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Abstract
This paper describes KIT’s submissions to
the IWSLT2020 Speech Translation evaluation
campaign. We first participate in the simulta-
neous translation task, in which our simultane-
ous models are Transformer-based and can be
efficiently trained to obtain low latency with
minimized compromise in quality. On the of-
fline speech translation task, we applied our
new Speech Transformer architecture to end-
to-end speech translation. The obtained model
can provide translation quality which is com-
petitive to a complicated cascade. The latter
still has the upper hand, thanks to the ability to
transparently access to the transcription, and
resegment the inputs to avoid fragmentation.

1 Introduction

The Karlsruhe Institute of Technology (KIT) par-
ticipated in the IWSLT 2020 Evaluation Cam-
paign (Ansari et al., 2020) in two main tracks: Of-
fline Speech Translation task (SLT) and Simulta-
neous Text Translation. Our highlight s the pro-
posal of a novel method for training simultaneous
translation models, with the Adaptive Computa-
tion Time technique (Graves, 2016) incorporated
to the Transformer models (Vaswani et al., 2017).
On the other hand, the end-to-end speech transla-
tion models have observed a single deep Speech
Transformer (Pham et al., 2019b) approaching the
performance of a heavily powered cascade. The
latter, however, is more transparent because of vis-
ible inputs and outputs to each components. It is
still the dominant approach, thanks to the segmen-
tation module that adds punctuations and sentence
boundaries, so the MT models do not suffer from
fragmentation.

2 Data

The overall data that the project employed can be
divided into two main sections: speech and text

corpora.

Speech Corpora. We gathered the allowed train-
ing data included MuST-C and Speech-Translation
TED Talks containing both parallel data for au-
dio to English and German. The TEDLIUM3
and the Mozilla Common Voice data are speech
recognition-specific. Furthermore we also consid-
ered the How2 dataset (the Portuguese translation
is ignored). The data is further cleaned with ASR
models (the details are unveiled in Section 4.4) to
obtain the training time as shown in Table 1.

Table 1: Speech Training data

Data Segments Total time
MuST-C 229K 408h
Speech Translation 142K 160h
TEDLIUM 264K 415h
Common Voice 854K 1490h
How2 217K 360h

Text Corpora. We collected the text parallel
training data as presented in Table 2.

Table 2: Text Training Data

Dataset Sentences
TED Talks (TED) 220K
Europarl (EPPS) 2.2MK
CommonCrawl 2.1M
Rapid 1.21M
ParaCrawl 25.1M
OpenSubtitles 12.6M
WikiTitle 423K
Back-translated News 26M
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3 Simultaneous Speech Translation

For simultaneous speech translation, we deploy
a novel model on the text-to-text task based on
Adaptive Computation Time (ACT, Graves (2016)).
At each decoder step, the model makes a decision
on whether to READ another input token or to
WRITE an output token (c. f. Raffel et al. (2017)).

In our case, these decisions are made by a mech-
anism based on ACT: At each decoder step, we cal-
culate a probability distribution over the encoder
timesteps, representing the prediction where the
decoder should halt and WRITE an output. Specifi-
cally, for decoder step i, we calculate:

pni = σ(ENERGY(sni )) (1)

N(i) = min{n′ :
n′∑

n=1

pni ≥ 1− ε} (2)

R(i) = 1−
N(i)−1∑
n=1

pni (3)

αn
i =

{
R(i) if n = N(i)
pni otherwise

(4)

It follows from the definition that αi is a proba-
bility distribution. We use this distribution along
with the attention mechanism from Arivazhagan
et al. (2019) to calculate the encoder-decoder atten-
tion. In order to incentivise the model to keep the
delays short, we employ the ponder loss in addition
to the usual cross-entropy:

L(θ) = −
∑
(x,y)

log p(y|x; θ) + λC(n) (5)

C =
|x|∑
i=1

N(i) +R(i) (6)

For more information on the ponder loss, see
(Graves, 2016). By varying the parameter λ, we
can produce systems with different latency regimes.
However, each model produces many different
latency-quality tradeoffs during training.

