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ABSTRACT

Neural sequence-to-sequence systems deliver state-of-the-art
performance for automatic speech recognition (ASR). When
using appropriate modeling units, e.g., byte-pair encoded
characters, these systems are in principal open vocabulary
systems. In practice, however, they often fail to recognize
words not seen during training, e.g., named entities, numbers
or technical terms. To alleviate this problem we supplement
an end-to-end ASR system with a word/phrase memory and
a mechanism to access this memory to recognize the words
and phrases correctly. After the training of the ASR system,
and when it has already been deployed, a relevant word can
be added or subtracted instantly without the need for fur-
ther training. In this paper we demonstrate that through this
mechanism our system is able to recognize more than 85%
of newly added words that it previously failed to recognize
compared to a strong baseline.

Index Terms: speech recognition, one-shot learning, new-
word learning

1. INTRODUCTION

Up until recently automatic speech recognition (ASR) sys-
tems were implemented as Bayes classifiers in order to search
for the word sequence W, among all possible word sequences
W, with the highest posterior probability given a sequence of
feature vectors X which is the result of pre-processing the
acoustic signal to be recognized:

W = argmax P(W|X)
w

= argmax P(X|W)P(W)
W

In the context of ASR P(X|W) is called the acoustic model,
P(W) the language model. The space of allowed word se-
quences to search among was usually defined by a list of
words, the vocabulary, of which permissible word sequences
could be composed. Words that were not in the vocabulary
could not be recognized. In turn this means that by adding

words to the vocabulary and appropriate probabilities to the
language model, previously unknown words could be easily
added to the ASR system manually or even automatically.

In contrast, for neural sequence-to-sequence trained end-
to-end ASR systems, this is not possible anymore. While
in principal end-to-end systems are open-vocabulary systems,
when using appropriate modeling units, such as byte-pair en-
coded (BPE) characters, in practice, words not seen during
training are often not reliably recognized. This is especially
true for named entities. The reasons for that are that, a) the
end-to-end network implicitly learns language model knowl-
edge when being trained on transcribed speech data, and b)
especially named entities often have a grapheme-to-phoneme
relation that deviates from the general pronunciation rules of
the language, as learnt implicitly by the networks of the end-
to-end system.

In order to solve this problem, in this paper we extend an
end-to-end ASR system by a memory for words and phrases.
We further introduce a mechanism that enables the system to
recognize the words stored in this memory without further
training. This enables us to add new words and short phrases
(only text, no audio) to the recognition system, long after the
training of the ASR system has finished, and when it has al-
ready been deployed, without the need for further training.

This is achieved by, a) a memory-attention layer which
predicts the availability and location of relevant information
in the memory, and b) a memory-entry-attention layer which
extracts the information of a memory entry.

2. RELATED WORK

The problem of new or rare words in speech recognition
with sequence-to-sequence models is an active field of re-
search. The closest to our work is [1]. In their work, they
train a LSTM-based ASR model based on [2] which outputs
graphemes. The model is supplied by dynamically biased
context of rare words. [3] injects additional phonetic infor-
mation on top of that. [4] predicted a vector presenting the
context of a word with a low confidence (misrecognized) and
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Fig. 1: Left: Baseline model, Middle: MEM model similar to [1]], Right: 2MEM model. Dark blue: The two main components

that are added compared to the baseline.

searched for the nearest vectors in a big corpus to find a sub-
stitution. In [5] a neural machine translation is augmented by
a memory of word pairs to translate unseen or sparse pairs in
the training data, but only for single words to be translated.

In our work, we build a memory for new words and
phrases. The first modeling of a memory was done with
Recurrent Neural Networks (RNNs) and Long-Short Term
Memory (LSTMs), which capture long-term structure within
the sequence in a latent state (local memory). In praxis, many
applications require addressable memory (global memory)
for the neural network in a kind of Neural Turing Machines
[6]. For instance, Memory Networks [7] and End-To-End
Memory Networks [8] are used to store answers for question-
answering applications. Similarly, Pointer Networks [9]
circumvent the out-of-vocabulary (OOV) problem by copy-
ing words from the input sequence that are not contained in
the output vocabulary. The network does not possess any
memory. A well-known example of a Pointer Network is the
summarization with Pointer-Generator Networks [10]. [11]
build a memory-augmented neural network for meta-learning
which saves sample-label pairs and predicts upon the similar-
ity of the input and the samples encoded in the memory. The
most frequent memory samples are injected into the weights
as long-term memory. [[12] aim to automatically spell-correct
ASR output text using a pointer network to copy out-of-
vocabulary (OOV) words directly. They incorporate phonetic
information as well, however they do not mention any kind
of attending to audio as in our work.

