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Abstract
Backchannel responses like “uh-huh”, “yeah”, “right” are used
by the listener in a social dialog as a way to provide feedback
to the speaker. In the context of human-computer interaction,
these responses can be used by an artificial agent to build rapport
in conversations with users. In the past, multiple approaches
have been proposed to detect backchannel cues and to predict the
most natural timing to place those backchannel utterances. Most
of these are based on manually optimized fixed rules, which may
fail to generalize. Many systems rely on the location and dura-
tion of pauses and pitch slopes of specific lengths. In the past,
we proposed an approach by training artificial neural networks
on acoustic features such as pitch and power and also attempted
to add word embeddings via word2vec. In this work, we refined
this approach by evaluating different methods to add timed word
embeddings via word2vec. Comparing the performance using
various feature combinations, we could show that adding linguis-
tic features improves the performance over a prediction system
that only uses acoustic features.
Index Terms: speech recognition, human-computer interaction,
computational paralinguistics

1. Introduction
While listening to someone, we find ourselves wanting to express
sympathy, to acknowledge or reject what we are being told. This
form of feedback is called a backchannel (BC). The BC provides
feedback about the current state of the listener with regards to
their interest or opinion about the conversation topic. A BC is
generally defined as any kind of feedback a listener provides to
a speaker in a segment of conversation that is primarily one-way.
BCs include short phrases (“uh-huh”, “right”, etc.) and physical
responses like nodding [1]. BCs are said to help building rapport,
which is the feeling of being “in sync” with conversation partners
[2]. Artificial assistants like Siri, Alexa, etc. are becoming
increasingly popular, but they are still distinctively non-human.
Adding BC responses could help make a conversation with AIs
feel more natural. In this work, we focus on short phrasal BCs
and attempt to predict these based on a given speaker audio
channel using only past information. This allows the system
to be used in an online environment, predicting BCs with low-
latency.

This paper is organized as follows: In the next section, we
provide an overview of related work. In Section 3, we describe
our proposed approach, followed by the experimental setup in
Section 4. The results are presented in Section 5. This paper
concludes with Section 6, where we also provide an outlook to
future work.

This work has been conducted in the SecondHands project which
has received funding from the European Union’s Horizon 2020 Research
and Innovation programme (call:H2020- ICT-2014-1, RIA) under grant
agreement No 643950.

2. Related Work
Most related work is either completely rule-based or uses at
least some manual components in combination with data-driven
learning. [3] were the first to propose specific rules for when
to produce BC feedback based on acoustic cues. This approach
was used as reference in many following publications. In gen-
eral, most related work is based on some variations of pitch and
pause, for example [4] extracted multiple different pitch slope
features and binary pause regions and then trained sequential
probabilistic models like Hidden Markov Models (HMMs) or
Conditional Random Fields (CRFs) to extract the relevant subset
of those features. [5] trained a decision tree with the C4.5 learn-
ing algorithm to distinguish between BC responses, turn-taking,
and turn-keeping without a BC. Many approaches have been
proposed based on Japanese speech [3, 5, 6, 7, 8, 9], but also
on English data [3, 10, 11, 12] and on Dutch speech [4, 13].
[14] compared different evaluation metrics for BC predictors.
As an objective evaluation method, the use of the F1-Score has
been established. Most research uses a fixed margin of error to
accept a prediction as correct. The width of this margin ranges
from 400 ms to 1000 ms, and the center of the margin of error
ranges from ±0ms to +500 ms. With no existing standard data
set, comparison between different evaluations is difficult. A first
approach for distinguishing different speech acts, including BCs,
using a combination of HMMs and neural networks was pub-
lished by [15]. We recently proposed different neural network
training methods, feature combinations, context widths and net-
work layouts, while focusing on acoustic features [16]. In this
work, we refined this approach by using word embeddings as
additional data, and evaluate the results both in an objective and
subjective manner.

3. Backchannel Prediction
The definition of BCs varies in literature. There are multiple
categories of phrasal BCs, they can be non-committal (“uh huh”,
“yeah”), positive / confirming (“oh how neat”, “great”), negative
/ surprised (“you’re kidding”, “oh my god”), questioning (“oh
are you”, “is that right”), et cetera. To simplify the problem, we
only try to predict the trigger times for any type of BC, ignoring
the distinction between different kinds of responses.

3.1. Feature Selection

The most commonly used acoustic features in related research
are fast and slow voice pitch slopes and pauses of varying lengths.
A neural network is able to learn advantageous feature represen-
tations on its own. By inputting the absolute pitch and power
(signal energy) values for a given time context, the network is
able to automatically extract the pitch slopes and pause triggers
by subtracting the neighboring values in the time context for
each feature. We also added the fundamental frequency variation



spectrum (FFV) [17], which is a seven-dimensional representa-
tion of changes in the fundamental frequency over time, giving
a more accurate view of the pitch progression than the single-
dimensional pitch value.