We use sentencepiece (Kudo and Richardson,
2018) to create a shared 37000 word BPE dictio-
nary for source and target. We then train an offline
transformer (Vaswani et al., 2017) model with rela-
tive self-attention (Dai et al., 2019). Based on this,
we train several ACT models with λ varying from
0.15 to 0.7. For all models, we use the Adam opti-
mizer (Kingma and Ba, 2015). We train the offline

model for 200 000 steps, varying the learning rate
from 2.5 · 10−4 to 0 with a cosine schedule, then
train each of the simultaneous models for 1000
steps with initializing parameters from the offline
model. All models use the transformer “base” con-
figuration (layer size 512, feed-forward size 2048,
8 attention heads, 6 layers in encoder and decoder).
Because the evaluation primarily measures delay
in terms of tokens, not time, we could have used a
larger model, but we decided to choose our model
for a more realistic scenario where evaluation time
is an important factor.

4 Offline Speech Translation

We participate to the offline speech translation task
using two different approaches: cascade and end-
to-end. In the cascade, the audio inputs are fed
into our Speech Recognition component (ASR -
Section 4.1), then the outputs will go through a
Segmentation module (Section 4.2) to have well-
formed inputs prior to our Machine Translation
module (MT - Section 4.3). The outputs of our
MT are the final outputs of the cascade system.
On the other hand, the end-to-end approach, as
its name suggests, performs trainings for a single
model from the English audio inputs to produce
text outputs in German (Section 4.4).

4.1 Speech Recognition
Data preparation and Segmentation tool We
used two different training data sets for this evalu-
ation. Having collected all audios from the TED-
LIUM and How2 corpora provided by the or-
ganizer, we then generated 40 features of Mel-
filterbank coefficients for ASR training models us-
ing Janus Recognition Toolkit. We use Sentence-
Piece toolkit (Kudo and Richardson, 2018) to train
and create 4000 different byte-pair-encoding (BPE)
for all models. After that, the WerRTCVAD toolkit
(Wiseman, 2016) was used to segment the audio in
two unsegmented datasets.

Model We only focus on sequence-to-sequence
ASR models, which are based on two different net-
work architectures: The long short-term memory
(LSTM) and the Transformer. Our LSTM-based
models consist of 6 bidirectional layers of 1024
units for the encoder and 2 unidirectional layers for
the decoder (Nguyen et al., 2019). Our transformer-
based models presented in (Pham et al., 2019b)
consist of 32 blocks for the encoder and 12 blocks
for the decoder. Inputs to the LSTM model are
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Mel-filterbank features with 40 coefficients. For
the Transformer model, we concatenated 4 consec-
utive features, then combined them with the posi-
tion information and put them to the self-attention
blocks. For LSTM regularization, we applied the
dropout rate 0.35 in all LSTM layers, and the em-
bedding dropout rate 0.35 for LSTM. For Trans-
former regularization, we applied dropout of rate
is 0.5 and Stochastic Layers in our models (Pham
et al., 2019b).

4.2 Segmentation
Automatic speech recognition (ASR) systems typi-
cally do not generate punctuation marks or reliable
casing. Using the raw output of these systems as
input to MT causes a performance drop due to
mismatched train and test conditions. To create
segments and better match typical MT training con-
ditions, we use a monolingual NMT system to add
sentence boundaries, insert proper punctuation, and
add case where appropriate before translating [15].
The idea of the monolingual machine translation
system is to translate from lower-cased, without-
punctuation text into text with case information and
punctuation.

This year, we reuse the segmentation model from
(Pham et al., 2019a). We ultilize a transformer-
based NMT system to to translate from an English
sentence into a sequence of punctuation and cas-
ing notations. The training data for that are EPPS,
NC and a filtered version of the ParaCrawl cor-
pus. Then, we fine-tune the model on the TED
corpus. For more details, please refer to (Pham
et al., 2019a).

