processing (because there is no end of EM inputs) and, in order to avoid flooding
the disk, it must not store all past inputs.

Long-Term Compressive Memory Transformer for Encoding and Verbalizing Robot Experiences
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2. Basics

The following chapter describes some of the basic techniques concerning the use of artificial neural net-
works in this work. It assumes the reader is already familar with the concept of an Artificial Neural
Network (ANN) or Multi-Layer Perceptron (MLP), as well as its training strategy, namely the backprop-
agation algorithm. Furthermore, some basic understanding of Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) should be present. More details on these topics can e. g. be
found at Bishop (2006) and Olah (2015).

2.1. Gated RNN Units

While basic RNNs allow to work with sequential data, they often suffer from the vanishing gradient
problem when working with long input sequences (Hochreiter et al., 1997). The main issue is that, due
to the hidden state being overwritten at each time step, the gradient vanishes (multiplies near to zero)
when applying too many time steps, and therefore, the net is unable to be trained to “remembering”
relevant facts over a longer period of time. For solving this problem, a common approach is to introduce
so called “gates”, controlling the insertion and deletion of memory state independently of the output
value, so that relevant information can be remembered over long time distances. Most major successes
with RNNs were actually achieved using variants of gated units (Chung, Gulcehre, et al., 2014), and two
of them will be introduced in the following.

LSTM The most popular approach to avoid the vanishing gradient problem is the Long Short-Term
Memory (LSTM) cell introduced by Hochreiter et al. (1997). It adds gates, i. e. multiplicative weights,
to the hidden state ht and introduces an additional cell state ct (also referred to as “memory”). At time
step t, first, a new cell state candidate c̃t is calculated using

c̃t = tanh(Wc xt +Uc ht−1) (2.1)

Updating the cell state is done by “forgetting” the old cell state data with factors ft and “inserting” the
proposed data with factors it as

ft = σ (Wf xt +Uf ht−1) (2.2)
it = σ (Wi xt +Ui ht−1) (2.3)
ct = ft � ct + it � c̃t (2.4)

with � representing pointwise multiplication. Eventually, the hidden state to output is determined by the
cell state and an “output gate” multiplier ot specifying the amount of memory information to let through:

ot = σ (Wo xt +Uo ht−1) (2.5)
ht = ot ∗ tanh(ct) (2.6)

All matrices W* and U* are trainable parameters. Figure 2.1 summarizes the calculations done inside an
LSTM cell.

GRU The Gated Recurrent Unit (GRU) introduced by Cho et al. (2014) is an RNN variant requiring
less parameters than LSTMs. Nevertheless, it is shown to have a competitive performance on a variety
of tasks (Chung, Gulcehre, et al., 2014), and thus is commonly used in practice. The basic idea of gating
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Figure 2.1.: Illustration of the calculations done inside a single LSTM (left) and GRU (right) cell. σ and
tanh boxes represent a neural network layer with the given activation function, red circles
pointwise operations. Merging vector paths are concatenations. Graphics modified from
Olah (2015)

is similar to LSTM, but the GRU does not require an additional memory cell and uses only two instead
of four gates. In particular, at time step t, first, the reset gate rt and update gate zt are calculated as

rt = σ (Wr xt +Ur ht−1) (2.7)
zt = σ (Wz xt +Uz ht−1) (2.8)

The reset gate is now used to modulate a cell update vector h̃t , which is

h̃t = tanh(Wh xt +Uh (r�ht−1)) (2.9)

Finally, the influence of h̃t on the new hidden state is controlled by the update gate:

ht = zt �ht−1 +(1− zt)� h̃t (2.10)

2.2. Encoder-Decoder Network

Sutskever et al. (2014) introduced encoder-decoder networks to handle general sequence-to-sequence
tasks. In the original formulation, an encoder network first transforms the input sequence x= (x1, . . . ,xN)
to a fixed-length representation (context) vector c. Then, the decoder uses this context vector to generate
outputs y = (y1, . . . ,yM−1,yM), with the final output yM being a special token to represent the sequence
end.

Function More formally, with rnnenc being the recurrent function of the encoder and h0 = s0 = 0, the
context vector c is defined as

ht = rnnenc(xt ,ht−1)

c = hN
(2.11)

with t running from 1 to N. Decoding with rnndec uses the context vector to produce its outputs st :

st = rnndec(c,st−1) (2.12)

Long-Term Compressive Memory Transformer for Encoding and Verbalizing Robot Experiences
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Eventually, an MLP layer g called “generator” maps the decoder hidden states to the actual output token
probabilities:

P(yi|t) = g(st)[i] (2.13)
yt = argmax

yi∈Vout

(P(yi|t)) (2.14)

where Vout = {y1, . . . ,yO} is the output vocabulary set and g usually uses the so f tmax function to output
a probability distribution vector of dimension O.

Training and Inference An encoder-decoder model is usually trained in “teacher-forcing” mode, i. e.
instead of using the previous output of the decoder as st−1, the target output is used. In contrast, when
testing the model, the probability P(yt |yt−1, . . . ,y1,x) needs to be maximized. As a straightforward strat-
egy, it is possible to use a greedy algorithm as shown by Eq. (2.14), picking the yt with the highest
probability at each time step . A more sophisticated implementation will use an algorithm like beam
search (Lowerre, 1976) to search the path y1, . . . ,yt with the highest probability while avoiding an expo-
nential explosion of computation time.

Attention Bahdanau et al. (2015) pushed the field of machine translation forward by extending the
encoder-decoder framework with a so-called “attention” mechanism. Informally, it enables the decoder
to choose on which part of the input to focus while generating the next output word (Olah and Carter,
2016). For this purpose, instead of only keeping a single vector c, the whole sequence of encoder hidden
states st is kept, and the context vector is computed dynamically at every time step, thus now writing it
as ct and computing to

ct =

N

∑
i=1

αi,thi (2.15)

where the αi,t can be interpreted as a measure of how much the output at time t aligns with the input at
time i. For calculating these alignment factors, a (learned) function a measuring the relevance score is
required. A softmax is applied to normalize the attention weights to sum up to 1:

ei,t = a(st−1,hi)

αi,t =
exp(ei,t)

∑
N
k=1 exp(ek,t)

As the attention a is differentiable, it can be trained along with the other parts of the model. This
mechanism led to major improvements especially for lengthy input sequences (Bahdanau et al., 2015),
and is the basis of the Transformer model, which is presented in the following section.

2.3. Transformer

The Transformer model introduced by Vaswani et al. (2017) is using the encoder-decoder architecture
designed for handling sequence-to-sequence tasks, but works solely with attention, abandoning RNNs
completely. For this purpose, self-attention is used, i. e. each position in the sequence attends to itself
as well as each other position. Every layer of the Transformer encoder performs this self-attention over
the previous layer’s hidden states, followed by a position-wise feedforward network for transforming the
input data. The decoder works similarly, but its self-attention is constrained to respect the auto-regressive
setting, and it is additionally allowed to attend to all encoder output states (so called encoder-decoder-
attention).

Attention The following paragraphs will introduce a variant of the plain attention mechanism intro-
duced by Bahdanau et al. (2015), as it is used in the Transformer (Vaswani et al., 2017). It involves a

Long-Term Compressive Memory Transformer for Encoding and Verbalizing Robot Experiences
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query vector q, which represents the current context data of the attention mechanism, as well as a se-
quence of key vectors ki and corresponding values vi. Each key is compared to the query, yielding a
relevance or compatibility score αi, which is then used to weigh each corresponding value in the linear
combination which is the attention’s output. Generally speaking:

Attention(q,K,V ) = ∑
i

RelevanceScore(q,ki) · vi (2.16)

where K,V are matrices of the ki,vi, respectively.

Scaled Dot-Product Attention In the context of self-attention, the attention mechanism as described
above is used with each sequence item as the query once, and the complete sequence both as keys and
values. This means, in practice, the signature Attention(q,K,V ) can be replaced with Attention(Q,K,V ),
where Q is also a matrix of all different query vectors (i. e. in the context of self-attention, Q = K =V ).

To further specify the attention mechanism, a specific realization of the RelevanceScore function
needs to be chosen. When Bahdanau et al. (2015) introduced the attention mechanism for RNN-based
encoder-decoder networks, the compatibility function is a learned single-layer feed-forward network.
However, simply using the dot-product between query and key vectors as a measure of relevance (in
combination with a softmax layer) yields a much faster implementation, and has a comparable represen-
tational power if the queries, keys and values can be transformed by other learned components of the
model. Thus, Vaswani et al. (2017) use the following attention mechanism, called “Scaled Dot-Product
Attention”:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.17)

where dk is the dimension of the key vectors. The scaling factor 1/
√

dk is introduced to keep the softmax
away from regions with extremely small gradients. Without the scaling, this could occur for large values
of dk, since the dot product would lead to larger numbers with increasing dimension (since more values
are summed together).

The use of self-attention in the decoder additionally requires masking out illegal connections which
would otherwise enable information flow in the wrong direction of time. In particular, when generating
the token i, the model should not be allowed to attend to all positions j ≥ i (i. e. , the model is “auto-
regressive”). This is implemented by setting the values in the softmax of Eq. (2.17) to −∞ for the illegal
connections. A depiction of the scaled dot-product attention mechanism can be found on the left of Fig.
2.2.

Multiple Attention Heads As mentioned above, when using the plain dot product as a measure of
relevance, there needs to be some other way to transform the keys, queries and values. For this purpose,
Vaswani et al. (2017) use learned transformation matrices on all the inputs of the attention function.
To enable the model to attend to different parts of the input data simultaneously, they additionally use
multiple attention “heads”, where each head has its own transformation parameters. This means:

MultiHead(Q,K,V ) = [head1, ...,headH ]WO (2.18)

with headi = Attention(QW i
Q,KW i

K,VW i
V) (2.19)

with learned matrices W i
Q,W

i
K,W

i
V,WO. This is depicted in the middle of Fig. 2.2.

Complete Transformer Layer To complete the transformer layer, next to the multi-head self-attention
module described above, a fully-connected feed-forward network with a single hidden layer is applied to
each position:

FFN(x) = ReLU(xW1 +b1)W2 +b2 (2.20)

Long-Term Compressive Memory Transformer for Encoding and Verbalizing Robot Experiences
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Efficient Transformers: A Survey
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Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)

attention module is then passed to a two-layered feed-forward network which has its in-
puts/outputs similarly connected in a residual fashion with layer normalization. The sub-
layer residual connectors with layer norm is expressed as:

X = LayerNorm(FS(X)) + X

where FS is the sub-layer module which is either the multi-headed self-attention or the
position-wise feed-forward layers.

2.1 Multi-Head Self-Attention

The Transformer model leverages a multi-headed self-attention mechanism. The key idea
behind the mechanism is to learn an alignment (Bahdanau et al., 2014) in which each
element in the sequence learns to gather from other tokens in the sequence. The operation
for a single head is defined as:

Ah = Softmax(↵QhK>
h )Vh,

where Qh = WqX,Kh = WkX and Vh = WvX are linear transformations applied on the

temporal dimension of the input sequence. Wq, Wk, Wv 2 Rd⇥ d
Nh are the weight matrices

(parameters) for the query, key and value projections and project the input X to an output
tensor of d dimensions. Nh is the number of heads

X is a matrix of size RN ⇥ Rd, and ↵ is a scaling factor that is typically set to 1p
d
. Let

us denote the number of heads by NH . The outputs of heads A1 · · · ANH
are concatenated

together and passed into a dense layer. The output Y can thus be expressed as Y =

3

Figure 2.2.: Left: A single instance of the scaled dot-product attention mechanism. Middle: The Multi-
Head Attention Module, as used in the transformer. Right: The complete transformer model.
The graphic is taken from Tay et al. (2020)

where the weights W1,W2,b1,b2 are shared between positions (but different in each layer).
Furthermore, each transformer sub-layer (self-attention, feed-forward, and encoder-decoder attention

in the case of the decoder) uses residual connections (He et al., 2016), which were shown to ease learn-
ing of deep networks in the domain of image recognition. The result of each sub-layer is additionally
normalized using layer normalization (Ba et al., 2016). The complete architecture can be seen on the
right of Fig. 2.2. Formalizing the above, an encoder layer can be written as

TransformerEncLayer(x) = norm(x+FFN(norm(x+MultiHead(x,x,x)))) (2.21)

and a decoder layer as

TransformerDecLayer(x,e) = norm(x+FFN(norm(x+MutliHead [norm(x+MultiHead(x,x,x)),e,e])))

where x is the input as delivered by the previous layer (or the embedded input sequence to the model, for
the first layer) and e is the output of the last encoder layer.

Positional Encoding Since the self-attention mechanism applies the same network to each position in
the input, it by itself has no notion of locality or the order of the sequence. To inject this information,
a positional encoding is used. Vaswani et al. (2017) utilize sinusoidal vectors added to the input token
embeddings to encode the absolute position of the token in the sequence. However, there are plenty of
approaches in the literature to supply positional information: For example, instead of using sinusoidal
vectors, one can treat the position encoding as learned parameters. However, this makes it more difficult
to generalize to sequences longer than those seen during training. Another approach is to encode the
relative distance between two tokens instead of the absolute position in the sequence. This is used – with
implementations differing in the details – e. g. by Dai et al. (2019), Ainslie et al. (2020), and Q. Wu et al.
(2020).
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3. Related Work

This work deals with constructing an episodic memory (EM) for capturing long-term dependencies,
constrained to a constant space requirement, in the context of the episodic memory verbalization (EMV)
task. Hence, there are two major tracks of related work, which will be presented in the following: First,
section 3.1 will deal with the EMV task and studies related to it. After that, section 3.2 will focus on the
construction of EM as a particularly interesting sub-task of EMV.

3.1. Verbalization of Robot Experience

The term verbalization of an autonomous robot’s experience was introduced by Rosenthal et al. (2016),
presenting a rule-based algorithm for narrating the routes taken by their robot. With the follow-up work
of Perera et al. (2016), this is extended by a component for question understanding. However, the module
is limited to mapping a question to a set of verbalization parameters like abstraction or specificity, thus
not enabling open-ended questions about the robot’s past. Orthogonal to that, Zhu et al. (2017) also build
on the initial work of Rosenthal et al. (2016) and transfer it to a humanoid robot interacting with its
environment. Thus, instead of verbalizing navigation routes, they enable the ARMAR-III robot (Asfour
et al., 2006) to talk about its last actions in a kitchen environment.

Inspired by these works, Bärmann et al. (2021) recently introduced a deep-learning-based system for
verbalizing a robot’s experience given open-ended questions about its past. As that work is the direct
predecessor of the present thesis, the model architecture as well as the mechanisms for gathering large
sets of training data will be reused here. Further details about the work of Bärmann et al. (2021) will be
revisited at the appropriate places of this thesis.