3.2. Training Area Selection

We generally assume to have two separate but synchronized
audio tracks, one for the speaker and one for the listener, each
with the corresponding transcriptions. As we aimed at predicting
BCs without future information, we need to train the network to
detect segments of audio from the speaker track that probably
cause a BC in the listener track. We chose the beginning of
the BC utterance in the transcript of the listener channel as an
anchor t, and then used a fixed context range of width w before
that as the audio range [t−w, t] to train the network to predict
a BC. The width can range from a few hundred milliseconds to
multiple seconds. This approach may not be optimal, because the
delay between the last utterance of the speaker and the BC can
vary significantly in the training data, causing the need for the
network to first learn to align its inputs. In addition to selecting
the positive prediction area as defined above, we also need to
choose areas to predict zero i.e. “no BC”. We choose the range
a few seconds before each BC as a negative sample. This gives
us an evenly balanced data set, and the negative samples are
intuitively meaningful, because in that area the listener explicitly
decided not to give a BC response yet, so it is sensible to assume
whatever the speaker is saying during this period is not a trigger
for BCs.

3.3. Neural Network Design and Training

The input layer consists of all the chosen features over a fixed
time context. We train the network on the outputs [1,0] for BCs
and [0,1] for non-BCs. A visualization of this architecture can
be seen in Figure 1.
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Figure 1: Feed-forward neural network architecture for
backchannel prediction.

The placement of BCs is dependent on previous BCs: If
the previous BC utterance was a while ago, the probability of a
BC happening shortly is higher and vice versa. After each BC,
the probability of a new BC rises over time. To accommodate
for this, we want the neural network to also take its previous
internal state or outputs into account. We do this by using Long-
short term memory layers (LSTM) instead of dense feed forward
layers.

3.4. Postprocessing

Our goal is to generate an artificial audio track containing ut-
terances such as “uh-huh” or “yeah” at appropriate times. The
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Figure 2: Example of the postprocessing process. The top shows
the input audio channel together with the corresponding tran-
scriptions. The raw output of the neural network is fairly noisy,
so we smooth it. The highlighted range on the smoothed output
is where the value is larger than 0.7. We trigger at the first local
maximum of this range, emitting an “uh-huh” sound sample.

neural network outputs a noisy value between 0 and 1. To gen-
erate an audio track from this output, we need to convert this
noisy floating probability value into discrete trigger time stamps:
We first run a low-pass filter over the network output, which
removes all the higher frequency components and yields to a
less noisy and more continuous output function. To ensure our
predictor does not use any future information, this low-pass filter
must be causal. The commonly used gaussian filter is symmetric,
which in our case means it uses future information as well as past
information. To prevent this, we cut the right side of the filter
off asymmetrically at some multiple c of the standard deviation
σ . Then we shift the filter to the left so the last frame it uses is
±0ms from the prediction target time. This means the latency
of our prediction increases by c ·σ ms. If we choose c = 0, we
cut off the complete right half of the bell curve, meaning we do
not need to shift the filter, which keeps the latency at 0 ms, but
at the cost of accuracy of the low-pass filter.

After this filter we use a fixed trigger threshold to extract the
ranges in the output where the predictor is fairly confident that
a BC should occur. We trigger exactly once for each of these
ranges. Within each range, multiple possibilities to choose the
exact trigger time point exist. One possibility would be to use
the first local maximum within the thresholded range or the left
edge of the range. Using the left edge has the lowest latency, but
can give us worse results because it might force the trigger to
happen earlier than the time the network would give the highest
probability rating. An example of our postprocessing procedure
can be seen in Figure 2. We determined the optimal postprocess-
ing hyperparameters for each network configuration and allowed
margin of error automatically using Bayesian optimization with
the validation F1-Score as the utility function.

3.5. Evaluation

For a simple subjective assessment of the results, we choose
some random audio segments where only one person is talking
in a monologue. For each segment, we removed the original
listener channel and replaced it with the artificial one. This audio
data was generated by inserting a random BC audio sample at
every predicted time stamp. We selected these audio samples
from randoms speakers out of the training data, keeping the
speaker the same over the whole segment so it sounds like a
specific person is listening to the speaker.



3.5.1. Objective Evaluation

To get an objective evaluation of the performance of our predic-
tions, we take a set of monologuing segments from the evaluation
data set and compare the prediction with the ground truth, i.e.,
all the time stamps where a BC happens in the original data.
We interpret a prediction as correct if it is within a specific
margin of the nearest real BC in the dataset. In other research,
varying margins of error have been used. We used a margin of
0 ms to +1000ms for the objective evaluation. We calculated
the precision, recall, and F1-Score to objectively measure the
performance of our prediction systems.