4.3 Machine Translation
Data Preparation. This year, we use an approx-
imating of 70 millions sentence pairs, coming
from TED, EPPS, NC, CommonCrawl, ParaCrawl,
Rapid and OpenSubtitles corpora, including around
26 millions back-translation sentence pairs. The
data are applied tokenization and smart-casing us-
ing the Moses scripts. Furthermore, we segment
words into subword units using BPE method (Sen-
nrich et al., 2016). The smartcasing and BPE model
are trained on what we call clean datasets (TED,
EPPS, NC and CommonCrawl), with the number
of BPE merging operation of 40000, jointly learned
from English and German sides.

Modeling and Training. Basically our transla-
tion system employs Transformer-based encoder-
decoder model (Vaswani et al., 2017). Our model

comprises of a 12-layer encoder and 12-layer de-
coder, in which each layer’ size is 1024, while the
the inner size of feed-forward network inside each
layer is 4096. The notable different of our transla-
tion model compared to the original Transformer
lays on the attention blocks. We implemented Rel-
ative Attention following the work of (Dai et al.,
2019). The self-attention layers take into account
the relative distances between the states instead
of using an absolute position encoding scheme by
adding the position vectors to the word embeddings.
For the encoder, in order to distinguish the two di-
rections of attention (forward and backward), we
use negative distances for forward, and positive dis-
tances for backward. Each attention block is multi-
head attention with 16 heads. We also employ label
smoothing in order to regularize the cross-entropy
loss. Since we share the vocabularies of the source
and target, we are able to tie the embedding weights
of the encoder and decoder layers.

Since we utilize a large amount of data, we set
dropout at 0.1 and trained for 300000 steps. We use
the learning rate schedule with 8000 steps of warm-
ing up before linearly scaling down afterwards. We
then average five best models according to perplex-
ity on a validation set. We denote this as Large
configuration.

Domain Adaptation. From the Large model,
we perform fine-tuning on the TED data, which
we consider the in-domain data for the task. In
addition to the original TED data, we introduce
some noises into a portion of that data and mix
this noised data to the original one, then do the
fine-tuning. The noises are simply produced by
duplicating or deleting n words in some random
positions conforming to some distributions1 and
inserting or deleting a punctuation from the original
sentence.

The main differences between the Fine-tuning
configuration and the Large configuration is that
we apply more strict regularizations, since the fine-
tuning data is significantly smaller. Particularly,
the dropout is now 0.3, word dropout (Gal and
Ghahramani, 2016) is at 0.1 and we also implement
switchout (Wang et al., 2018) with the rate of 0.95.
Switchout is especially useful when we want to

1The probability of whether the noise is introduced is
pw noise = 0.7. The distribution of duplicating and delet-
ing a word is pw manipulate = (0.6, 0.4). The distribution
of how many words ranging from 1 to 3 (n = 1, 2, 3) is
pw num = (0.6, 0.35, 0.05). Those distributions are deliber-
ately chosen after we looked into the outputs of a validation
set from our ASR.
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simulate the noisy conditions of speech translation,
in which the automatic transcripts often contain
errors. We train one fine-tuned model from the
original TED, and another model with the mix of
TED and noised TED with the same Fine-tuning
configuration. Both of them are trained for 2800
steps with the learning rate of 2 and the same warm-
up schedule as before, then again five best models
of each are averaged. Finally, we ensemble these
two averaged models to be our submitted system.

4.4 End-to-End Model

Corpora The main source of parallel data comes
from the MUST-C corpus (Di Gangi et al., 2019b)
(only the English-German part) and the Speech
Translation data provided by the organizer. The
speech features are regenerated with the in-house
Janus Recognition Toolkit.