The preceding work also draws a connection of EMV to the field of Question Answering (QA), where
the EM can be filled with content from different modalities: For instance, fact-based QA (Kumar et al.,
2016), where a natural language (NL) question is given with a set of NL supporting facts, can be seen
as a special case of EMV with the EM constructed from NL utterances only. Similarly, in task-oriented
dialog, e. g. in a restaurant dialog setting (Wen et al., 2017), recent works like Eric et al. (2017), C.-S.
Wu et al. (2019), and X. Chen et al. (2019) use neural architectures to access a symbolic knowledge base
(which can be seen as a form of EM) with the purpose of answering a NL query. On the other end of the
spectrum, Video QA builds an EM of the past and answers NL questions based on a sequence of images
(Z. Yu et al., 2019; Zhao et al., 2020). However, as stated by Bärmann et al. (2021), all QA works differ to
EMV with respect to the timing of both the episode data (an explicit time signal is missing) as well as the
question. The latter is crucial, as it allows (V)QA works to use attention or similar mechanisms informed
about the question directly on the episodic input data (e. g. the video or the knowledge base). In contrast,
in the EMV setting, the episodic data needs to be encoded, compressed and stored independently of the
question. Further, such processing must happen before even knowing if a question about this data will
ever occur in the future at all.

3.2. Episodic Memory

Introduced by Tulving in the context of cognitive sciences, the term episodic memory refers to the part
of mind that “receives and stores information about temporally dated episodes or events, and temporal-
spatial relations among these events” (Tulving, 1972, p. 385f.). It is contrasted to semantic memory,
which contains organized knowledge about words, rules, symbols and algorithms. Both memories inter-
act dynamically, and in humans, the content of episodic memory is highly unstable, as even retrieval of
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information from it may change its content.
In the meantime, plenty of researchers proposed systems for transferring the concept of EM to robotics.

For instance, the CRAMm model of Winkler et al. (2014) creates an EM of two components: On the one
hand, symbolic information about executed actions, involved objects etc. are asserted to a predefined,
information rich ontology (Beetz et al., 2018). This includes timestamps. On the other hand, low-level
perceptual information in form of camera images and robot pose data are stored in a NoSQL database,
which is then projected into the above ontology. Thereby, the system is able to answer formal questions
(given as Prolog queries) about the robot’s past.

Other approaches construct an EM using deep neural networks. In the case of Rothfuss et al. (2018),
EM is constructed from a sequence of images by using a convolutional LSTM network (Shi et al., 2015),
simultaneously auto-encoding the last and predicting the next few frames. Similarly, video embeddings
can be constructed in a self-supervised manner using temporal cycle consistency learning (Dwibedi et
al., 2019). Moreover, Graves et al. (2016) present the Differentiable Neural Computer, which consists
of a controlling neural network equipped with an external memory to remember structured inputs and
perform algorithmic tasks on these episodic memories.

Alternatively to backpropagation-based learning, adaptive resonance theory (ART) neural models can
be used to build an EM (Wang et al., 2012). Chang et al. (2017) show that this also enables an explicit
representation of time in the model, and Park et al. (2018) apply a deep ART model to various tasks in
robotics.

Finally, in the predecessor of this thesis, Bärmann et al. (2021) propose to use several linear layers in
combination with a two-layered LSTM to construct an EM from robot experiences in the context of the
EMV task. However, this approach has two major limitations: First, the episodic memory grows linearly
with the number of experiences fed into the model, and thus, the storage – as well as the computation
cost at question time – is unbounded. Second, the experimental results presented by the authors revealed
a severe decrease of correct answers in the EMV task with increasing number of experiences. Hence,
with the goal of improving on these two points, several works which do not explicitly talk about EM –
but present promising techniques which may be applied for constructing an enhanced version thereof –
will be reviewed in the following.

3.2.1. Learning from Provided Structure

Constructing a deep-learning-based episodic memory from a temporal stream of multimodal robot expe-
riences essentially boils down to creating a latent representation of a (potentially very) long sequence of
inputs. In this light, the choice of Bärmann et al. (2021) to use an LSTM for encoding EM is natural.
However, a possible explanation of the observed problems in handling larger numbers of inputs might
be a missing inductive bias towards hierarchical representations of the past. While a certain hierarchy
is definitely present in robot experience data (e. g. movements – actions – sub-tasks – goals), a plain
LSTM has no explicit mechanism to support such structure. An early proposal of hierarchical recurrent
networks was made by El Hihi et al. (1995) (talking about plain RNNs, as LSTMs were not yet intro-
duced at that time). Their basic idea is to use multiple recurrent connections with different delays, i. e.
individual neurons operate on different time scales. While this induces some hierarchy to the process-
ing of the input, it resorts to fixed hyperparameters specifying the time scales. However, if an external
hierarchy signal is present in the data, it could also be used to dynamically trigger updates of neurons
on a different level of the hierarchy. This might be applicable to the EMV task, as e. g. the end of a
certain action is known to the robot’s planning system. With such a hierarchy present in the data, the
use of Hierarchical Attention Networks as introduced by Yang et al. (2016) in the context of document
classification is possible, too. Here, based on multiple levels of GRUs (one per hierarchy level), attention
with respect to a learned query vector is performed on each level to provide the input to the next one. In
the document classification setting, this means each sentence is processed by a word-level GRU, and the
resulting sequence is summarized into a sentence embedding using word-level attention. Then, in turn,
the sequence of sentence embeddings is processed by a sentence-level GRU, and sentence-level attention
is applied to obtain a single vector summarizing the complete document. A similar strategy could be
applied to the different abstraction levels in robot experience data, if the model is properly adjusted for
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live usage on a robot (i. e. a setting where the length of the input sequence is not known in advance, and
it is potentially infinite).

Although recurrent architectures are the most prominent approach of dealing with temporal sequences,
Bai et al. (2018) suggest and empirically support that simple convolutional neural networks can compete
and even outperform out-of-the-box recurrent models. In particular, they propose the Temporal Convo-
lutional Network (TCN), which basically is a modern formulation of the Time-Delay Neural Network
(Waibel et al., 1989; Waibel et al., 1987), supplementing it with modern tricks like dilated convolutions
(F. Yu et al., 2016) and residual layers (He et al., 2016). While automatically providing an inductive bias
towards hierarchical structures due to the convolution layers, the TCN cannot be used as is for the EMV
task because it has a limited effective context length (which depends on the number of layers, size of
convolution kernels, and dilation factors).

3.2.2. Self-Supervised Structure Learning

Learning Segment Boundaries While the architectures described above rely on either fixed hyper-
parameters or an explicit signal in the data to utilize hierarchical structures, the idea of automatically
inferring such structure during learning of an overall task goal is intriguing, as it might both improve
model performance as well as lead to a higher intepretability of its internal workings. With these goals,
Chung, Ahn, et al. (2017) propose the Hierarchical Multiscale RNN (HM-LSTM), capable of learn-
ing a hierarchical structure on sequence data without providing explicit boundaries. This is achieved
by introducing discrete, binary boundary variables as part of each LSTM cell, controlling whether the
current time step should trigger an update of the subsequent layer. Boundary variables are computed
similarly to the other LSTM gates, using a constant-slope activation function called hard sigmoid, and
then binarized using a step function or Bernoulli sampling. Depending on the previous time step’s and
the preceding layer’s boundary value, an LSTM cell either performs a COPY operation (i. e. nothing) in
case no boundary was detected, an UPDATE (i. e. the usual LSTM cell computation) if the preceding
layer found the end of a segment, or a FLUSH operation (resetting the LSTM’s state) in case the current
layers output was delivered to the upper layer in the previous time step. Although boundary variables
are binarized, back-propagation is used for training the model by utilizing the straight-through estimator
trick, i. e. by replacing the non-differentiable function in the model with a differentiable approximation
in the backward pass. Experimental results on character-level language modeling show that the model
reaches state-of-the art performance, and Chung, Ahn, et al. (2017) also provide examples and, based
thereon, claim that the boundary variables learn to detect an intrinsic hierarchical structure (i. e. words
and phrases) in the data. However, Kádár et al. (2018) conduct reproduction experiments and observe
that the learned structure is highly sensitive to certain hyperparameters, producing a fairly uninterpretable
segmentation without impacting the good performance on language modeling, thereby shedding doubt
on the usefulness of the HM-LSTM architecture.

Transferring the self-supervised structure learning to video input is presented by Baraldi et al. (2017).
They use two LSTM layers, where the first one receives image representations, updates its memory cell,
and then decides whether the current time step is the end of a video segment. If so, the hidden state gets
passed to the second layer, and the first layer state is reset. The final hidden state of the second layer is
then used as a representation of the whole video and passed on to the downstream task (in this case, video
captioning). Their experimental results indicate that, although the learned segmentation roughly aligns
with video shots, the model performs better with its learned boundaries than with using ground-truth shot
decomposition.

Building on a similar idea, Campos et al. (2018) present the Skip RNN which deals with long se-
quences by skipping irrelevant inputs. Here, the straight through estimator is used to differentiate through
the model containing binary skip variables, which are calculated for each input step and decide whether to
skip the next few time steps. Experiments on a number of benchmark sequence modeling tasks show that
the Skip RNN can improve computational efficiency while keeping performance competitive to a (non-
skipping) LSTM baseline. Relating to the creation of EM from robot experience, the high redundancy in
the data, particularly the subsymbolic information stream, makes the Skip RNN considerable. However,
if used without modification, this could cause important, yet unforeseeable events like execution failures
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to be skipped, which is highly undesirable.

Learning Tree Structures A different line of research is concerned with more explicitly inferring
tree structures from sequential data. For instance, Choi et al. (2018) introduce the Gumbel Tree-LSTM,
which uses a straight-through gumbel softmax estimator (replacing discrete argmax in forward pass with
continuous softmax in backward pass) to decide what elements of the sequence to fuse, creating the next
level of the tree. The authors present competitive results on a number of natural language tasks, and
also show examples of nicely inferred sentence tree structures. Conversely, Williams et al. (2018) further
investigate the trees learned by the Gumbel Tree-LSTM and similar models, and conclude that they do
not correlate with (human-annotated) grammatical parse trees. Nevertheless, on various downstream
tasks, they perform as well or better than models with access to ground-truth parse trees, which indicates
the learned structures, despite being hard to interpret, are indeed useful.

Shen et al. (2019) present the ordered neurons LSTM (ON-LSTM). This model builds on an LSTM
with multiple layers, adding so called master gates which ensure synchronization of neurons on differ-
ent hierarchy levels. For instance, if a larger constituent like a sentence ends, then contained smaller
constituents (current phrase, word) also need to end. This is enforced by the ON-LSTM architecture.
While the model itself does not involve discrete decisions (and thus does not need any trick for applying
backpropagation), structure trees can be inferred by using a greedy algortihtm on the model’s activation
values.

3.2.3. Long-Range Transformer

Besides recurrent and convolutional architectures, recent work more and more resorts to self-attentive
models, i. e. variants of the Transformer of Vaswani et al. (2017). Despite its clear advantage of providing
a direct connection from every sequence position to each other one (or, as phrased by Vaswani et al.,
having a maximum path length between two tokens in O(1), in contrast to convolutional or recurrent
architectures), the computational complexity of O(N2) is infeasible for large input sequence lengths N.
If considering a self-attention-based model for constructing an EM, large numbers of inputs must be
expected, as there is a continuous stream of experiences to be processed.

Hierarchy A simple approach to tackle this problem is splitting up the input into smaller entities and
processing them individually. Of course, this is only applicable if the input has an inherent hierarchy. As
this is the case for text documents (where words form sentences, and sentences a document), Zhang et al.
(2019) propose HIBERT, a hierarchical transformer model for creating document embeddings (illustrated
in the upper middle part of Fig. 3.1). The basic architecture is similar to the Hierarchical Attention Net-
work (Yang et al., 2016) mentioned above, however, the combination of GRUs and attention is replaced
by an all self-attention model, and a sentence-masking method for pretraining is introduced.

Sparsity If there is no external hierarchy in the data, or its use is prohibited or undesirable, a different
way of decreasing the O(N2) computational cost of the full self-attention has to be found. For such effi-
cient transformer networks, plenty of approaches were presented in the last two years (for a more in-depth
review, see e. g. Tay et al. (2020)). One possible approach is to restrict the range of attention, instead
of letting every token attend directly to each other. Indeed, the original Transformer paper of Vaswani
et al. (2017) already suggests to constrain attention of each input token to its local neighborhood for very
long input sequences. However, this destroys the benefit of short information flow paths. Therefore, in
recent work, the Extended Transformer Construction (ETC) of Ainslie et al. (2020) restricts attention of
each input token to its local neighborhood, but additionally defines special global tokens which attend
to all input and global tokens and to which all input tokens can also attend to (see Fig. 3.1, upper right).
With this mechanism, information can still flow indirectly (i. e. by using a multi-layered model) from
every position to each other one, but computational cost is significantly reduced. Moreover, by using
learned relative positional encodings in combination with separate g2g, l2l, g2l and l2g attention masks
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Figure 1: An illustration of mechanisms to scale attention to long inputs, including our proposed model, ETC.

is not specific to Transformer models, and it has
been applied to recurrent neural network models
both at the level of sentences (Yang et al., 2016;
Miculicich et al., 2018) and blocks (Shen et al.,
2018).

Compressed Attention takes the idea of hier-
archical attention one step further by selectively
compressing certain parts of the input. The BP-
Transformer (Ye et al., 2019) model builds a binary
partitioning tree over the input, and only lets the
model attend to the leaves (the raw tokens) for
nearby tokens, and higher nodes in the tree (sum-
maries of groups of tokens) as tokens grow more
distant (see Figure 1, middle top). Other ideas
include memory compressed attention (Liu et al.,
2018) where groups of k tokens are compressed
via a convolution filter before they are attended
to, and the Star Transformer (Guo et al., 2019),
where each token can attend only to its immedi-
ate left/right neighbors and to a separate special
auxiliary token that represents a summary of the
whole input (see Figure 1, left). The Compressive
Transformer (Rae et al., 2019) integrates this idea
into Transformer-XL by compressing tokens in the
input that are far away. The model benefits from
detailed attention to nearby tokens, while using
summarized information for more distant tokens
(see Figure 1, lower right).

3 Extended Transformer Construction

Our model follows the original Transformer archi-
tecture (Vaswani et al., 2017), with key modifi-

cations to tackle long and structured inputs: rela-
tive position encoding, global-local attention, and
a CPC pre-training task, explained below. In this
paper, we consider only the encoder side of the
Transformer, and leave the decoder for future work.

3.1 Relative Position Encoding

Inspired by the work of Shaw et al. (2018), ETC re-
places absolute position encodings with relative po-
sition encodings, which provide information about
the relative position of tokens in the input sequence
with respect to one another. Given the input se-
quence x = (x1, ..., xn), we can see it as a labeled
fully connected and directed graph, where lij is the
label of the edge that connects xi to xj . Given a
maximum clipping distance k, Shaw et al. define
2k + 1 relative position labels: l�k, ..., lk. The la-
bel of the edge between two input tokens depends
only on their relative position j � i. For input
pairs with j � i � k, label lk is given, and with
j � i  �k, l�k is given. Each label then becomes
a learnable vector aK

l , which modifies the attention
mechanism (equations in the next section)3.

Relative position encodings are independent of
input length, so it is easy to adapt a model to greater
input lengths than seen during pre-training. As
other recent work (Shaw et al., 2019), ETC’s at-
tention mechanism uses relative position labels not
just for relative positions in a sequence but also to
express arbitrary pairwise token relations useful for

3In the work of Shaw et al., a second aV
l vector was used,

but their ablations showed it may not affect performance.
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detailed attention to nearby tokens, while using
summarized information for more distant tokens
(see Figure 1, lower right).