3.5.2. Subjective Evaluation

Because the placement of BCs is subjective as, e.g., not every
BC opportunity is taken by the listener, we did a subjective
evaluation to complement the objective data. We first extracted
all monologuing segments of more than fifteen seconds from
the evaluation data set where the ground truth contained at least
three BCs. Then we randomly choose six of these, excluding
those that contained noise leaking from from one channel to
the other. The selected segments were of an average length of
30 seconds. For each segment, we generated three versions of
audio:

1. Neural net predictor: Predictions from our best trained
LSTM according to the objective evaluation1.

2. Ground truth predictor: Predictions as read from the real
BC audio track.

3. Random predictor (baseline): For each segment, we read
the real BC count, and then uniformly distributed that
amount of triggers throughout the segment. Note that this
method actually has additional information compared to
the neural net predictor because it knows the expected
BC count.

For each of these, we generated the BC audio track by putting
a BC audio sample at each trigger time. We then down-mixed
the speaker and artificial listener channel to a mono mp3 file
to maximize accessibility. We chose the BC audio samples
randomly from all neutral BCs with a minimum loudness in a
fixed set of 11 conversations that had a lot of neutral BCs without
leaking audio. This gave us a total of 6 ·3 = 18 audio files. For
every participant we randomly selected six audio files so that
everyone heard every speaker track exactly once and two samples
of every method (Truth, Random, NN). The order was shuffled to
remove any structural effects. We asked the participants to rate
the audio samples based on how natural the recording sounded
in general and how appropriate they thought the BC timing was.

4. Experimental Setup
4.1. Dataset

We used the switchboard dataset [18], which consists of 2438
english telephone conversations of five to ten minutes, 260 hours
in total. They are annotated with transcriptions and word align-
ments [19] with a total of 3 million words. We split the dataset
randomly into 2000 conversations for training, 200 for validation
and 238 for evaluation. As opposed to many other datasets, the
transcriptions also contain BC utterances like uh-huh and yeah,
making it ideal for this task.

1Best LSTM with the postprocessing hyperparameters optimized
for a margin of error of −200 ms to 200 ms, because a short subjective
assessment of the results showed a margin of error of 0 ms to 1000 ms
lead to BCs that sounded too delayed.

4.2. Extraction

4.2.1. Backchannel Utterance Selection

We used annotations from The Switchboard Dialog Act Corpus
(SwDA) [20] to decide which utterances to classify as BCs. The
SwDA contains categorical annotations for utterances for about
half of the data of the Switchboard corpus. We chose to use the
top 150 unique utterances marked as BCs from the SwDA. The
most common BCs in the data set are “yeah”, “um-hum”, “uh-
huh” and “right”, adding up to 70% of all extracted BC phrases.
To select which utterances should be categorized as BCs and
used for training, we first filter noise and other markers from the
transcriptions and then compare the resulting text to our list of
BC phrases. Additionally we only choose utterances that have
either silence or another BC before them, to exclude utterances
like “uh” that are a actually speech disfluencies. This selected
method results in us a total of 62k BCs out of 390k utterances
(16%) or 71k out of 3.2 million words (2.2%). Note that the
percentage of words is much lower because BC utterances are
shorter than other utterances on average.

4.2.2. Feature Extraction

We used the Janus Recognition Toolkit (JRTk) [21] for the acous-
tic feature extraction. All features are normalized to fit in [−1,1].
They are extracted for 32 ms frame windows, with a frame shift
of 10 ms. This gives us 100 frames per feature per second. In
addition, we also trained Word2Vec, an “Efficient Estimation
of Word Representations in Vector Space” [22], on the Switch-
board dataset. Because our dataset is fairly small, we used
relatively small word vectors (10 – 50 dimensions). Word2Vec
automatically chooses a fitting vocabulary size. For words not
in the vocabulary, we output 0 on all dimensions. We trained
Word2Vec only on utterances that are not BCs or silence to re-
duce the required vocabulary and prevent it from learning about
meta information such as annotated pauses, noises and laughter.
To increase the amount of data available, we also added the tran-
scriptions from the ICSI meeting corpus [23] to the training data
for Word2Vec. This increased the word count from 3 million to
4 million.

We extracted these features parallel to those output by JRTk,
with a 10 millisecond frame shift. To ensure we don’t use any
future information, we extract the word vector for the last word
that ended before the current frame timestamp. This way the
predictor is in theory still online, though this assumes the avail-
ability of a speech recognizer with instant output. An example
of the Word2Vec feature extracted with this method can be seen
in Figure 3.