Other related works address the problem of adaptation to
a new domain or enhance the model by rescoring the out-
put with a language model via two pass decoding. These
works does not aim to solve the problem of OOV words di-

rectly. [13]] incorporate a multi corpora language model for
second pass rescoring, while [[14]] and [15] rescore with a sec-
ond model by attending to the audio or as in [16]], where the
second model attends to both the audio and the output using
a deliberation model.

3. METHOD

3.1. Baselines

As baseline we use a transformer-based sequence-to-sequence
model [[17,[18]]. It consists of 24 encoder layers and 8 decoder
layers with a model dimension of 1024 and feed-forward
dimension of 2048 (see fig. [I] left). The inputs X to the en-
coder are mel-filterbank coefficients with 40 features. Before
the encoder layers a two-layer convolutional neural network
with 32 channels and time stride two is used to downsample
the input spectrogram [19]]. The decoder has as input the
BPE tokens of the already decoded sequence Yp,...,Y; 1
and predicts a probability distribution P(Y;|Yp,...,Y;—1; X)
over the BPE vocabulary. The BPE consists of 4000 tokens.

For comparison we trained a memory-enhanced model
(MEM) similar to [1] (see fig. [I] middle). However we
replaced the LSTMs they used with a transformer model.
Furthermore we run the baseline decoder together with the
memory decoder and combine the output at the end (see sec-
tion [3.3). This has the advantage that we are able to change
the baseline after the training.

Our proposed modeﬂ (see fig. right) changes the
memory-decoder compared to the MEM model such that the
output is computed in a two-step fashion. First, the availabil-
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ity and location of relevant information is predicted, and sec-
ond, the information of a memory entry is extracted. We call
this the two-step memory-enhanced model (2MEM). Both
the MEM model and the 2MEM model predict a probability
distribution P(Y;|Yo,...,Y:—1; X; Z) over the BPE vocabu-
lary, where Z = (Zy,...,Z},) are additional words/phrases
we want the model to recognize.

To demonstrate that our model is able to be used with any
baseline model we also evaluate it using a LSTM-based base-
line [19]. This baseline consists of 6 encoder layers and 2
decoder layers with a model dimension of 1536.

3.2. Memory Encoder

Our memory can contain (similar to [1l]) words or phrases in
each memory entry. We represent each memory entry as BPE
and refer to them as Zi,...,7p, where
Z; € {1,...,|Vepg|}*, I € {1,...,L}. The term ¢
denotes the number of tokens in the memory entry Z;.

The memory encoder starts with an embedding layer
which output is denoted by Z fmb € ReXdmodet  where
dmoder 18 the dimension of the model. Then a transformer
encoder is applied. It consists of eight layers, if not men-
tioned otherwise. The output of the encoder is denoted by
Zle € Reé X dmodet |

After that we compute the mean of each encoded mem-
ory entry Z; over the BPE tokens of the entry. This leaves
us with one vector per memory entry, which can be inter-
preted as summary vector of the memory entry, denoted by
Zp € Rdmodet, We add to these vectors Z; a learned dummy
vector Z§, which is later used to determine when there is no
relevant information in the memory.

3.3. Memory Decoders

Both the decoders in the MEM model and the 2MEM model
consist of M blocks. In our experiments we use M = 4 if not
mentioned otherwise. Each block starts with a decoder layer
similar to the baseline model. Then a memory-attention layer
is applied. It extracts the availability and location of relevant
information of the memory. This is done by calculating sim-
ilarity scores, where for the query input () and the key input
K the decoder layer output and Z} are used, respectively.

Q=Wweq,
K =WFK,
scores = QKT,

gate = scores|:, 0],

shape T' X dpmodel
shape (L + 1) X dmodel

shape T' x (L + 1)
shape T’

where T is the number of tokens in the target sequence, W
and WX are weight matrices and scores[:, 0] are the similar-
ity scores corresponding to the learned dummy vector Z.
The main difference between the MEM model and the
2MEM model is the way in which the information is extracted

of the memory. For the MEM model all the information of a
memory entry has to be encoded in the vector Z;. For the
2MEM model the vector Z} has to only contain the informa-
tion if a memory entry is currently relevant. If thats the case
the memory-entry-attention layer can extract the information.

In the MEM model the score output of the memory-
attention layer is processed by a softmax layer and the result
is multiplied with a linear transformation of values V' gener-
ated by Z}.

V= wvvy, shape (L + 1) X dimodel

output = sm(scores)V, shape T' X dinodel

where WV is a weight matrix, sm is the softmax function,
which is computed w.r.t. the last dimension. The memory-
attention layer together with this transformation is equivalent
to an attention layer similar to the encoder-decoder attention.
The difference is that the gate output is used in the further
processing.