3 Extended Transformer Construction

Our model follows the original Transformer archi-
tecture (Vaswani et al., 2017), with key modifi-

cations to tackle long and structured inputs: rela-
tive position encoding, global-local attention, and
a CPC pre-training task, explained below. In this
paper, we consider only the encoder side of the
Transformer, and leave the decoder for future work.

3.1 Relative Position Encoding

Inspired by the work of Shaw et al. (2018), ETC re-
places absolute position encodings with relative po-
sition encodings, which provide information about
the relative position of tokens in the input sequence
with respect to one another. Given the input se-
quence x = (x1, ..., xn), we can see it as a labeled
fully connected and directed graph, where lij is the
label of the edge that connects xi to xj . Given a
maximum clipping distance k, Shaw et al. define
2k + 1 relative position labels: l�k, ..., lk. The la-
bel of the edge between two input tokens depends
only on their relative position j � i. For input
pairs with j � i � k, label lk is given, and with
j � i  �k, l�k is given. Each label then becomes
a learnable vector aK

l , which modifies the attention
mechanism (equations in the next section)3.

Relative position encodings are independent of
input length, so it is easy to adapt a model to greater
input lengths than seen during pre-training. As
other recent work (Shaw et al., 2019), ETC’s at-
tention mechanism uses relative position labels not
just for relative positions in a sequence but also to
express arbitrary pairwise token relations useful for

3In the work of Shaw et al., a second aV
l vector was used,

but their ablations showed it may not affect performance.

Figure 3.1.: Overview of different approaches of how to scale self-attention based models to long input
sequences. The graphics are taken from Ainslie et al. (2020).

(g = global, l = local, 2 = to), known input structure in the data can be leveraged by biasing the model, as
well.

As a direct successor of ETC, the BigBird model (Zaheer et al., 2020) supplements it with a decoder,
and additionally allows all input tokens to attend to a fixed number of random other positions in the input
(in addition to their local neighborhood and the global tokens). On a number of challenging question-
answering datasets, BigBird achieves state-of-the-art results. Concurrently to ETC and BigBird, Beltagy
et al. (2020) introduced the Longformer model, based on very similar ideas. In their formulation, global
attention is allowed for a small subset of the inputs, instead of an artificially inserted set of global tokens.
However, this cannot beat the results of BigBird.

Recurrence With respect to the EMV task, an important short-coming of these sparse attention models
is that they require the complete input to be available before processing it, which does not apply to a
continuous stream of robot experiences. This can be circumvented by processing the input segment-by-
segment and reintroducing some form of recurrence. Based on this idea, Dai et al. (2019) present the
Transformer-XL, as shown in the lower left of Fig. 3.1. They split up the long input sequence into fixed-
length segments, and process each segment with self-attention one after another. To enable long-term
information flow, a segment level recurrence is added. In particular, the previous hidden states of each
layer are cached in a queue called the “memory”, and the attention mechanism considers not only the
previous layer’s activations, but also the hidden states of the previous layer from the earlier segments,
i. e. the contents of memory. This recurrent state reuse, in combination with a relative formulation of
learned positional encodings, led to state-of-the-art results on various language modeling datasets (at the
time of publication). However, since the recurrence in layer k depends on the memory of layer k−1, the
context length of the Transformer-XL model is limited.

On top of that, Rae, Potapenko, et al. (2020) introduce the Compressive Transformer architecture
(lower right of Fig. 3.1), which supplements the Transformer-XL with an additional compressed memory.
Instead of discarding memory states when they get pushed out of the queue, they get compressed using
a learned compression function and then added to a queue of compressed memories. The compression
function is trained with a special attention reconstruction loss, separate from the task-specific objective
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function. With this architecture, context length can be further increased while keeping computational cost
at an affordable level. Thereby, the authors are able to beat the results of Dai et al. (2019) on language
modeling, especially on datasets featuring long-range dependencies.

For constructing an EM, the limited context length is still a problem, even though it is extended by
compression. To solve this problem, a same-layer recurrence must be introduced, so that there is theoret-
ically no bound to the flow of information. This is done by the Memformer of Q. Wu et al. (2020), who
propose a transformer model that works on input segments like above, and additionally keeps a set of
latent memory vectors. In between the usual self-attention and feedforward module of a single encoder
layer, a memory cross attention module is inserted, which allows the encoder to read from memory.
Similarly, the encoder’s output is not only passed to the transformer decoder, but also to the so-called
memory slot attention module. It calculates the next time step’s (i. e. the next input segment’s) memories
by performing self-attention over the encoder outputs for each memory vector. In particular, memory
slot attention is masked so that each memory vector is only allowed to attend to itself and all the encoder
outputs (i. e. , not to the other memory vectors). Moreover, the authors propose to use a variant of gra-
dient checkpointing (T. Chen et al., 2016), storing only the memory vectors of each segment (without
their computational graph) in the forward pass and replaying each time step for backpropagation of error
during the backward pass.

Long-Term Compressive Memory Transformer for Encoding and Verbalizing Robot Experiences



Page 15

4. Models and Methods

To approach the problem of episodic memory verbalization (EMV), this thesis builds upon the architec-
ture presented by Bärmann et al. (2021). Thus, the following section 4.1 gives an overview thereof and
highlights the key change made to the original architecture. Based on that, section 4.2 will elaborate
on the details of the improved encoding and embedding of episode input data. Then, the mentioned
key change, namely the new episodic memory encoder based on multi-level and long-term compressive
transformer networks, is presented in section 4.3. Section 4.4 repeats the details of the speech encoder
and decoder of Bärmann et al. (2021). Finally, supplementary decoders and loss functions are presented,
highlighting the changes to the previous work, in section 4.5.

4.1. EMV Architecture

The Episodic Memory Verbalization model (shown in Fig. 4.1) is constituted of three major components:
The first one is the EM encoder, which creates a latent representation of episodic memory (EM) by
processing a stream of multi-modal key frames. A key frame captures all relevant experience data at
one moment in time. As a first step, the multi-modal input data needs to be encoded as a vector and
embedded into a common representation space. The details of this process are described in section 4.2.
Then, the actual EM encoder processes this stream of embedded vectors to produce a sequence of latent
vector representations, which constitute the EM. While Bärmann et al. (2021) allow the EM to grow
linearly with respect to the number of input key frames (“O(N) EM”), the present thesis improves on this
and constrains the EM to a constant representation size, i. e. an “O(1) EM” (see section 4.3 for how this
is done).

The second major component is the speech encoder, which is responsible for handling a natural
language question about the robot’s past. Since a question is always asked at a specific point in time,
the term query is defined to be a natural language question prepended with a textual representation (year,
month, day, day-of-week, hour, minute, second) of the question timestamp, e. g. 2020 07 29 3 14 56

07 What did you do yesterday before noon?. Thus, the speech encoder actually receives the query
as its input, i. e. it can build a latent representation of a question with resolved date-time references.

The natural language answer is then produced by the third component, the speech decoder. It com-
bines the query encoding, i. e. the output of the speech encoder, with the content of EM, and is supposed
to output the natural language answer.

EMV Model

Speech Encoder

Speech Decoder

User Query
…

EM Encoder

…
Episode Data

… …

EM Decoder

…

Target Time  
Ref. Decoder

Episode Data
…

Network Response
LNLG

… …
LEAE

Ref. Datetime
LTREF

EM =

Did you see the 
red cup?

I last saw it at 
the table ten minutes 

ago.

Ego-Centric Images

Pose & Configuration

Object IDs & Locations

Symbolic Task & Action

Timestamps

Figure 4.1.: An overview of the Episodic Memory Verbalization system as introduced by Bärmann et al.
(2021). Individual components are described in detail in the following sections.
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4.2. Episode Input Data

Encoding As described above, the input to the EM encoder is a sequence of highly multi-modal key
frames. Therefore, the first step is to represent this data in form of vectors so that it can be passed to
a neural network. Because of the different modalities involved, the approach is to construct multiple
vectors with very different semantics for each key frame. In detail, the following data parts of a key
frame are processed separately:

1. Timestamp. Date and time information of a key frame is encoded in a straightforward way, as a
seven-dimensional vector, with the dimensions corresponding to year1, month, day, day-of-week,
hour, minute and second, respectively.

2. Symbolic dictionary information. The data part of each key frame containing symbolic names is
encoded using a dictionary built up during pre-processing. Thus, the information is represented as
a vector, where each dimension corresponds to one of the following entries: Up to five goal tokens
describing the current task of the robot, one token representing an action which changed in this key
frame, up to five tokens representing the action’s arguments, and up to two tokens representing the
newly detected or updated objects in the robot’s environment. Unfilled entries are set to a special
padding token. For an example of how the task goal tokens are parsed from the raw planner goal,
see Table 4.1.

3. Symbolic state information. Each key frame contains symbolic information which represents the
state of a certain entity or action. This data is separated from the above dictionary information
because the vocabulary here is very limited and definitely predefined in advance. Thus, the data
is encoded as a vector of simple integers, with the following entries: The execution status of the
current task (success = 0, abort = 1, failure = 2), current action’s execution status (started = 0,
success = 1 or failure = 2), and the detection status of up to two newly detected or updated objects
(updated = 0, newly detected =1). Again, unfilled entries are set to the padding token.

4. Subsymbolic information. These numeric values are simply concatenated to form a long vector.
Included data are: object positions for up to two newly detected or updated objects (in the robot’s
root coordinate system), platform position (world coordinate system), human pose data as provided
by OpenPose (Cao et al., 2018) (camera coordinate system)2, and kinematic data of the robot’s
joints (angles, velocities and currents). Every dimension of this subsymbolic vector is normalized
with respect to its mean and standard deviation in the training set.

5. Pre-Encoded Latent vector. The image associated with each key frame is converted to a la-
tent representation using an off-the-shelf, advanced convolutional neural network architecture pre-
trained on ImageNet (Russakovsky et al., 2015). Specifically, the features (i. e. inputs to the clas-
sification layer) of the ResNeXt-50 32x4d model from Xie et al. (2017) are used as image embed-
dings. However the image encoder, is not trained together with the EMV model, i. e. the produced
representations are treated as an ordinary part of the input data.

With respect to the previous work of Bärmann et al. (2021), the encoding of episode key frames is mod-
ified in two points: First, the handling of task goals is improved. Previously, the complete planner goal
was treated as an atomic token, whereas now a set of symbolic predicates is parsed and used to represent
the complete goal. This has the major advantage that unknown complex goals can be represented, as long
as their individual predicates occurred at least once in the training set. Additionally, it avoids very rare
tokens, since (assuming a fixed set of objects, locations and actions) the number of atomic predicates
is much lower than the count of all possible planner goals (due to combinatorial explosion). Second,
instead of representing images with latent vectors produced by the Deep EM of Rothfuss et al. (2018),
ResNeXt embeddings are used as described above.

1Actually, (year− 2020) is written into the vector. This facilitates learning by preventing the otherwise large year value from
dominating the vector.

2Note that human pose data is never present in the dataset collected from robot simulation.
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raw goal (existsK(?a1 : obj_agent_robot, ?l1 : loc_placesetting2,
?l2 : loc_placesetting2, ?o1 : obj_vanillacookies, ?o2 : obj_nesquik,
?o3 : obj_coffeefilters, ?h1 : obj_righthand)
K(objectAt(?o1, ?l1)) & K(objectAt(?o2, ?l2)) & K(grasped(?a1, ?h1, ?o3)))

parse result objectAt(vanillacookies,placesetting2)
objectAt(nesquik,placesetting2)
grasped(righthand,coffefilters)

Table 4.1.: Example of parsing a raw task goal as delivered by the robot’s planner. Each of the lines in
the result is treated as an atomic token.

Embedding The second step of allowing a neural network to work with the highly multi-modal data is
to embed the different encoded vectors into a latent space. Due to the variations in semantics, individual
approaches need to be used for the different data parts listed above.

The timestamp vector is simply processed by a linear layer with a bias term, extending the dimension
to support higher-accuracy internal representations. An analogous method is applied to the symbolic
state information vector. For subsymbolic and latent information, the (separate) linear layers compress
from a high input to a lower output dimension.

Bärmann et al. (2021) also embed the symbolic dictionary information using a linear layer. However,
this induces a semantically wrong ordering on the symbolic tokens based on their position in the dictio-
nary. Thus, this procedure is adjusted and a learned embedding matrix is used instead, i. e. each symbolic
token is treated as an index to the embedding matrix, selecting one of its columns. An equivalent formu-
lation would be to use one-hot vectors for the symbolic data, and then multiply these with the learned
embedding matrix. This is done for all tokens, concatenating the resulting vectors. Consequently, the
vector of symbolic tokens is heavily expanded in dimension, since its length is multiplied with the em-
bedding size. Differing from the above, to embed the symbolic goal tokens, an embedding bag is used,
i. e. the output vector for this data part is the mean of the individual token embeddings.

4.3. Episodic Memory Encoder

In context of the EMV model, the “episodic memory” is simply a sequence of latent vectors. It is
produced by the EM encoder, which receives the embedding ei (i = 1 ... N) of each key frame (created
as described above) and outputs the set of latent EM vectors EM = {mem j | j = 1 ... M}. The general
architecture allows for this component to be replaceable, so that different approaches can be compared.

For an EM implementation to be actually applicable to the EMV system running on a real robot, it
needs to be able to output the EM on each input key frame. Of course, the EM may (and should) be
updated incrementally, but there must be no dependency on any kind of end-of-input signal, since there
is simply no such signal in the real world. A question to the robot and consequently access to the current
EM state may occur at any point in time, during or after execution of some tasks. Nevertheless, when
training an EM model, the length of the input sample is known in advance. Therefore, if there is any
benefit regarding computational efficiency, the EM may only be constructed on a “final” input time step
in this setting. The model just needs to ensure that it is still applicable if every time step is treated as the
“final” one, as is the case when actually deploying to a robot system.

As already mentioned above, the size constraint applied to EM is another important aspect when
comparing different EM encoders. The most straightforward approach is to allow one latent vector per
input key frame (M = N), i. e. to allow the EM to grow with O(N) where N is the number of input
key frames. However, this would not scale to deployment on a real robot, because there is neither
unlimited disk space nor are there unlimited computational resources when answering a question. Thus,
it is desirable to constrain the size of EM by an upper bound, i. e. to construct an O(1) EM (M < N, M =
const.). The following subsections will present the different model architectures compared in this work.
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4.3.1. Baseline Models

Text-Only Baseline The baseline Bärmann et al. (2021) compare their model to is the guess or text-
only baseline. It does not use the episode input at all, i. e. the sequence of ei is ignored and exactly one
mem1 = 0 is yielded as EM. While this is obviously no proper implementation of episodic memory, using
this “fake” EM encoder in context of the complete EMV architecture allows to account for the regular
nature of the natural language questions and closed-world assumption concerning the episode content.
In particular, the performance of the text-only model serves as a lower bound to the episode-informed
models, showing how many questions can be answered correctly resorting solely to the biases present in
the training dataset.