In order to utilize the English audio utterances
without aligned German translations, we generate
the synthetic translations for the available TED
Talks in the TEDLIUM dataset and furthermore the
large Mozilla Common Voice (CV). Even though
these datasets contain their aligned transcriptions,
it is still challenging to generate the translations
accordingly. The audio segmentation process in
the data collection process does not necessarily
force the utterances to be encapsulated within sen-
tence borders, and also the transcriptions are of-
ten lower-cased and stripped off punctuations. As
a result, we used the Transformer-based punctu-
ation model (Cho et al., 2017) to generate punc-
tuations for each utterance. The translation mod-
els are trained with the WMT 2018 dataset com-
bined with OpenSubtitles as in (Pham et al., 2019a)
(which still satisfy the “constrained” conditions for
the evaluation campaign). It is notable that, even
though we can generate better translations by us-
ing the window technique as in (Cho et al., 2017)
to have better sentence boundaries, such method
breaks the alignment with audio utterances. There-
fore, the generated translation can be incomplete
or noisy compared to the translation acquired from
the available parallel corpora.

The data is further cleaned from the potential
errors (in alignment). These errors can be detected
by first training an ASR model, that we based on
the Transformer-based ASR (Pham et al., 2019b),
and then decoding the audio inputs. We then com-
pute the GLEU score (Wu et al., 2016) between the
generated and the annotated transcripts. With the

threshold of 0.67, we removed the utterances with
the lower scores, and end up with the training SLT
data as in Table 1

During training, the validation data is the Devel-
opment set of the MuST-C corpus. The reason is
that the SLT testsets often do not have the aligned
audio and translation, while training end-to-end
models often rely on perplexity for early stopping.

Modeling The main architecture is the deep
Transformer (Vaswani et al., 2017) with stochastic
layers (Pham et al., 2019b). Each model has 32
encoder layers and 12 decoder layers, and they are
randomly dropped in training according to the lin-
ear schedule presented in the original work, with
the top layer has the highest dropout rate p = 0.5.

In order to make training stable, we initialized
the encoder of the network with the ASR model
with the same configuration (so that the parame-
ters can be transferred). We have two intermediate
ASR models for this purpose, one is trained on
top of TEDLIUM and MuST-C combined, and one
learns from the combination of CV, TEDLIUM
and MuST-C, serving two different data settings
presented in the next section.

With the initialized encoder, the networks can be
trained with an aggressive learning rate with 2048
warm-up rate. Label-smoothing and dropout rates
are set at 0.1 and 0.25 respectively for all models.
Furthermore, all speech inputs are augmented with
spectral augmentation (Park et al., 2019; Bahar
et al., 2019). All models are trained for 100000
steps, each consists of accumulated 12000 target
tokens.

Finally, in order to alleviate the weaknesses of
the Transformer models when it comes to dealing
with long inputs, such as speech signals, we incor-
porated the relative position encoding (Dai et al.,
2019) into our Transformers. The self-attention
layers use the relative distance between states to
compute their similarity functions, instead of rely-
ing on an absolute position encoding scheme which
is vulnerable for this task.

Speech segmentation A big challenge of end-
to-end speech translation is audio segmentation,
which could harm the performance significantly.
The model does not have the ability to re-segment
the audio inputs compared to the cascade. Here
we simply use the WerRTCVAD toolkit (Wiseman,
2016) to provide the translation model with seg-
ments.
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Figure 1: Quality-latency tradeoffs of various check-
points on the MUST-C test set. Metrics are determined
by the official evaluation script.

Model BLEU AL DAL AP
Offline 32.9 18.6 18.6 1.00
High Latency 31.5 6.3 7.2 0.81
Medium Latency 31.4 6.0 6.9 0.80
Low Latency 25.0 3.0 3.8 0.66

Table 3: Performance of our submitted models on the
MUST-C test set.