In the 2MEM model the memory-entry-attention layer is
used to extract relevant information of a specific memory en-
try. This is done by using an attention mechanism similar
to the encoder-decoder attention, however not the vectors Z}
are used to generate the values as in the MEM model. For
the query again the decoder layer output is used and for the
keys and values, we use Z; and meb, respectively, where [
is the argmax of the scores of the memory-attention layer for
a given query.

Let ! = argmax(scores;) be the index of the largest score
for the query @, at time step ¢. If [ is not zero, i.e. the index
does not correspond to the learned dummy vector, the follow-
ing is computed:

Q = WQQM Shape dmodel
K=wxXz¢, shape e; X dpodel
V=w"zmb, shape e; X dmodel

output = sm(QKT)V7 shape T' X dimodel

where W<, WX and WV are weight matrices. If the max-
imum score corresponds to the learned dummy vector (see
section @, no attention is calculated. A residual connection
is used around the attention layer in the MEM model and the
memory-entry-attention layer in the 2MEM model.

For both the MEM model and the 2MEM model, the out-
puts of the baseline decoder and the memory decoder are
combined at the end by a weighted sum. The weighting is
calculated as a linear transformation with one output neuron
of the stacked gate outputs of all memory attention layers fol-
lowed by a sigmoid layer.

4. TRAINING

During training we freeze the original baseline components
and train only the memory related components.



4.1. Memory Content during Training

The content of the memory during training is sampled for
each batch dependent on the target labels of the batch. We
randomly select up to three words of a target label and use
these as a memory entry. In total we sample 200 memory
entries for each batch.

4.2. Loss Function

The loss function L consists of two cross entropy parts. The
first one classifies the next token Y; of the sequence and the
second one classifies the most important memory entry:

T
1
L=— CE Yi1,...,.Y0; X 2), Y,
th_; (fa( t—1, s L0, ) )7 t)

N MoT
+ VT Z Z CE(scoresy®, labeli**™),
m=1 t=1

where fo(Yi—1,...,Yo; X; Z) is the output distribution of the
decoder given the already decoded sequence Y;_1,..., Yy,
the audiofeatures X and the memory/context Z = (Z;),. Fur-
thermore, scores™ € RE+! are the score output of the mem-
ory attention layer in the m-th memory decoder block and
labeli™™ € {0,..., L} is the memory label. This memory
label is constructed when sampling the memory content (see
section . T). It contains the index zero of the learned dummy
vector if a token is not chosen for the memory and otherwise
the index of the corresponding memory entry. We use A = 1
and label smoothing of 0.1.

We experienced that the MEM model learns to only fo-
cus on the baseline decoder output. Therefore, we force the
model to use the memory when advantageous. This is done by
permuting the output of the baseline decoder and the memory
decoder dependent on [abel™¢™ with a certain probability be-
fore the weighted sum is applied. This forces the model to use
the memory decoder output if there is relevant information in
the memory and the baseline decoder output otherwise. In
particular, the probabilities of the label index and a random
other index of the baseline decoder output are interchanged
where label™“™ is non-zero and the same is done for the
memory decoder output where label™™ is zero. From the
permuted probabilities no gradient is propagated backwards
to not confuse the model.

4.3. Data

For training and evaluation of our models, we used Mozilla
Common Voice v6.1 [20], Europarl [21]], How2 [22], Lib-
rispeech [23[], MuST-C v1 [24], MuST-C v2 [25]] and Tedlium
v3 [26] datasets. The data split is presented in the following
table[dl

Furthermore we created a new-words testset containing
239 utterances each containing a word, e.g. named entities,

| Corpus Utterances | Speech data [h] |

| A: Training Data \
Mozilla Common Voice 1225k 1667
Europarl 33k 85
How?2 217k 356
Librispeech 281k 963
MuST-C vl 230k 407
MuST-C v2 251k 482
Tedlium 268k 482

| B: Test Data |
Tedlium 1155 2.6
New-words testset 239 0.5

Table 1: Summary of the data-sets used.

we assumed the model could do wrong because it has not
seem these words during training. We use this new-words
testset to evaluate the performance of the models to learn
these new words when they are provided as additional con-
text through the memory.

5. RESULTS

5.1. Evaluation

For the evaluation we report an accuracy on new-words test-
set with empty and full memory as well as the WER on the
ted testset also with empty and full memory. As memory en-
tries we use all the (239) new words of the new-words testset.
The accuracy is thereby calculated such that the output of the
model is counted as correct if the new word is present in the
transcript.