LSTM O(N) As an episode-informed model, Bärmann et al. (2021) use a simplistic approach, creating
one latent EM vector per input key frame, i. e. they present an O(N) EM. The input sequence of key
frame embeddings ei is passed to an LSTM, followed by a linear layer:

h0,c0 = 0
hi,ci = LSTM(ei,hi−1,ci−1)

memi =WEMhi

with WEM being a learned transformation matrix mapping from the LSTM hidden size to the latent EM
size. Thus, the resulting episodic memory is

EM = {memi | i = 1 ... N}

LSTM O(1) A straightforward O(1) EM baseline can be obtained using the LSTM O(N) model of
Bärmann et al. (2021) as described above, but keeping only the latest M latent vectors in EM. Here, M
is a hyperparameter controlling the representation capacity of the memory. More precisely, the resulting
EM is

EM = {mem j | j = (N−M) ... N}

4.3.2. Compressive Transformer Models

CT Rae, Potapenko, et al. (2020) introduce the Compressive Transformer (CT) model for dealing with
very long input sequences featuring long-range dependencies in the context of language modeling (see
section 3.2.3). As an extension of the Transformer-XL architecture (Dai et al., 2019), it splits up a long
input sequence of tokens x1, ... , xN into blocks of length B. Each block is processed with self-attention,
i. e. there is an input buffer of length B, and the tokens are processed all at once when the buffer is full.
Thus, the input is treated as a sequence of blocks, where each block is also referred to as an input time
step in the following.

Additionally, some layers of the transformer are equipped with a memory of length K and a com-
pressed memory of length C. Rae and Razavi (2020) showed that having only some of the layers have a
memory (instead of all layers) very efficiently trades model performance for memory and computation
costs. Thus, M shall denote the index set of layers equipped with such a memory (e. g. M = {4,5}
means only the fourth and fifth transformer layer are enriched in that way). The memory is essentially a
queue keeping the respective transformer layer’s hidden states from the last input steps. When the mem-
ory is full and the oldest B memory vectors fall out of the queue, they are compressed with a compression
function with ratio r, and the resulting vector is put into the compressed memory, which itself is a similar
queue. When the compressed memory is full too, the B/r oldest compressed vectors are discarded. A
depiction of how these memory queues work can be seen in Fig. 4.2. To use the introduced memory, the
transformer’s self-attention at layer k is modified to attend not only to the hidden states of layer k−1 (or
the input, for the first layer), but also to the memory and compressed memory vectors at the preceding
layer.
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Input Block
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compress(3)

compress(2)

Compressed Memory

t

Figure 4.2.: The Compressive Transformer (CT) model as introduced by Rae, Potapenko, et al. (2020).
The input block length here is B = 4 (right), memory length K = 8 (middle), compressed
memory length C = 4 (left), and compression ratio r = 2 (each two memories are processed
into one compressed memory). As suggested by Rae and Razavi (2020), not all of the CT’s
layers are memory-equipped (in this example, M = {2,3}). The upper time axis (“x”)
represents the input key frames, while the lower one (“t”) stands for the input time steps, i. e.
blocks of B key frames.

More formally, given a layer k ∈ {1, ... , L}, where L is the number of layers of the transformer, and
an input step t, hk

t is defined to be the sequence of the B hidden states in that transformer layer at that
input step. Similarly, let mk

t and ck
t be the sequence of the K memory and C compressed memory vectors

at layer k and input step t, respectively. In the following, for a sequence s of vectors, the syntax s[a : b]
represents the sub-sequence of s from index a (inclusive, starting at 0) to index b (exclusive), while
the operator s⊕ t concatenates two such sequences. With that definitions, the compressive transformer
model involves the following calculations: First, the input from the previous layer is processed by the
transformer part (as defined in Eq. (2.21)) of the model as

hk
t = TransformerEncLayer(ck−1

t−1 ⊕mk−1
t−1 ⊕hk−1

t ) (4.1)

where for the first layer, h0
t = et·B, ... , e(t+1)·B−1 is the input embedding at input step t, and both the

memory vectors m and compressed memory vectors c are omitted if (k− 1) /∈M . If layer k is not
memory-equipped, the calculation proceeds with the next layer. Otherwise, i. e. if k ∈M , the memory is
updated by inserting the new hidden states into the queue:

mk
t [0 : K−B] = mk

t−1[B : K]

mk
t [K−B : K] = hk

t

If present, the compressed memory is updated similarly, with oldest memories mk
t−1[0 : B] getting com-

pressed using a learned compression function compress(k) with compression ratio r:

ck
t [0 : C−B/r] = ck

t−1[B/r : C]

ck
t [C−B/r : C] = compress(k)(mk

t−1[0 : B])

The compression function is realized using a one-dimensional convolution with kernel size and stride set
to r, i. e. the sequence of B old memories is divided into groups of r vectors, and each of these groups
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yields one compressed vector:

compress(k)(s)[i] = bk +
H

∑
h=1

~eh · (kernelh ? Si)

for i = 1, ..., B/r, where Si = (s [i · r : (i+1) · r])∈RH×r is the matrix created by using the vectors of the
i-th group of input vectors, H is the hidden size of all the involved latent vectors (including memories,
compressed memories),~eh ∈ RH is the unit vector with one at dimension h, ? refers to cross-correlation,
and kernelh ∈ RH×r as well as bk ∈ RH denote the set of learned kernels and the bias vector of the
compression function, respectively. This means, the convolution treats the hidden size dimension as its
input and output channels, and cross-correlates its h-th kernel with the r vectors at the according position
in the input sequence s to produce the value in the h-th dimension of the output vector.

The compression function could be trained with the overall loss function, as used for the complete
EMV model. However, Rae, Potapenko, et al. (2020) suggest to use an attention-reconstruction loss
instead, and separate gradient flow so that the compression function is only trained using its own loss,
and the rest of the model solely using the usual (external) loss function. The purpose is to train the
compression function to learn solely to compress, but using the definition of importance given by the
actual task (i. e. by using the learned attention parameters from the transformer model itself). More
precisely, at each layer k and input step t, the contribution to compression loss is

L k
compress,t = ‖SelfAttention(hk−1

t , cnew)−SelfAttention(hk−1
t , mold)‖2 (4.2)

with the new compressed memories cnew = ck
t [C−B/r : C], the old memories mold = mk

t−1[0 : B] and
SelfAttention(Q,Z) = Attention(QWQ, ZWK, ZWV) referring to the self-attention function of the trans-
former, reusing its parameter matrices WQ, WK and WV (but without letting the gradient flow to these
parameters). Note that for calculating the compression loss, full attention is used (as opposed to multi-
head attention). Thus, the parameter matrices used here are actually the concatenations of the respective
per-head parameter matrices used in multi-head attention.

The resulting EM at the (final) input step T is given by the sequence of all memories and compressed
memories at that time step (for each memory-equipped layer), as well as the final layer’s output of the
transformer network:

EM =
{

ck
T [i] | k ∈M , i = 1 ...C

}
∪
{

mk
T [i] | k ∈M , i = 1 ... K

}
∪
{

hL
T [i] | i = 1 ... B

}
The compressive transformer model is very appealing for constructing an episodic memory, since the

ability to compress and abstract old memories is key for reaching a long-range EM. Additionally, it
fulfills the requirements for deployment to a real robot, as it processes the input block by block and thus
does not require to store the complete input or wait for a never-occurring end-of-input token. However,
because the self-attention at layer k only attends to the activations and memories from the preceding layer
k−1, the model has a limited context length (a property inherited from the Transformer-XL architecture).
This means, for an input sequence longer than the context length, there is no dependency path from the
last output to the first input token. Thus, the above construction of EM is an O(1) EM, however with no
chance of remembering events longer ago than the context length, which is B+L · (K +C · f ).

CT + LT To construct an actually useful O(1) EM, a long-term (LT) memory should be added so
that an unlimited context length is possible. For this purpose, instead of just discarding the oldest B/r
compressed memory states, they are passed to a recurrent long-term memory component. It first applies
attention to all the incoming (compressed) states with respect to the last LT state, yielding an LT update
candidate vector. This is then given to the recurrence realized by a Gated Recurrent Unit (GRU). The
basic idea is similar to the Memformer model of Q. Wu et al. (2020), but combined with the compressive
transformer architecture. Fig. 4.3 shows a graphical overview of this Long-Term Compressive Memory
Transformer (CT + LT) model.

In particular, at the current input step t and suppressing the layer indices, let ct−1[0 : B/r] be the
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Figure 4.3.: The Long-Term Compressive Memory Transformer (CT + LT) model. Parameters in this
example are as in Fig. 4.2.

oldest compressed memory states about to be discarded in the plain CT architecture. Defining Γ =
(ct−1[0 : B/r]) to be the matrix aggregating these states, the LT update candidate l̃t is calculated using
scaled dot-product attention as defined in Eq. (2.17), with the query lt−1 and transformed versions of Γ

as keys and values:
l̃t = Attention(lt−1, ΓWLT-K, ΓWLT-V) (4.3)

where WLT-K and WLT-V are learned key and value transformations, respectively. Then, the LT memory is
updated using a GRU:

lt = GRU(l̃t , lt−1)

For the first input step touching the LT memory, i. e. the step after the first one completely filling the
compressed memory, lt−1 is replaced with 0 in the calculation of l̃t and the GRU update is skipped, i. e.
lt is simply set to l̃t .

To make use of the introduced LT memory, Eq. (4.1) is modified to also attend to the long-term memory
state of the previous layer:

hk
t = TransformerEncLayer([lk−1

t−1 ]⊕ ck−1
t−1 ⊕mk−1

t−1 ⊕hk−1
t )

Similarly, the resulting EM at the (final) input step T is the same as for the CT model, but enriched with
the last LT state for each memory-equipped layer:

EM = {lk
T | k ∈M }∪

{
ck

T [i] | k ∈M , i = 1 ...C
}

∪
{

mk
T [i] | k ∈M , i = 1 ... K

}
∪
{

hL
T [i] | i = 1 ... B

}

ML CT + LT As a further extension of the compressive transformer model, multiple compression levels
are introduced. This is independent of the long-term memory presented above, but might also be com-
bined. In particular, when the oldest compressed memories are about to be discarded (for CT) or merged
into the LT memory (for CT + LT), they instead get compressed again and put into another queue of
level-2 compressed memories. Obviously, this can be repeated for multiple compression levels, as long
as the number of memories falling out of one level per time step remains evenly divisible by the next
levels compression ratio. An example of this architecture is shown in Fig. 4.4.

To formalize the above, instead of using a single compression ratio r, each compression level λ ∈
{1, ... , Λ} introduces its own ratio rλ . Similarly, the compressed memory length C is replaced by
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Figure 4.4.: The Multi-Level compressive transformer model with long-term memory (ML CT + LT).
This is an example with Λ = 2 compression levels, B = 4, K = 8, C1 =C2 = 4, and r1 = r2 =
2.

multiple Cλ . Note that all (memory-equipped) transformer layers share these hyperparameters. Let ck,λ
t

be the sequence of vectors in the level-λ compressed memory at layer k and input step t. Then, the multi-
level compressive transformer with long-term memory (ML CT + LT) calculation on a memory-equipped
layer k is as follows:

Self-Attention from Eq. (4.1) is extended to include both LT memory as well as compressed memories
from all compression levels from the previous layer:

c̃k−1
t−1 =

Λ⊕
λ=1

ck−1,λ
t−1

hk
t = TransformerEncLayer

(
[lk−1

t−1 ]⊕ c̃k−1
t−1 ⊕mk−1

t−1 ⊕hk−1
t

)
Memory mk

t is updated as in the CT model. Let mk
t−1[0 : B] be the B vectors falling out of the memory at

input step t. Then, compressed memory is updated iteratively, for each compression level λ = 1 ... Λ:

Bλ =
Bλ−1

rλ

ck,λ
t [0 : Cλ −Bλ ] = ck,λ

t−1[Bλ : C]

ck,λ
t [C−Bλ : C] = compress(k,λ )(ck,λ−1

t−1 [0 : Bλ−1])

Here, Bλ is the compressed length of the input block of (uncompressed) length B at compression level λ .
For the first compression level λ = 1, the references to the previous level refer to the (non-compressed)
memory, i. e. B0 = B and ck,0

t−1 = mk
t−1. Each compression level (on each layer) has its own learned pa-

rameters for the compression function, hence the indices compress(k,λ ). Compression loss is calculated
as done for the plain CT model, but separately for each compression level:

L k,λ
compress,t = ‖SelfAttention(hk−1

t , cλ
new)−SelfAttention(hk−1

t , cλ−1
old )‖2 (4.4)

with the indices new and old defined equivalently to Eq. (4.2), and the base case c0
old = mold.

The ML CT + LT architecture also includes a long-term memory. For this purpose, a straightforward
modification to the CT + LT model is possible, as in the calculation of l̃t , the old compressed memories
simply need to be replaced by the old level-Λ compressed memories. In particular, in Eq. (4.3), Γ is
modified to be

Γ =
(

ck,Λ
t−1[0 : BΛ]

)
i. e. the matrix created by concatenating the last compression level’s old vectors, which would otherwise
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be discarded at this input step. The remaining equations for calculating lk
t stay as defined for the CT +

LT model.
The resulting EM at the (final) input step T combines the output hidden states with all memory states,

i. e. the memory itself, all levels of compressed memories, and the LT memory:

EM = {lk
T | k ∈M }∪

{
ck,λ

T [i] | k ∈M , λ = 1 ... Λ, i = 1 ...C
}

∪
{

mk
T [i] | k ∈M , i = 1 ... K

}
∪
{

hL
T [i] | i = 1 ... B

}

4.4. Speech Encoder and Decoder

The two parts of the EMV model dealing with natural language, i. e. the speech encoder and decoder,
are adopted unmodified from the previous work of Bärmann et al. (2021). Both utilize the transformer
architecture as introduced by Vaswani et al. (2017). Mathematical details of this model are explained in
section 2.3.

Specifically, the “small” T5 model of Raffel et al. (2020) is used. They pretrain their model on a
mixture of unsupervised and supervised tasks, which are all cast to a uniform text-to-text format. This
enables them to apply a single transformer encoder-decoder model and the same cross-entropy loss func-
tion to all the tasks. For the unsupervised task, they use a denoising objective, i. e. certain spans of tokens
in a sentence are masked, and the target is to predict the missing words. Concerning supervised objec-
tives, they mix data from machine translation, question answering, abstractive summarization, and text
classification.

Both the speech encoder and decoder are taken from the pretrained model of Raffel et al. (2020)
without any modifications. The encoder receives the query (i. e. the question together with the question
timestamp) as input, and yields a latent sequence of the same length, referred to as the query encoding.
To enable the decoder to attend to both the query encoding as well as the EM content, a simple approach
is chosen: Since both the query encoding as well as the EM content are sequences of latent vectors, they
can be simply concatenated to form an extended context passed to the transformer decoder. However, to
enable this, the vectors of both sequences need to have the same dimensionality. Although a straightfor-
ward solution would be to set the latent EM vector size to match the hidden size used by T5, this would
also incur a high number of parameters in the EM encoder, leading to a more complex optimization
problem. Thus, a simple workaround is used instead: The hidden size of EM vectors is only constrained
to be a divisor of T5’s hidden size. Then, when concatenating both latent sequences, the EM vectors are
repeated so that their number of hidden dimensions matches that of T5. Afterwards, the speech decoder
uses the resulting combined sequence as its encoder input, and the target utterance as its primary input,
and generates the response word by word in evaluation or in parallel with teacher-forcing during training
or validation. Loss is calculated using cross-entropy between the model’s output and the target utterance.