4.5 Experimental Results

4.5.1 Simultaneous Translation

We evaluate our model on the MUST-C test set,
tst-COMMON. As each model goes through many
different quality-latency trade-offs during training,
we evaluated a large number of checkpoints be-
fore choosing three models for the low-latency (AL
≤ 3), medium latency (AL ≤ 6) and high-latency
(AL ≤ 12) categories. Figure 1 shows all evaluated
models on a quality-latency graph. The perfor-
mance peaks at around 6 Average Lagging, con-
venient for the medium latency category. Higher
latency models can reach similar performance with
longer training (the shown models are trained for
1000 steps or less), but only barely exceed the peak
at 6 Average Lagging, indicating that that is this
model’s ideal maximum latency. Table 3 shows the
performance of our models on the MUST-C test set.

4.5.2 Cascade Offline Speech Translation

Speech Recognition. We tested our ASR sys-
tems on two datasets, tst2015 and How2 eval-
uation set. The ensemble of LSTM-based and
Transformer-based sequence-to-sequence model
provide the best results, which are 4.1 and 10.6
WERs respectively for two evaluation sets.

Data tst2015 How2
Transformer-based 6.5 12.5
LSTM-based 4.5 11.5
Ensemble 4.1 10.6

Table 4: WER on tst2015 and How2 sets

Machine Translation. The SLT results on
tst2014 are reported in Table 5. By fine-tuning
on TED and introducing noises, we are able to gain
an improvements of 0.64 BLEU points from the
model which is already better than the best model
of last year’s evaluation.

Table 5: Cascade SLT result on tst2014 (En-De)

System tst2014 (BLEU)
Large 25.46
TED Finetune 25.90
Noised TED Finetune 26.03
Ensemble 26.10

4.5.3 End-to-end Offline Speech Translation

We tested three different data conditions. The
Small setup uses only MuST-C as the data. The
Medium model is trained on MuST-C, Speech-
Translation and TEDLIUM. Finally the Large one
is trained on all data we have including the Mozilla
CV. This naming convention only indicates the data
size, while the model size and training procedure
is kept the same across all settings.

We tested the models on two different setups.
The tst-COMMON is provided with the MuST-C
and it is not necessary to resegment the transla-
tion afterwards to match the translation reference.
On the other hand, the tst2014 set requires this
step, because depending on the segmentation, the
hypothesis and reference can have different align-
ment. All of the evaluations were performed with
cased BLEU scores.

Table 6: SLT BLEU scores on MuST-C test set and
tst2014 (En-De)

Data MuST-C tst-COMMON tst2014
Small 25.2 -
Medium 30.6 25.4
Large 28.0 23.2
Large+Adapt 28.1 23.3
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We obtained the results as in 6. Our Small setup
has achieved 25.2 BLEU scores on tst-COMMON
which already outperformed the best published
results on this test set (Di Gangi et al., 2019a).
Adding the Speech-Translation and the TEDLIUM
data helped us to further improve the result to 30.6.
On the other hand, the Large setup suffered a 2
BLEU point loss compared to the Medium coun-
terpart. This could be the result of the difference in
terms of domain between the Mozilla CV and TED
Talks, as well as the recording environment and
the translation quality obtained with the MT mod-
els. However, even adapting these models on the
MuST-C and Speech-Translation corpora cannot
further improve this setup.

On the tst2014 test set, our end-to-end models
achieved the best result with 25.4 BLEU scores,
which is closely competitive with the best system in
IWSLT 2019 (Pham et al., 2019a), which was 25.7.
This indicates that a deep Transformer network
can potentially reach the performance of a strong
cascade pipeline with mutliple models. Simplicity
is the advantage of this setup, however, when the
output can be obtained directly after the feature gen-
eration step, instead of having several components
which have different input and output formats.

5 Conclusion

At the IWSLT2020 evaluation campaign, we first
presented a novel simultaneous model that can effi-
ciently learn to wait and translate using ACT tech-
nique. Afterwards, we built two systems for offline
speech translation, namely a cascade and an end-to-
end model using Deep Transformer networks. We
showed that the end-to-end model can rival even
the best cascade in challenging speech translation
tests.
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