The results can be seen in table 2l We obtained that the
MEM model learned to only focus on the baseline decoder. A
reinitialization of the parameters in the weighted sum during
training did not help. This changes when permuting the out-
put probabilities of the decoder (see section {.2) with prob-
ability 0.5. The accuracy on the new-words testset increases
from 44.8% to 79.5%.

Surprisingly, the 2MEM model works well on the new-
words testset without permuted output probabilites (88.7%),
however there is also a performance gain when permuting the
output probabilities of the 2MEM model (90.4%).

On the ted testset the performance drops slightly for all
models with good performance on the new-words testset.
This happens since the models sometimes uses a word in the
memory when the target word starts similarly.

In table [3] an example of correcting the sentence “[we
will] hopefully have covid nineteen behind [us soon]” with
the model 2MEM with permutation probability 0.5 can be
seen. The word covid nineteen was not seen in the training
data.



Acc.t (%) WER] (%)

Metric
new words testset | ted testset
Full memory
Model X v X v
Transformer baseline 45.2 5.0
MEM model 44.8 44.8 48 | 4.8
+ permute 0.5 | 44.4 80.8 50| 53
2MEM model 423 88.7 49 | 52
+ permute 0.5 | 45.2 90.4 50| 52

Table 2: Summary of the results. Accuracy on the new-
words test set and WER on the ted test set.

a) Decoding with empty memory

hope | fully | have | co ve t nin et een | behind
090 | 0.88 | 0.89 | 0.83 | 0.89 | 0.93 | 0.93 | 0.88 | 0.88 | 0.89
0 0 0 0 0 0 0 0 0 0
b) Decoding with word ’covid” as Z;
hope | fully | have | co v id nin et een | behind
090 | 0.88 | 0.87 | 0.03 | 0.03 | 0.03 | 0.92 | 0.88 | 0.88 | 0.89
0 0 0 1 1 1 0 0 0 0

Table 3: Example for correcting “covid nineteen”. Rows:
Predicted tokens, gate (weighting between baseline decoder
and memory decoder) and memory location output (argmax
of the scores; all layers have the same argmax in this exam-
ple).

5.2. Ablation

For the ablation we start with the best performing model, the
2MEM model with permutation probability 0.5, and explore
different changes. The results can be seen in table {]

Metric Acc.T (%) WER| (%)
new words testset | ted testset
Full memory
Model X v X v
LSTM baseline 473 3.9

2MEM model, permute 0.5 45.2 90.4 50| 52
+ encode values | 44.8 90.4 49 | 52

+ residual connection | 44.8 88.3 5.1 5.3

+ LSTM baseline | 46.9 92.1 39 | 4.2
ONeMEMOLY g3 11 845 | 53| 6.0

encoder layer

one memory

decoder layer 42.7 87.9 52| 7.1

Table 4: Summary of the ablation results. Accuracy (in %)
on the new-words test set, WER on the Ted test set.

We tried to use Z instead of meb (see sections and
[3.3) as value input for the memory-entry-attention layer. We
refer to this as encode values and obtained that using these
values delivers almost the same performance. Furthermore,
we tried to add residual connections to the scores of the
memory-attention layer. The performance on the new-words

testset as well as on the ted testset decreased. As already
mentioned in section our model can be used with any
baseline. We substituted our transformer-based baseline with
a LSTM-based one which has a better performance on the
ted testset. We obtain that this performance increase transfers
to the new-words testset. We also trained models with only
one memory encoder or one memory decoder layer. We see
that this also works on the new-words testset, however the
performance on the ted testset degrades to 6.0% and 7.1%,
respectively, when the new words are in the memory. It
seems that the memory decoder layers are more critical than
the memory encoder layers.

Overall the 2MEM model with LSTM-based baseline per-
formed the best with 92.1% accuracy on our new-words test-
set. This model was able to correct more than 85% of the
errors via the memory component.

6. CONCLUSION AND FUTURE WORK

In this paper we demonstrated that it is possible to enhance
a sequence-to-sequence ASR model with a memory compo-
nent that allows to add new words to the recognition system,
e.g., named entities, during deployment without the need for
further training. In this way more than 85% of the previously
misrecognized words not seen during training, were recog-
nized correctly. Our 2MEM model outperforms the MEM
model (which is similar to the model in [[1]) significantly.

One drawback of the proposed method is that one only
provides text for the memory. Therefore, if the pronunciation
of a new word deviates from the implicitly learned pronunci-
ation rules, it is unlikely to be found by the memory-attention
layer. We therefore plan to extend our model by populating
the memory with an audio sample of the new word in addition
to text. Furthermore, a subword regularization [27]], where a
word can be encoded into multiple BPE candidates, could im-
prove the performance of the system.
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