4.5. Supplementary Decoders & Loss Functions

While the EMV model could be trained solely with the natural language generation (NLG) loss, Bär-
mann et al. (2021) show that it is beneficial to add additional decoders and additive loss contributions to
facilitate and analyze learning of the EMV task.

Episode Decoder Inspired by the auto-encoder loss for the Deep EM by Rothfuss et al. (2018), the
model is enriched with an episode decoder. It receives the output of the EM encoder, i. e. the sequence of
latent EM vectors, to map it back to its original input, i. e. the sequence of key frames. If the EM grows
linearly in size with respect to the number of input key frames, as is the case in the work of Bärmann
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et al. (2021), a straight-forward approach can be used, with a linear transformation mapping each latent
EM vector back to the input key frame separately and independently. This is not possible with new O(1)
EM, because there are less latent EM vectors than key frames to reconstruct. Thus, another transformer
decoder is used, receiving the embedded key frames as target sequence and attending to the latent EM
vectors via its encoder-decoder attention. After a correct-length sequence of embeddings is produced
in that way, each vector hi of this sequence is processed identically to how the latent EM vectors are
processed by Bärmann et al. (2021):

oi
DT = logsoftmax(WDThi +bDT)

oi
Sym = logsoftmax(WSymhi)

oi
Sub =WSubhi +bSub

oi
Latent =WLatenthi +bLatent

where the oi
∗ are the output values for date-time, symbolic, subsymbolic and latent data parts, respec-

tively, and the W∗, b∗ are learned weight matrices and bias vectors. The dimensions are

dim(WDT) = (60 ·7)×H

dim(WSym) = (S ·V )×H

dim(WSub) =U×H

dim(WSub) = L×H

with 60 · 7 being the maximum number of possible values in each date-time dimension (i. e. the DT
vocabulary size) times the number of date-time dimensions used (year, month, day, day-of-week, hour,
minute and second), S the number of symbolic key-frame entries, V the symbolic dictionary size, U the
number of sub-symbolic entries, L the dimension of latent image vectors and H the hidden dimension as
produced by the EM encoder. The episode auto-encoder (EAE) loss with respect to the input key frames
is then computed as

LEAE = β1LDT +β2LSym +β3LSub +β4LLatent (4.5)

Date-time loss LDT and symbolic loss LSym are classification loss functions, i. e. cross entropy, whereas
subsymbolic and latent loss contributions LSub and LLatent directly regress their target values, using
MSE and L1 loss functions, respectively.

Time-Reference Decoder For a further analysis and also to support learning of the natural language
task, Bärmann et al. (2021) also add an additional time-reference decoder to the model. Its uses a simple
formulation of softmax attention (Bahdanau et al., 2015) on the query encoding, with the goal of mapping
it to the date-time referenced in the query. Output is encoded in a one-hot manner, and cross-entropy loss
is used to inject the additional loss contribution. Target values, i. e. the correct timestamp references,
are available because the dialog part of the training dataset is generated automatically, as explained in
section 5.1.2. The purpose of this supplementary decoder is to analyze and facilitate the learning of how
to resolve date-time references in the query. For instance, given a current timestamp and the question
“What did you do three days ago at noon?”, the model must be able to understand that reference to look
up the correct item in episodic memory.

Complete Loss Function To summarize, the complete loss function L for training the EMV model
is

L = α1LNLG +α2LEAE +α3LTREF +Lcompress

with LNLG, LEAE and LTREF being the loss from natural language generation, episode auto-encoder
and time-reference reconstruction, respectively. This is nearly identical to Bärmann et al. (2021), solely
adding the compression loss Lcompress from the newly introduced compressive transformer model, which
is calculated by summing the contributions from Eq. (4.2) – or, in case the ML CT is used, Eq. (4.4)
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– over all time steps, transformer layers (and compression levels, in case of ML CT), and normalizing
by the number of memory-equipped layers and length of the input sequence. The αi, as well as the βi
from Eq. (4.5), are hyperparameters, with ∑i αi = ∑i βi = 1. As argumented by Rae, Potapenko, et al.
(2020), Lcompress does not require a similar mixing weight, since the set of parameters where gradient
can flow for this and the other loss parts is disjoint (Lcompress gradient only affects the parameters of the
compression functions, while all other loss contributions optimize everything of the model excluding the
compression functions).
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5. Evaluation

5.1. Datasets

A dataset sample for the EMV task consists of two major ingredients: 1) A robot episode recording
(RER), which states what the robot experienced in the past and 2) A pair of a natural language question
and an appropriate answer, according to the content of the RER.

As in Bärmann et al. (2021), a RER is defined as a stream of symbolic information (task, goal, ac-
tion and action arguments as stated by the symbolic planner, action execution status (started, running,
interrupted, finished with success or failure), detected objects IDs) as well as subsymbolic data (camera
images, robot configuration, estimated platform position, estimated object poses, detected human poses)
and timestamps. From this continuous stream of multi-modal data, so called “key frames” are subsam-
pled. This is achieved by applying a time window of five seconds; for instance, only the latest robot pose
and camera image are kept in each time window. However, when the symbolic action or action status
changes, a new time window is set up immediately, flushing the latest data to the previous key frame
and starting a new one. The purpose thereof is to prevent important events from being suppressed by the
constant five seconds interval. In the following, an episode is defined to be a contiguous sequence of such
key frames, concerned with achieving a single planner goal. Furthermore, the term “history” denotes a
concatenation of multiple episodes.

Second, natural language questions and answers fitting to the RERs need to be collected. Hereby, the
task is constrained such that only questions related to robot experiences are included. For instance, pure
image recognition questions like “what does the text on the bottle read?”, are excluded, while image
queries concerned with episode data like “how many people did you meet yesterday?” are allowed.
The question also comes with a timestamp of when this question is asked (which obviously needs to be
temporally after all events in the corresponding RER).

5.1.1. Simulated Episode Recordings

Since gathering huge amounts of training data is crucial for training a deep neural model successfully,
Bärmann et al. (2021) propose to collect RERs in an automated way. Therefore, the simulation compo-
nent of the ArmarX robot framework (Vahrenkamp et al., 2015) is used to randomly create scenes with
different objects at different places in a kitchen environment. Then, an episode recorder component is
used to capture single-episode RERs, automatically iterating over all created scenes and possible planner
goals to execute. In the present work, the episode data collection procedure is further improved by the
following points:

First, diversity with respect to the objects handled by the robot is significantly increased. Before, there
were only three objects that could be moved around the scene. Now, the RERs involve a total of 14
objects the robot interacts with. Similarly, location diversity is slightly improved. In particular, there is
one new start location for the objects (i. e. one new location the robot can go to pick up objects).

Moreover, the set of possible planner goals is extended. In the previous work, tasks were constrained
to be either “grasp object A with your left/right hand”, “move object A to location X” or “move object A
to location X and object B to location Y”. This was extended by adding three more possibilities: “move
object A to location X, B to Y and C to Z”, “move object A to location X, B to Y and also grasp object
C with your left/right hand” and “grasp object A with your left and object B with your right hand1”.

1 Actually, there was no successful simulation run of this goal. However, since the goal of this work is not to fix problems of the
ArmarX simulation environment, this was just accepted and thus there are no such RERs in the dataset.
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Table 5.1.: Statistics on the simulated robot experience data collection. “old” refers to the dataset of
Bärmann et al. (2021), while “new” is the dataset collected in the present thesis.

#RERs #episodes #histories of length

1 2 3 5 10

train 708 2,832 11,326 11,326 8,496 5,660

old valid 152 304 6,080 6,080 6,060 6,000

test 151 151 100 100 100 100 100

train 3,354 3,350 6,700 6,700 6,696 6,698

new valid 419 419 8,380 8,360 8,340 8,300

test 419 418 100 100 100 100 100

Furthermore, the random scene generator was improved to place up to six objects into a scene. It also
generates a more realistic placement of the objects in the kitchen (e. g. no overlapping textures etc.).

Finally, the robot grasps were reviewed and manually improved where needed. Because of that, less
simulation runs fail, and the put-down actions of the robot look more realistic. Especially, some effort
was done to prevent objects from floating in the air above the surface where the robot puts them down.
For exemplary content of a simulated RER in the newly collected dataset, see Fig. C.1 in the appendix.

Table 5.1 provides an overview of the dimensions of the collected dataset of simulated recordings,
comparing it to the dataset from previous work. The number of RERs is the actual number of executed
robot simulations (excluding the ones that failed immediately, e. g. due to the robot’s planner finding
no plan to achieve the requested goal). For the old dataset, this is smaller than the number of episodes
in the dataset, as Bärmann et al. (2021) augment the recordings by creating copies with noise added to
subsymbolic data. As the number of recordings in the new dataset is significantly higher, this procedure
is not adopted, and the number of RERs matches the number of episodes (except for minor differences
due to erroneous recordings). Besides containing more of them, the episodes in the new dataset are
also more complex and contain more key frames than the old ones (this is illustrated by Fig. A.1 in
the appendix). By picking random episodes and concatenating them (adjusting date-times accordingly),
histories of different lengths are randomly generated. Note that for the train and validation set, the history
length refers to the maximum history length in this set (e. g. when training with the histories of length
three, there actually is an equal portion of histories of length one, two and three in the dataset), while
for the test set, only histories with exactly the given length are used. Sampling is performed without
replacement until all episodes are used once, then resetting the set of episodes and repeating this process
for a certain number of iterations (for train and validation) or until the desired number of histories is
reached (for test). The numbers of iterations were chosen differently to reach a reasonable dataset size.
While the validation set contains more histories due to a different dataset generation scheme as explained
in the next section, the test set size is kept constant at 100 histories of the respective length.

5.1.2. Grammar-Generated Q&A

To efficiently make use of the large number of simulated RERs, this work uses the grammar-based QA
generation script proposed by Bärmann et al. (2021). The script considers the symbolic information in the
recordings, randomly chooses a question time (after the last episode), and then conditionally generates a
huge number of possible questions and answers per episode.

In total, three different grammar-generated datasets were used to produce the results presented in
section 5.4. Their content and characteristics are explained in the following paragraphs:

previous This is the dataset presented in Bärmann et al. (2021). The simulated episodes here work
with a very limited set of objects, actions and locations. This thesis conducts experiments on the previous
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dataset to enable a fair comparison to the previous work. For completeness, a list of the different types
of questions and answers as generated by this grammar follows:

• Current date & time: The question asks for the current date or the current time, and the answer
depends on the given query time. Examples:
– “What is the time?” → “It is 17:45.”
– “What day is today?” → “It is August 05.”

• Action: The question asks for a specific task the robot performed. Tasks (and corresponding ar-
guments) are derived from the symbolic planner goals. In case the question does not contain a
time reference, the answer refers to the last episode in the history. Otherwise, a specific episode is
referred to by its time. Examples:
– “What did you do at noon?” → “i moved the vitamin juice to the small table and the red cup to
the round table.”
– “Explain your exercises on September 23 at 02 PM!”→ “i grasped the green cup.”

• Problems: The question asks if the robot had any problems during a specific time interval or when
executing a specific action. Examples:
– “Explain how your task to grasp the cocoa worked at noon!” → “Everything went fine.”
– “Did you have any problem yesterday?” → “Yes, i failed to grasp the green cup yesterday at
19:12.”

• Past time: Here, the robot is supposed to say when it performed a specific task or when it first or
last interacted with or saw a specific object. Examples:
– “When did you grasp the oil?” → “I did it 215 days ago at about 14 o clock.”
– “When did you last see the corn?” → “It was yesterday at 10:20.”

• Location: The question asks for where the robot was at a specific point in time. Examples:
– “Where have you been at 09:47?” → “I just arrived at the countertop.”
– “Where have you been three days ago at 10:36?” → “I just arrived at the setting place.”

• Object: Here, the robot has to remember which object it moved at a specific time in the past.
Examples:
– “Explain which object you moved to the setting place before noon!” → “I moved the vanilla
cookies.”
– “Tell me which object you moved to the countertop in the evening!” → “I think you are talking
about the popcorn.”

• Duration: The question asks for the duration of an action in the past. Examples:
– “How long did it take to release the corn yesterday before noon?”→ “It took about two minutes.”
– “How long exactly did it take to grasp the oil today at noon?” → “It took 25 seconds.”

short dialogs This dataset builds on the newly collected set of simulated robot episode recordings as
described in section 5.1.1. To produce questions and answers, the grammar was only minimally adjusted
to allow the use of the newly involved objects and locations. No new question types were added.

long-term dialogs This dataset builds upon the short dialogs set, but the grammar was extended to
produce special questions and answers requiring long-term information storage. The added Q&A are:

• Summarize: Dialogs, where the question is asking for a summary of events in a given time period
(today, this week, etc.), and the answer is a long list of what the robot did in this period. Answer
sentences are connected with temporal conjunctions like “two days later”. Examples:
– “Summarize your activities of today!” → “I did not do anything today.”
– “Explain everything you did this month!” → “Four days ago at 14 o clock, I moved the corn and
the popcorn to the sink. One day later, I tried to but failed to move the vitalis to the setting place,
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Table 5.2.: Number of generated question-answer pairs making up the previous and long-term dialogs
datasets splits. The columns refer to different history lengths.

1 2 3 5 10

train 15,625,862 22,268,398 21,804,631 21,424,698

previous valid 60,048 60,296 60,042 59,385

test 67,047 126,884 187,192 309,087 609,350

train 15,296,450 21,349,717 27,507,619 40,112,705

long-term dialogs valid 83,800 83,600 83,400 83,000

test 115,713 199,417 296,560 482,583 944,945

the orange juice to the sink and the oil to the countertop. Then, I tried to but failed to grasp the
apple tea.”

• How often: Here, the question refers to a specific object resp. location and the answer states how
often the robot grasped this object resp. moved to or has been at that location. Examples:
– “How often did you grasp the cookies?” → “I grasped it four times.”
– “How often have you been at the fridge?” → “I have never been there.”

For an overview on the number of QA pairs generated for the individual dataset splits, see Table 5.2.
Note that the number of validation samples is kept low, although the validation set contains more histories
than the training set (see Table 5.1). The cause for this is a different dataset generation scheme: While
the training set simply contains all possible dialogs for each history (thus leading to huge numbers), the
validation set subsamples only a few possible QA samples per history. This strategy aims at keeping the
time cost for validation runs low, while still using a representative set of histories (especially with respect
to date-time variation). For the test set, QA sampling is not used that extensively to ensure that none of
the above question types is underrepresented.

5.1.3. Generalization Test Sets

Bärmann et al. (2021) present additional small test sets to assess the generalization capabilities of the
model.

First, instead of collecting RERs from a simulated robot, the actions of a real robot can be recorded.
For this purpose, the same episode recorder component already employed in simulation can be used.
Excerpts from such a recording are illustrated by Fig. C.2 and Table C.1 in the appendix. However, since
data acquisition on a physical robot system is very work-intensive and error-prone, this thesis did not
collect additional real robot samples.