4.3. Training

We used Theano [24] with Lasagne v1.0-dev [25] for rapid pro-
totyping and testing of different parameters. We trained neural
networks with various context lengths (500 ms to 2000 ms), con-
text strides (1 to 4 frames), network depths (one to four hidden
layers), layer sizes (15 to 125 neurons), activation functions (tanh
and relu), optimization methods (SGD, Adadelta and Adam),
weight initialization methods (constant zero and Glorot [26]),
and layer types (feed forward, LSTM, dropout).

4.4. Evaluation

The switchboard dataset contains alternating conversations. Be-
cause our predictor is only capable of handling situations where
one speaker is consistently speaking and the other consistently



Figure 3: Five-dimensional Word2Vec feature for some speech.
The encoding is offset by one word, for example the encoding
for “twenty” is seen below the word “four”, because we encode
the word that ended before the current time. Note that with this
method we indirectly encode the length of the words and the time
since the last word change.

listening (silent or producing BCs), we need to evaluate it on
only those segments. We call these segments “monologuing seg-
ments”. Only segments with a minimum length of five seconds
were considered to exclude sections of alternating conversation.

5. Results
5.1. Subjective Results

A total of 20 participants participated in the survey, mostly from
the university group ML-KA – Machine Learning University
Group at Karlsruhe Institute of Technology. Because every
participant rated two samples for every evaluation method, this
gives us a sample size of N = 40. The detailed results of the
survey can be seen in Table 1. The results show that our neural
network performs significantly better regarding timing than a
random predictor (p = 0.005%), but significantly worse than
human performance (p = 0.4%). For naturalness, our predictor
is not significantly better than random performance (p = 7.7%).
The significance was tested using Welch’s t-test.

Participants could leave comments on the survey. One per-
son was confused because they could still hear the leaking origi-
nal listener audio track beneath the artificial one, even though we
explicitly chose segments where this problem should be minimal.
Another person commented “Telephone conversations are not
in the best sound quality. For me it’s hard to follow and it’s not
easy to rate these conversations.”

5.2. Objective Results

All of the results in Table 2 use the following setup: LSTM; Con-
figuration: input→ 70 neurons→ 35 neurons→ output; Con-
text width: 1500 ms; Context frame stride: 2; Margin of er-
ror: 0ms to +1000ms. We initialized the weights using Glorot
uniform initialization and used Adam for optimization. These
parameters were chosen to give the best results on the valida-
tion data set. A more detailed comparison of training methods,
feature combinations, context widths and network layouts can
be seen in our previous work [16]. The experimental setup is
slightly different there, so the absolute F1-values should not be
directly compared. Precision, recall and F1-Score are given for
the completely independent evaluation data set. The performance
with both linguistic and acoustic features is significantly better
than with just acoustic features (p < 1%). The improvement

Table 1: Survey results. Shown are the average ratings the
participants gave regarding timing and naturalness for each
prediction method and sound sample.

Predictor Sample Timing Naturalness Sample Size

random average 2.33 points 2.63 points 40
1 1.63 points 2.00 points 8
2 2.75 points 3.13 points 8
3 2.43 points 2.14 points 7
4 2.00 points 2.33 points 3
5 2.00 points 2.33 points 6
6 2.88 points 3.50 points 8

nn average 3.48 points 3.08 points 40
1 3.33 points 3.33 points 3
2 2.60 points 2.20 points 5
3 2.38 points 2.25 points 8
4 3.89 points 3.33 points 9
5 4.25 points 3.88 points 8
6 4.00 points 3.29 points 7

truth average 4.20 points 4.08 points 40
1 4.78 points 4.33 points 9
2 4.57 points 4.43 points 7
3 3.80 points 3.80 points 5
4 3.75 points 3.50 points 8
5 3.83 points 3.67 points 6
6 4.20 points 4.80 points 5

Table 2: Objective results with various input feature combina-
tions.

Features Precision Recall F1-Score

power only 0.244 0.516 0.331
acoustic (power, pitch, ffv) 0.279 0.515 0.362
linguistic (word2vecdim=30) 0.244 0.478 0.323

acoustic and linguistic (power, pitch, ffv, word2vecdim=30):
· word2vec trained on Switch-
board only

0.298 0.510 0.376

· word2vec trained on Switch-
board and ICSI Meeting

0.305 0.519 0.385

of adding the ICSI meeting corpus to Word2Vec training is not
statistically significant.

6. Conclusion
We have shown that BC prediction can be improved by the use of
linguistic features by evaluating the use of different corpora for
training the word embeddings. Since BCs are highly subjective
in nature, we evaluated our systems using both the F1-Score, as
well as a small user study.

Further improvements could be made by using a separate,
longer context for the linguistic features than the acoustic fea-
tures. In our survey, we did not compare the subjective per-
formance when optimizing the hyperparameters for different
margins of error to evaluate which margin is subjectively more
acceptable.
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