Second, because of the limited nature of grammar-generated questions and answers, collecting lan-
guage data from human annotators is desirable. In case the data is supposed to be used for training
purposes, both questions as well as answers need to be entered. In contrast, if only a natural-language
generalization test set is to be created, annotating solely questions is sufficient. Bärmann et al. (2021)
already introduced a website2 for this purpose, which was extended in the present thesis to prepare for
a future large-scale, crowd-sourced Q&A collection (especially working on log-in mechanism, sample
distribution and credit assignment). Screenshots of this website are shown in appendix D. While such
a data collection is highly desirable to enhance a systems capability to generalize to unseen natural lan-
guage utterances, it stays out of the scope of this thesis. Particularly, in contrast to the natural task of
answering a question about a given episode, the collection of interesting questions in a crowd-sourced
setting is not straightforward. Simply providing a few examples and then stating the task to ask the robot
a question would very likely lead to tedious repetitions of the sample sentences. As a possible solution,

2https://em.dataforlearningmachines.com/emv-data-collection/introduction
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the Q&A data collection could be embedded into a game-like environment with a goal easily accessible
by human annotators unacquainted with robotics. This task is left up to future work.

To summarize, generalization test sets are formed from all combinations of grammar-generated or
human-annotated questions and executions from simulation or a real robot. Using the definitions of Bär-
mann et al. (2021), this yields the following datasets: The simulated-robot-grammar-generated test set
is split up with respect to the different grammars as described in section 5.1.2. Since human Q&A data
acquisition is postponed to future work, the simulated-robot-human-annotated set is used without mod-
ifications. Similarly, as mentioned above, no new recordings on a real robot were collected. Thus, both
the real-robot-grammar-generated as well as the real-robot-human-annotated set are kept unchanged.

5.2. Evaluation Metrics

Evaluating the quality of natural language answers in context of episodic memory verbalization is far
from trivial. For instance, the same answer can be expressed in very different ways, both concerning the
syntactical and the lexical formulation of the utterance. This can be illustrated by the question “Did you
have any problems yesterday?” with its two semantically equivalent but lexically very different answers
“No.” and “Yesterday, everything went fine”. Moreover, the questions themselves might be ambiguous
or unspecific, thus allowing for multiple possible correct answers on the semantic level. Considering a
history of the robot where it performed two different tasks today, either one of them as well as a sentence
combining both would be a valid response to the question “What did you do today?”.

To account for these difficulties, and assuming one is given an EMV sample along with a target ut-
terance, Bärmann et al. (2021) propose to semantically classify EMV response hypotheses using the
following catalog of categories:

• Correct: The answer is correct, i. e. it contains all the facts given in the target utterance, and no
more.

• TMI correct: The answer is correct, and there is some additional information given in the hypothe-
sis, but these additional facts are semantically valid with respect to the history of robot experiences
in this sample (“tmi” = “too much information”).

• TMI wrong: The answer is correct in the sense of above, i. e. all information contained in the
target utterance is given in the hypothesis. However, there are some additional facts present in the
hypothesis, and those are semantically wrong with respect to this EMV sample.

• Partially correct: Some of the facts contained in the target utterance are given in the hypothesis,
but some information is missing or wrong. This category is also used if all target facts are present
in the hypothesis, but they are combined in a wrong way, as illustrated by the target “I moved the
green cup to the sink and the red cup to the countertop” and the hypothesis “I moved the red cup
to the sink and the green cup to the countertop”.

• Partially correct, only action: The hypothesis contains none of the facts contained in the target
utterance, except for one which deals with the robot’s action. This is defined as a separate category
to account for that fact being easy to guess because of the very limited number of actions (grasp,
move, put down) in the simulated dataset.

• Wrong: None of the facts in the target is present in the hypothesis. Nevertheless, the answer intent
is correct, i. e. the hypothesis could be considered a valid response given the question without any
context of what actually happened in the robot’s past.

• Inappropriate: The answer is not even related to the question (e. g. “what did you do?” → “it is
tuesday”), or it makes no sense (syntactically or lexically) at all.

In this context, a fact is a particular piece of information related to the intent of the question. For example,
in context of the question “What did you do today?”, the utterance “I moved the green cup to the sink in
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the morning” contains four facts: “move”, “green cup”, “sink” and the time reference “in the morning”.
Using this definition, complementary to the above categorization system, it is also possible to count the
number of correct facts C and incorrect facts I in the hypotheses, as well as the number of facts in the
target utterances, i. e. the expected facts E. Thereby, information precision p and information recall r
can be defined as

p =
C

C+ I
r =

C
E

With the above metrics defined, the question remains of how to calculate these numbers given a
model’s test outputs. For this purpose, this thesis extends the heuristic evaluation script of Bärmann
et al. (2021). It is applied to evaluate the model hypotheses on the datasets with grammar-generated
questions and answers, assigning each hypothesis to one of the presented answer categories by inspect-
ing the model output with regard to the complete EMV sample (i. e. the question, question timestamp,
target utterance and episodic content). First, the question is analyzed to distinguish the different types
of grammar-generated questions defined in section 5.1.2. Based thereupon, different procedures extract
the relevant facts from the target utterance and use them to assess the quality of the model’s hypothesis,
based on the known sentence structure induced by the known grammar which generated the data. Per
sample and hypothesis, the result is an assignment to one of the categories, as well as the numbers C, I
and E as defined above. These get aggregated over different sets of test samples, as further elaborated in
section 5.4.

For assuring the reliability of the heuristic evaluation script described above, the script’s output is
manually reviewed for all cases of questions and answers. To emphasize again, this is only possible
because the grammar-generated data has a known structure, hence a reverse analysis of all known cases
is possible. For evaluating a model’s responses to human-annotated questions, human assessment is used,
i. e. a given question, hypothesis and video of robot actions including date-time information is inspected
and assigned to one of the presented categories by hand (using the interface shown in appendix D).

5.3. Training Procedure

Bärmann et al. (2021) suggest a three-step procedure to train the EMV model: First, a simple dimen-
sionality reduction is learned on the latent image vectors as produced by the Deep EM of Rothfuss et al.
(2018). Second, an episode auto-encoder (EAE) model is trained by using only the EM encoder and
EM decoder part of the complete EMV model. Lastly, the EMV model is initialized with the weights
from EAE pretraining and then optimized with respect to the overall loss function, whereby a curriculum
learning strategy concerning the number of episodes per history is applied. In particular, EMV training
starts with histories of length one and then increases maximum history length to two after eight epochs,
to three after epoch 12 and to five after epoch 16. In the present thesis, the above procedure is improved
by simplifying it in the following points:

First, in view of the negative results of Bärmann et al. (2021) regarding usefulness of image data
as present in the current form of the EMV dataset, the image modality is neglected for most of the
experiments (if used, it is explicitly mentioned). Thus, the dimensionality reduction on the latent image
data is also abandoned. Currently, ongoing work is concerned with improving the robot simulation to
produce photo-realistic images, which then might be more useful. Exploring this aspect is left for future
work.

Second, early experiments on both the previous as well as the short dialogs3 dataset indicated that the
EAE pretraining mentioned above hurts performance. Fig. 5.1 shows the results of these experiments
with the EMV model using the CT EM encoder on the short dialogs dataset. It compares the percentage
of correct answers between one model with EM encoder and decoder initialized randomly, one with these
components initialized from EAE pretraining, one using the pretrained parameters and additionally freez-
ing them for the first two epochs, and the text-only baseline. It is clearly visible that the model without

3As explained in section 5.1.2, the short dialogs set is based on the new, more diverse set of robot episode recordings and is a
subset of the long-term dialogs dataset used in the following section.
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Figure 5.1.: Percentage of correct answers by history length on the short dialogs test set, exploring the
usefulness of episode auto-encoder (EAE) pretraining.

EAE pretraining outperforms the other ones by a large margin. On the first look, this is contra-intuitive
since Bärmann et al. (2021) introduced the EAE pretraining with the intention of learning a useful com-
pact representation of the multi-modal input stream on the one hand, and increasing date-time diversity
by frequent regeneration of the training data during EAE pretraining on the other hand. However, the
results indicate that the pure auto-encoder goal contradicts the loss coming from verbalization. Hence,
this thesis does not use EAE pretraining in all of the following experiments. Nevertheless, Bärmann
et al. (2021) already showed that using LEAE as a contribution to the overall loss during EMV training
provides a notable performance benefit and thus, this is adopted without modification. To summarize,
separate pretraining of the EAE is dropped, while the additive loss contribution LEAE is still used during
EMV training.

Third, regarding the curriculum learning strategy with respect to the history length, the ablation stud-
ies of the preceding work strongly support its usefulness. While keeping the general idea of curriculum
learning, the training schedule is modified due to observations made during the early experiments men-
tioned above. Instead of working with the epoch counter to control the process, the number of optimizer
updates is used to select the point of time for switching the curriculum stage (i. e. increasing the maxi-
mum history length). This has two reasons: First, due to the increased size of the new datasets (compared
to previous), training for multiple epochs would take an unacceptable amount of time. Second, an anal-
ysis of the learning curves of all the models trained during the above experiments revealed that they
converge early and most of the training effort is wasted. Thus, taking these observations into account, the
schedule was modified for all of the following experiments, training on histories of length one for 50K
optimizer updates, maximum length two until update 80K, three until 100K, and five until 115K4.

For some model architectures, multiple experiments with configurations differing in learning rate
schedule or other hyperparameters were performed. In a few cases where the loss function diverged
at the beginning of training5, exactly the same configuration was also ran multiple times6. To stay with
a valid methodology, model selection among these slightly different or identically configured runs was
performed using results on the validation set. In particular, after each 5K epochs of training, seman-
tic score (i. e. the percentage of correct answers determined using a fast approximation of the heuristic
evaluation script introduced above) was determined on the validation set. Then, among a set of similar
or identical configurations, the one with the highest maximum validation semantic score was chosen.
Results reported in the following section were produced on the test set by the last model checkpoint of
these configurations.

4Since the actual number of used training samples also depends on the batch size, this must be mentioned here for completeness:
histories of length 1 use a batch size of 96, two 64, three 48 and five 32. The batch size is reduced with the number of episodes
because longer histories require more GPU memory.

5See appendix B for more details about learning curves during EMV training.
6Identically configured runs may – although the random number generator seed is fixed and the runs were performed on the same

hardware – nevertheless behave differently because there are multiple other sources of nondeterminism. Particularly, GPU-
optimized functions using atomic_add provide no guarantees about execution order, thus leading to different results when
used with floating-point arithmetic. The EMV model includes such operations, e. g. by using an embedding bag for the episode
goal.
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Figure 5.2.: Percentage of correct answers by history length on the long-term dialogs test set.

5.4. Results

The EMV model was trained and evaluated using various EM encoder alternatives as described in section
4.3, as well as using different datasets as explained in section 5.1.2. In the following, the results of these
experiments are presented:

long-term dialogs To analyze the capabilities of the newly introduced O(1) EM models, the different
architectures were evaluated in the EMV task on the test split of the long-term dialogs dataset. Fig. 5.2
compares the percentage of correct answers over the history length among EMV models with the EM
implementations compressive transformer (CT), CT with long-term memory (CT + LT), multi-level CT
with LT memory (ML CT + LT), as well as the baseline models LSTM O(1), LSTM O(N) and text-only.
Since the text-only baseline does not have access to the episode data at all, its performance is independent
of the length of the history used for evaluation. With no chance to know what the robot actually did, it
accounts for the biases present in the dataset, i. e. it serves for assessing how many questions can be
answered correctly solely by educated guessing. Thus, the gray bars in Fig. 5.2 provide a lower bound to
the performance of the episode-informed models.

Similarly, the LSTM O(N) model can be seen as a soft upper bound to the models with a tighter
restriction concerning the size of EM. Assuming the speech decoder performs similarly across EM im-
plementations in its task to retrieve information from EM given an encoded query, the LSTM O(N)
model obviously has an advantage because it is not forced to forget any of its inputs. The upper bound is
only soft, since ideally the size constraint in O(1) EM models might also lead to more relevant informa-
tion being selected, thus actually easing the information retrieval task of the speech decoder. However,
the results show that this benefit is not properly exploited, and the LSTM O(N) model outperforms the
size-constrained EM architectures.

To enable a fair competition for the compressive transformer EM implementations, the LSTM O(1)
serves as a simple baseline for such a size-constrained EM. For the sake of comparability, the number
M of LSTM states to keep is set equal to the total number of EM vectors in the (ML) CT + LT EM
configurations. The LSTM O(1) performance is notably worse than that of LSTM O(N), and approaches
the text-only results for history length three and above. In particular, the ability of the LSTM to retain
useful information does not extend beyond a length of two episodes. Moreover, just keeping the latest
LSTM states and thereby having no dedicated mechanism of information selection visibly limits the
performance even for short histories.

Contrary, the compression functions of the different CT architectures explicitly train to filter relevant
information using their separate compression loss. The usefulness of this approach can be clearly seen
in the results, as all of them perform notably better than the LSTM O(1) baseline. For instance, looking
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Figure 5.3.: Information precision and recall of evaluating the different EM architectures on the long-
term dialogs test set using histories of length one to ten. The “All” plot, shows all history
lengths at once.

at the plain CT EM model on short histories of one or two episodes, there is an improvement of 12 %
resp. 8 % of correct answers compared to the LSTM O(1) baseline. However, as expected due to the
limited context length of the plain CT model (as explained in section 4.3.2), there is a huge decrease of
correct answers with increasing history length, since this model is only able to remember the most recent
information.

With the purpose of removing that limitation, the CT + LT introduces its long-term memory compo-
nent. Because of that, the expectation is for it to be able to keep its performance on a high level even
with increasing history length. On the one hand, when looking at the results, this expectation is partly
met by the CT + LT model consistently outperforming the plain CT model for all history lengths. The
higher percentage of correct answers even for short histories can be explained by the variations in episode
length, i. e. there are some complex episodes in the dataset that on their own are already longer than the
context length of the plain CT model. On the other hand, the CT + LT model still suffers from a dra-
matic decline of performance for longer histories, although less than the other O(1) models. This sheds
light on two central issues: First, constraining the EM to a constant size by definition requires the model
to forget some less relevant details about the past. Thus, with the dataset containing questions which
ask for details of episodes long ago, a moderately lower performance compared to the O(N) model is
unavoidable. Second, the same dramatic decline of correct answer percentage with increasing history
length can also be observed for the LSTM O(N) model. Since it is not limited by the size of EM, the
constraining factor here must be the retrieval of information from EM which is performed by the speech
decoder. In summary, this shows that the addition of LT memory to the CT architecture successfully
serves its purpose, while there is still room for improvement concerning the mechanisms for accessing
EM content.

The last architecture to discuss in Fig. 5.2 is the ML CT + LT. Here, a further improvement over
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CT + LT was expected, since multiple compression levels might lead to better abstraction capabilities.
For instance, if the (plain) memory remembers information on the key frame level, level-1 compressed
memory can capture individual action steps, level 2 complete actions, and level 3 (and the LT memory)
complete tasks. Unfortunately, the results indicate this expectation is not met. While outperforming the
plain CT model, ML CT + LT is not able to compete with its single-level companion. One possible
explanation is that the dataset in its present form does not support such abstraction, as mentioned with
the detailed questions about far episodes above. Furthermore, the ML CT + LT architecture turned out to
be quite sensitive concerning the learning rate and hyperparameter settings, quickly causing a model to
diverge early during training. Thus, it is a challenge for future work to both extend the dataset to better
support semantic abstraction and solve the optimization problems coming with the ML CT + LT model.

As explained in section 5.2, looking solely at the number of completely correct answers can only
provide a partial view of a model’s overall performance. Therefore, Fig. 5.3 shows the information
precision and recall from the same experiments as above, also separated by history length. For all models
(except for the text-only baseline), a clear trend with increasing history length from the upper right to the
lower left corner of the PR diagram can be observed. Furthermore, the plot clearly reveals which models
solely guess based on the biases in the dataset: the data points in the lower left of the “All” plot, where
all the text-only points lie. It can be seen that – as expected – the CT model for history length ten as well
as the LSTM O(1) for histories of length three and above fall into this category. On the other hand, all
the other architectures are clearly separated from that guessing area, even for the longest history length.
Additionally, although not significant, the LT-memory-enhanced models tend to have a higher recall than
the other O(1) models at each respective history length. Compared to the LSTM O(N) baseline, the CT
+ LT model performs similar, and for one, three and five episodes even better in both precision and recall.
While the benefit of being required to compress and filter input information did not manifest itself in the
number of completely correct answers, this can be seen as an indicator thereof.

previous To enable a comparison of the new models and methods with the existing work of Bärmann
et al. (2021), the evaluation was also performed on the test split of the previous dataset as presented in
section 5.1.2. Fig. 5.4 compares all EM architectures on this dataset, additionally showing “previous
work” numbers referring to the “without images” results reported by Bärmann et al. (2021). This model
essentially is the LSTM O(N) without the improvements in episode encoding and embedding introduced
in section 4.2. Notably, the direct comparison of LSTM O(N) with “previous work” reveals that these mi-
nor modifications have a huge impact on the model’s performance. This is reasonable, since the previous
encoding implicitly defined an unintended order on the symbolic tokens by not using one-hot encoding
properly. Concerning the text-only baseline, two things can be noticed: First, the reported percentage of
correct answers is slightly higher (2 %) than that of Bärmann et al. (2021), which is explained by minor
improvements in the heuristic evaluation script. Second, although guessing an answer in context of the
more diverse long-term dialogs dataset should intuitively be harder, the text-only baseline has lower per-
formance on the easier previous data. This relates to the differences between the two datasets regarding
the frequency of the various question types and is further elaborated in the appendix (see Fig. A.3).

Nevertheless, the previous dataset’s low diversity manifests in the performance of the other models.
Here, the numbers are notably higher than for the long-term dialogs results, confirming the task in this
dataset is actually easier to solve. Similarly, this is a possible explanation of why the CT model, despite
its limited context length, outperforms most other models on this dataset. Due to the simpler task – and
shorter episodes in particular – the model is able to keep a higher performance than on the long-term
dialogs test set while using the same context length. With that in mind, the long-term memory appears to
not get properly utilized in this setting. Only for histories of length ten, the CT + LT performs marginally
better than the plain CT model. Looking at the ML CT + LT, it suffers from the same problems as on the
long-term dialogs set, thus consistently performs worse than its single-level counterpart.

Despite the problems described above, it should be stated that all the newly introduced O(1) models
clearly outperform the LSTM O(1) baseline (which is the one to do fair comparisons with). Particu-
larly, for history length three and above, the margin is very expressed, supporting the usefulness of the
presented model architectures.
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Figure 5.4.: Percentage of correct answers by history length on the previous test set. The “previous work”
numbers refer to the “without images” results reported by Bärmann et al. (2021).
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Figure 5.5.: Information precision (y) and recall (x) of evaluating the different EM architectures on the
previous test set using histories of length one to ten. The “All” plot, shows all history lengths
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Comparing the PR curves for the previous dataset shown in Fig. 5.5 to that in Fig. 5.3 further confirms
that the new tasks are much harder to solve, as both information precision and recall of the text-only
model on the previous set are about 10 % higher than on long-term dialogs. Due to the easier task, the
previous results do not have the guessing area as clearly separated from the other models as for long-term
dialogs. Notably, despite its EM size constraint, the CT + LT model outperforms the LSTM O(N) in both
precision and recall on histories of length ten.

Analysis by question type To account for the grammar-generated test data and to analyze limitations
of this procedure, it is beneficial to evaluate the results separately for the different types of questions as
defined in section 5.1.2. Thereby, two aspects can be observed: On the one hand, it is interesting to see
how well the models are able to handle individual question types. Particularly, this may shed some light
on what tasks a model can solve and where it struggles. On the other hand, especially when inspecting
the performance of the text-only model, evaluating by question type effectively is also an analysis of the
dataset itself, allowing to find data biases or imbalances.

Table 5.3 shows the details of this analysis on both the long-term dialogs and previous datasets. For
each question type, it compares the performance of the CT + LT model (as this is the best O(1) model
in the experiments presented above) with the text-only baseline. The numbers indicate the percentage
of correct answers with regard to the total number of questions of this type, evaluated on histories of
different lengths (from one to ten).

On the first look, three question types with very high scores both for the CT + LT as well as the text-
only baseline stand out: Concerning the Current date & time questions, high numbers are expected as
this is the easiest task because the answer (i. e. the current date or time) is already encoded in the query
(i.e the question plus timestamp). Thus, in theory both models could easily reach a perfect score here.
However, for the other two high-scoring types Problems and Duration, the high guessing performance
indicates biases in the generated dataset.

For Problems questions asking if the robot had any failures during a specific time or action, the problem
is grounded in an intrinsic dataset imbalance. Naturally, execution problems are rare compared to the
number of actions which succeed. Indeed, an analysis of the long-term dialogs test set with history length
five shows that there are 71 failed in contrast to 2478 successful actions (2.8 %), and correspondingly, the
dialog generation process leads to only 2.6 % of all Problems answers actually mentioning any failures.
This perfectly fits to the text-only model having a question-type specific correct answer score of 97.4 %
on this data, i. e. it simply always states there were no problems and performs well with this strategy in
nearly all cases. Unfortunately, there is no difference between the text-only baseline’s and the CT + LT
model’s performance on the Problems questions, i. e. the episode-informed model does not actually learn
anything useful about execution failures but overfits identically to the guessing baseline.

Similarly, the results on the Duration questions also indicate biases present in the dataset, leading to a
better performance than actually using the episode data and thus preventing the episode-informed model
from learning more than the text-only baseline does. In this case, however, the imbalance is not that
obvious, as there is a more diverse spectrum of possible answers to Duration questions: Although there
is one highly overrepresented answer (“It took about one minute” makes up 42 % of all Duration answers
referring to the same test set as above), it does not explain the performance of about 90 %. Consequently,
this means the model is able to learn some correlation between the actions referred to in the question and
the corresponding answer. For instance, the action “move to the round table” might in most cases take
about ten seconds. Thus, the model can learn this correlation, and answer the question “How long did
it take to move to the round table yesterday?” correctly with a high chance without even looking at the
content of the episode.

In contrast to that, for the question types Action, Object, Location and Past time, an improvement of
the CT + LT model over the baseline can be observed. Especially for Action questions like “What did you
do yesterday in the morning?”, there is a huge gap between the episode-informed model and the guessing
baseline, which basically always fails. Due to the very limited set of actions in the previous dataset, the
guessing performance is slightly higher here, but the same benefit applies to the CT + LT model, leading
to an even more expressed gap. Nevertheless, both datasets show a strong decrease in the number of
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Table 5.3.: Percentage of correct answers, by history length and question type, on the long-term dialogs
and the previous dataset. Question types are as defined in section 5.1.2. DT = Current date &
time, C = CT + LT model, T = text-only model

long-term dialogs previous

1 2 3 5 10 1 2 3 5 10

DT C 99 100 96 99 97 99 100 99 99 99

T 92 91 94 92 85 95 98 97 99 98

Problems C 95 97 98 97 98 92 92 92 92 93

T 95 97 98 97 98 92 92 92 92 93

Duration C 91 92 90 91 91 90 90 91 92 92

T 90 92 91 92 91 91 92 92 92 93

Action C 73 51 40 24 7 84 61 54 40 19

T 0 1 0 0 1 3 4 2 2 2

Object C 73 65 54 42 25 99 94 94 86 79

T 11 12 10 11 11 66 69 65 65 65

Location C 42 37 34 33 34 47 32 37 35 33

T 20 22 22 20 20 27 35 29 28 31

Past time C 14 4 3 2 1 20 6 4 3 1

T 3 1 1 1 0 2 2 1 0 0

How often C 56 58 58 51 41 -

T 63 67 60 56 45 -

Summary C 75 39 43 46 37 -

T 23 23 25 25 27 -

total C 71 58 53 44 35 79 62 57 48 34

T 29 30 30 30 30 22 24 22 22 22
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Figure 5.6.: Percentage of correct answers by history length, evaluated on the two question types specif-
ically added to the long-term dialogs dataset.

correct answers on this question type with increasing history length. Similar observations can be made
when looking at the Object question type, where the user asks about which object the robot acted on at a
particular point in time. Here, next to the CT + LT model clearly outperforming the text-only baseline,
and despite the decline in performance with increasing history length, the differences in dataset diversity
express themselves even more explicitly in the number of answers correctly guessed. While it is at about
11 % for the long-term dialogs set, guessing solves about 65 % of such questions on the previous dataset.

Moving on to the Location (“Where did you put ... ?”) and Past time (“When did you ... ?”) question
type, the performance gap between episode-informed and text-only model further decreases. While the
CT + LT model consistently outperforms the guessing baseline on the new, more diverse dataset, no clear
trend is visible on the previous test data concerning the Location questions. Furthermore, the Past time
task appears to be too hard to solve for the current model architecture. Although better than guessing,
the episode-informed models reach only very low percentages of correct answers. This indicates a huge
room for improvement concerning the handling of date and time information in the overall architecture.

The last two question types to analyze are those introduced in the long-term dialogs set to specifi-
cally facilitate and inspect long-term learning capabilities of the presented models. Here, the results are
twofold: For the How often dialogs, there appears to be a dataset bias problem similar to the Duration
questions. On the one hand, “I did/moved ... only once” is a highly overrepresented answer (51 %), on
the other hand, there are correlations between question and answer, as certain locations are more fre-
quently occurring in the simulated recording than others. Interestingly, as shown in Fig. 5.6, text-only
guessing actually performs better than most of the episode-informed models including the CT + LT on
this question type. Analyzing the histogram of model outputs for How often question for the text-only as
well as the CT + LT model (as shown in Fig. A.2) reveals that – while the text-only model heavily over-
fits on the most probable “only once” answers – the CT + LT model shows more diversity in its answer,
trying to detect “never” and “two times” cases. However, the attempt to solve the task more adequately
all in all leads to worse results than blind guessing as done by the text-only model.

Contrary, the episode-informed model seems to be able to learn useful, task-specific skills for answer-
ing the Summarize questions. The high baseline performance is induced by the frequent “I did not do
anything at this time” type of answers. Interestingly, the CT model and its variants outperform not only
the text-only baseline, but also the LSTM O(N) model on histories of length five and ten (see Fig. 5.6).
This might be indicating that compression is actually superior to keeping all information for this type of
task.

Analysis by reference episode All analyses so far were differentiated by the length of the history
used to evaluate the model. This strategy is useful to determine how well a given model is capable of
handling a stream of information as it increases in length. However, it does not account for which part
of the (potentially long) input stream the question actually refers to. For instance, answering to “What
did you do five minutes ago?” does not require any knowledge about the episodes before that, and thus
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Figure 5.7.: Percentage of correct answers on the long-term dialogs (left) and previous (right) test data
with history length ten, evaluated by distance to the episode referred to in the question.

is in theory independent of the history length used for evaluation7. Therefore, the following section
will deal with an analysis of performance differentiated by the distance between the question and the
episode it refers to. Ground-truth reference episodes are available because the data-generating grammar
already stores these time references for purposes of the time reference loss explained in section 4.5.
Thus, the distance between a question and its reference episode can easily be determined in the heuristic
evaluation script by inspecting this target time reference, the question timestamp, and the history of
episodes. However, there are some types of questions not referring to any specific episode, particularly
some Problems questions asking for failures in a specific time interval, all Current date & time questions,
as well as both question types newly introduced for the long-term dialogs dataset. Consequently, these
are excluded from the following analyses.

Fig. 5.7 shows the results of evaluating the EMV model with the various EM architectures on the
long-term dialogs and previous test set. Thereby, the history length is fixed to ten episodes, since in this
setting there are the most possible reference distances. On both datasets, some interesting observations
can be made: First, the LSTM O(1) barely produces more correct answers than the text-only baseline,
independent of the distance to the question’s reference episode. This is as expected, since the results from
above already indicated that this model completely falls back to guessing for long histories. Moreover,
the LSTM O(N) does not show a clear trend of performing better or worse with increasing distance to
the question’s reference, as expected for the unconstrained memory. However, for the previous data,
there is a peak towards the first input episode (i. e. the one farthest away from the question), which is not
explained easily. A possible reason might be that this LSTM learned to be biased towards its first input
data.

Besides that, the limited context length of the plain CT model is clearly visible, as it outperforms the
text-only baseline only up to reference distance three or four, depending on dataset complexity. The same
effect is visible for the enhanced CT variants, as they only augment the EM as produced by the plain CT.
However, in addition to the peak for small reference distances, the CT + LT also shows a peak for the
farthest input data (i. e. distance ten). This means, the long-term memory appears to be used mainly
for remembering the initial inputs to the EM. Indeed, the design of LT memory as presented in section
4.3.2 might facilitate this effect, as attention in Eq. (4.3) is conditioned on the old LT state, thus selecting
similar content only. To further investigate this, another variant of the CT + LT model is examined, with
a learned query vector for producing the LT update candidate (i. e. replacing lk

t−1 in Eq. (4.3) with a
learned, layer-dependent vector qk). Results of evaluating this model are shown as “CT + LT learned”
in Fig. 5.8. It can be seen that this architecture change does not improve performance, and still shows
the peak for the farthest input data, while producing poor results in the middle. Thus, this peak might be

7Of course, in practice history length still matters, as a poorly performing model may choose to collapse for longer input streams
and resort solely to guessing, as illustrated by the analysis of the LSTM O(1) results on histories of length ≥ 3 in Fig. 5.3.
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Figure 5.8.: Percentage of correct answers by distance to reference episode, on the Action questions of
the long-term dialogs (left) and previous (right) test data with history length ten.

induced by the GRU, and not the attention mechanism. Also using a GRU cell, the same effect should
theoretically be observable for the ML CT + LT model too, however, this is only marginally visible and
probably prevented by the optimization and dataset issues elaborated on earlier.

On top of that, the results can also be viewed separately by both question type and reference episode
distance. Accounting for the fact that answers to some types of questions are easily guessed, the already
mentioned Fig. 5.8 presents the results by reference distance on the Action data only. This is the question
type where the text-only performance is worst and the gap to the episode-informed models is the largest.
Consequently, analyzing and comparing the introduced EM models on this question type removes un-
wanted effects induced by the grammar-generated utterances. Thus, Fig. 5.8 provides a clearer view on
the analyses made above. Particularly, it confirms the effect of the CT + LT model performing best on
the closest and the farthest episode data, i. e. the newest and the oldest content of EM. Additionally, the
marginal peak of the ML CT + LT for the oldest episode data is slightly better visible, especially on the
previous data.

Modality ablation study While all the experiments presented so far did ignore the image data part
of each episodic key frame, the following paragraph compares results of models trained on different
subsets of the available modalities. As outlined in section 4.2, each key frame contains multi-modal
information of the following types: Date and time information, symbolic execution data, subsymbolic
sensor data, and a latent representation of the current image from the robot’s camera. Since timestamps
are crucial for solving the EMV task, they are included in all ablation experiments. Fig. 5.9 compares
the percentage of correct answers produced by the CT + LT model8, trained on the long-term dialogs set
using different sets of modalities. The “symb + subsymb” results are produced with access to the same
modalities as all experiments above (i. e., these data stem from the same run as the “CT + LT learned”
results in Fig. 5.8), and thus provide the baseline for comparison. Additionally giving the model access
to latent image representations does not produce a notable difference, as shown by the “symb + subsymb
+ latent” results. Similarly, using symbolic data only neither has a significant impact. In contrast to
that, dispensing with symbolic data and relying solely on subsymbolic and latent data causes the model
to struggle, notably dropping performance. Nevertheless, results on shorter episodes are still above the
text-only baseline by a fair margin. To further investigate whether this effect is caused by the latent
images or by the subsymbolic data, these two modalities are also experimented with on their own. The
results show that, while “latent” performs comparable to “subsymb + latent”, the “subsymb” only run
completely falls back to text-only guessing.

To summarize, for the current dataset and model architecture, the symbolic data mainly drives perfor-
mance in the EMV task. This is reasonable, as the grammar for generating questions and answers uses

8including the learned LT update query vector, as introduced above.
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Figure 5.9.: Percentage of correct answers over history lengths, evaluated on the long-term dialogs
dataset with access to different sets of episode modalities.

the symbolic data to decide what utterances to generate. Interestingly, the model is to some extent able
to infer relations of episode content and image data. Contrary, the subsymbolic data is – in its current
form – mostly useless to the model.

This is in line with the findings of Bärmann et al. (2021). However, a small improvement concerning
performance without access to symbolic data can be observed when comparing models trained on the
previous (7.8 % correct Action questions for “subsymb + latent” vs. 3.2 % for text-only on histories of
length one) and long-term dialogs (27.3 % “subsymb + latent” vs. 0.2 % text-only) dataset. This can
be explained by the new dataset being more diverse and significantly larger, providing far more training
images and hence leading to a better performance. For future work, it indicates that using a larger and
more realistic set of images is a promising direction.

Generalization study Using the generalization test data from Bärmann et al. (2021) as presented in
section 5.1.3, the model’s adaption capability to natural language variations and real robot recordings is
assessed. Human evaluation results of answers to simulated-robot-human-annotated questions as pro-
duced by the CT + LT model, once trained on the previous and once on the long-term dialogs set, are
compared to the performance of the model in the preceding work in Fig. 5.10a. While there is still a
huge amount of inappropriate and wrong answers, two observations can be made: First, the architecture
changes, especially the new episodic input encoding (section 4.2) as well as introduction of the compres-
sive transformer, clearly have a positive effect, as these are the major differences between the model of
Bärmann et al. and the CT + LT model trained on the previous dataset. Second, the increased diversity of
the simulated episodes in the long-term dialogs set also aids with generalization on the language level,
as the model trained on this set performs slightly better than the other ones, with more correct and less
inappropriate answers.

Furthermore, experiments with episode recordings from a real robot system were performed. Using
the real-robot-grammar-generated test set shows improved results over the previous work, too, as shown
in Fig. 5.10b. Most of the remaining wrong answers stem from the difficult question types as already
discussed above. In particular, the model fails about 90 % of Past time questions.

Finally, the real-robot-human-annotated set jointly evaluates both generalization capabilities. Despite
the small number of samples, and although more than halve of the answers are still wrong or inappropri-
ate, both the new model as well as training on the new dataset delivers some performance gains over the
previous work (see Fig. 5.10c). For the interested reader, Table C.2 provides exemplary model responses
on the discussed generalization test data.

To summarize, the main observations of the generalization study coincide with that of Bärmann et
al. (2021): While the transfer from simulated to real robot recordings is not a huge problem (which is
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reasonable, because the included symbolic episode data already exhibit a great level of abstraction), the
EMV model has severe difficulties to generalize to natural language variations. Nevertheless, this thesis
improves over the previous work, despite not changing the speech encoder or decoder.
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Figure 5.10.: Results of the different generalization experiments. Statistics on the human-annotated sets
are in absolute numbers, while performance on grammar-generated questions is reported in
percent (the total number of questions in the real-robot-grammar-generated set is 12913).
The first bar in each plot refers to the model of Bärmann et al. (2021, Fig. 6).
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6. Conclusion and Future Work

In this thesis, an architecture for episodic memory verbalization (EMV) is presented, including an EM
encoder featuring constant memory space and query-time computation requirements. Building on the
foundation work of Bärmann et al. (2021), the following contributions are made: First, compared to
the previous work, a far larger and more diverse dataset of robot experiences is collected. Second,
the EMV architecture is enhanced at several points. In particular, for the EM encoder, the Long-Term
Compressive Memory Transformer (CT + LT) model, and a multi-level variant thereof, are proposed.
By providing both unlimited context length and constraining the EM to a constant size, it solves the
conceptual limitations of the EM in previous work.

Utilizing the dataset from previous work as well as the newly collected one, the proposed models are
trained and evaluated with respect to the their ability to answer questions correctly in the EMV task. The
results show that the CT + LT model outperforms both the text-only as well as the LSTM O(1) baseline
by a huge margin on both datasets, thus confirming the architectural choices. Moreover, the results of
Bärmann et al. (2021) are topped significantly. The CT + LT model even competes well with the LSTM
O(N), although this comparison is theoretically unfair as the latter has no constraints on its EM size.

Nevertheless, the EMV model’s performance still decreases rapidly with increasing history length.
Summarizing the analyses both by history length and by reference episode, two reasons for this can be
identified: First, the EM information retrieval performed by the speech decoder appears to be a bot-
tleneck, as the decreasing performance also affects the unconstrained EM of the LSTM O(N) model.
Second, the compressive transformer architecture can by design only remember its last experiences,
while the experiments show that adding the long-term memory component mainly keeps information
from its initial inputs instead of aggregating experiences over time. In summary, this leads to a low
performance on questions about events “in the middle” of a history. Although the decline of correct an-
swers with increasing number of input episodes is severe, reviewing the information precision and recall
scores indicates that, even for long histories, the proposed models do not completely collapse to text-only
guessing.

A further analysis of the results on the individual question types generated by the regular grammar
for QA annotation revealed a set of limitations induced by the dataset generation procedure. On the
one hand, certain events, especially execution failures, are underrepresented in the simulated experience
data, and thus all models ignore these rare samples during training. On the other hand, there are types
of dialogs in the generated data where even the text-only model can achieve a very high percentage of
correct answers by leveraging strong correlations between questions and answers, without taking the
episodic context into account. While it could be considered that, when there is a lack of context, a-priori
guessing of answers is also a human behavior, in backpropagation-based training, it hinders learning of
the actual task, as a satisfactory performance can already be achieved without conditioning on the robot
experiences. Despite these limitations, the analyses also showed that there are question types (especially
Action) without such flaws, presenting a clearer picture on the performance of the proposed models.

To sum up, the main goal of this thesis was reached: With the Long-Term Compressive Memory
Transformer, an O(1) EM is implemented and empirically validated, notably improving upon the results
of the preceding work. However, generalization both to longer histories as well as to variations in natural
language still is a problem, indicating a potential for future work. While collecting human-annotated QA
training data is a plausible approach to improve robustness in natural language understanding, working
on generalization to longer histories will most certainly require architectural modifications. In particular,
the strategy of retrieving information from EM needs to be reconsidered, e. g. using a separate attention
mechanism dedicated to EM access. Moreover, the model could potentially benefit from a more ex-
plicit formulation of time throughout the architecture, as finding the correct EM content given a natural
language time reference is – due to the complexity of calendar algebra – a very hard-to-learn task.
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As a straight-forward step for future work, the proposed multi-level compressive transformer model
could be applied to the original domain of compressive transformer, which is language modeling. It
might be interesting to see if multiple compression levels can facilitate long-range context awareness.

Furthermore, in the context of EMV, future work could try to broaden the used definitions to come
closer to real-world applications. For instance, instead of assuming a closed-world setting and resorting
to a dictionary of objects, actions and locations involved in the symbolic robot experience data, using
pretrained subword embeddings to represent such tokens might lead to a more transferable system. It is
also highly desirable to make more intense use of the subsymbolic and image modalities, as these senses
are very unlikely to provide corrupt data (in contrast to the symbolic planner, which e. g. might not
recognize an execution failure correctly). In particular, this requires improvements in dataset acquisition,
producing more realistic images in simulation on the one hand and deploying a continuous data recording
system to a real robot on the other hand.

As a further step, the EMV task itself could be modified, defining textual speech input to be part
of the episodic data stream, and letting the model predict whether and what to respond at each time
step. This could also allow a robot to start conversations proactively, for example if it meets a particular
person. Concerning the EM architecture, another possible extension is to dynamically insert new long-
term memory states if important or relevant events occur, comparable to human flashbulb memories
(Brown et al., 1977). This might use a discrete mechanism similar to what is used in HM-LSTM or
SkipRNN (Chung, Ahn, et al., 2017; Campos et al., 2018), but would need to come up with an intelligent
way of how to keep the O(1) size constraint on EM. Finally, a far vision is to integrate the EMV model
into a broader cognitive architecture.
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A. Additional Analyses
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Figure A.1.: Histogram of episode length (measured by the number of key frames) in the datasets of
simulated robot episodes. “old” refers to the dataset of Bärmann et al. (2021), while “new”
is the one collected in the scope of this work.
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Figure A.2.: Histogram of answers to the How often question type, comparing the CT + LT and text-only
model’s outputs to the ground truth (target) data. Evaluation was done on histories of length
five in the long-term dialogs dataset.
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Figure A.3.: Dataset and performance analysis of the text-only baseline model. The topmost bar chart il-
lustrates the content of the different datasets (previous, short dialogs and long-term dialogs),
specifically the proportions of the different question types as generated for the test split on
histories of length one. With the line charts in the three rows on the bottom, the percentage
of correct answers produced by the text-only model on the different datasets (on histories of
length one to ten) is compared. Defining a question type to be “easy to guess” if the guess-
ing performance stays above 80 %, “hard” if it is below 20 % and “medium” otherwise, the
question types can be categorized as follows: Problems, Current date & time and Duration
are “easy” for all datasets. Location is always “medium”; for the previous data, Object is
also “medium”; for the long-term dialogs data, the two new question types Summarize and
How often are “medium”, too. The remaining question types are categorized as “hard”.
With this definitions, the datasets can be analyzed with respect to their fraction of easy-,
medium- and hard-to-guess questions. This analysis is presented in the second bar chart.
It adequately explains the performance differences observed for the text-only model when
treating the datasets as a whole (i. e. not evaluating per question type), as for all datasets, the
equation E ≤ P ≤ E +M holds, where E and M are the fractions of “easy” and “medium”
questions, respectively, and P is the percentage of correct answers produced by the text-only
baseline as reported in section 5.4.
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B. Learning Curves

This section shows a few exemplary learning curves of training the different EMV models. For a com-
plete view on all curves including interactive plots and all hyperparameter details, see

• for the long-term dialogs experiments:
https://tensorboard.dev/experiment/oZWhkSQHRKGEn8pZMveXJg

• for the previous experiments:
https://tensorboard.dev/experiment/OdbSvbAmTLeG5e2YPyA3RA

• for the modality ablation study:
https://tensorboard.dev/experiment/rZ9hrvbCRjS7HJdq3w2amw
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Figure B.1.: Curves of train loss contributions (answer, episode auto-encoder and time reference loss as
defined in section 4.5) during training of some of the compared models. Text-only training
is only performed for 100K updates (instead of 115K). The jumps of the loss function can be
explained by the curriculum learning, switching to a dataset with a higher maximum history
length (see section 5.3).
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Figure B.2.: Curves of valid NLG loss (left) and semantic score (right) during training of the same models
as shown in Fig. B.1 (the legend is also shared with that figure).
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C. Examples

Figure C.1.: Example of a robot episode recording from the newly collected set of simulated robot ex-
ecutions as described in section 5.1.1. First row: The robot starts at the table, moves to
the counter, grabs the cereal box, and moves on. Second row: It grabs the oil with the left
hand, places the cereal box at the countertop and moves next to the dishwasher to grab the
popcorn. Last row: Both the oil and the popcorn are put into the sink.

Figure C.2.: Example of a robot episode recording from the real robot recordings from Bärmann et al.
(2021) as described in section 5.1.3. From left to right: The robot grasps the green with its
right and the red cup with its left hand, then moves to the sink, puts the red cup into it, and
finally places the green cup at the countertop.
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Status Action + Arguments
started move Armar3 roomcenter sideboard
success move Armar3 roomcenter sideboard
started grasp Armar3 handright3a sideboard greencup
failure grasp Armar3 handright3a sideboard greencup
... ...
started putdown Armar3 handleft3a sink redcup
success putdown Armar3 handleft3a sink redcup
started move Armar3 sideboard countertop
success move Armar3 sideboard countertop
started putdown Armar3 handright3a countertop greencup
success putdown Armar3 handright3a countertop greencup

Object Position
greencup 462.1, 791.7, 890.8
handleft3a -338.1, 529.6, 1024.4
... ...
handleft3a -134.6, 492.2, 1158.1
greencup -24.4, 468.4, 1130.0
handleft3a -136.6, 488.3, 1156.3

Table C.1.: Further information on the data from different modalities part of the RER shown in Fig. C.2.
Left: Content of the symbolic information sequence containing action and arguments. Right:
Symbolic object names with subsymbolic positions.

Category Question Answer
real-robot-grammar-generated
Correct explain your exercises two days ago at 03

PM
i moved the green cup to the countertop
and the red cup to the sink

Wrong how long exactly did it take to grasp the
vitamin juice yesterday at noon?

it took 25 seconds (correct: 123s)

simulated-robot-human-annotated
Correct What did you do in the morning? i moved the multivitaminjuice to the

roundtable
Wrong Did you recently have any problems? No (correct: Yes, I failed to . . . )
Inappr. Which cup did you take on my Birthday,

June the 24th?
i took 10 nesquik

real-robot-human-annotated
Correct What did you do after taking the Multi Vi-

tamin Juice?
i took the vitamin juice to the countertop

Wrong Which cup was next to the red cup? i think you are talking about the red cup
Inappr. Where did you put the cup? i did it on June 20 at about 19 o clock

Table C.2.: Exemplary results produced by the CT + LT model on test samples from the respective gen-
eralization test set. Each row shows a question and answer categorized as shown. For the
real-robot-grammar-generated test set, there were no inappropriate answers.
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D. Data Collection Site

The following screenshots show the dataset collection website of Bärmann et al. (2021), which was partly
extended in this work. In the first screenshot, an answer needs to be annotated, given a question. The
second picture shows the interface for manual evaluation of model responses.
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