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Abstract

Text-to-speech (TTS) systems are becoming increasingly important in recent years as

various computer systems with speech interfaces are being integrated into everyday

life. These systems often need to participate in dialogues with human users and convey

important information via generated speech. As prosody is an important part of conveying

information and emotion in spoken language, controlling the prosody of the generated

speech can greatly improve the capabilities of these systems to take part in natural dialogues

or enable them to more e�ectively convey emotional content, for example when displaying

agitation during warnings of danger. In this thesis, a TTS model based on Fast Speech 2

[Ren+20] is proposed which allows for �ne-grained prosody control by parameterizing

pitch, volume and speech rate on word-level. Many TTS models are evaluated using

only English Data, which leads to evaluation results with limited signi�cance for other

languages. To alleviate this, the proposed model is trained once with English data and

once using German data. Subsequently, speech quality as well as �ne-grained prosody

control capabilities are evaluated in a survey. The evaluation shows that both models are

capable of generating high-quality speech and that the �ne-grained prosody control can

be used to add emphases to generated speech with no reduction in comprehensibility and

only slight a decrease in speech naturalness. The prosody parameters can be entered using

the Speech Synthesis Markup Language.
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Zusammenfassung

In den vergangenen Jahren gewannen Systeme für Text-to-Speech (TTS) vermehrt an

Bedeutung, auch weil verschiedene Computersysteme mit Sprachinterface immer stärker

in das Alltagsleben integriert werden. Diese Systeme müssen in der Lage sein, Dialoge mit

Menschen zu führen und wichtige Informationen über generierte Sprache zu vermitteln. Da

die Prosodie einer Äußerung einen großen Teil der vermittelten Emotion und Information

enthält, ist die Fähigkeit, die Prosodie der generierten Sprache zu kontrollieren, von großer

Wichtigkeit. Kontrolle über die Prosodie kann die Fähigkeit des Systems, an natürlichen

Dialogen teilzunehmen, stark ausbauen und es ermöglichen, emotionale Informationen

zu vermitteln. So kann die Prosodie beispielsweise genutzt werden, um Aufregung zu

signalisieren, wenn das System vor Gefahren warnt. In dieser Arbeit wird, basierend auf

Fast Speech 2 [Ren+20], ein TTS-Modell vorgestellt, das wortgenaue Prosodiekontrolle

erlaubt, indem Tonhöhe, Lautstärke und Sprechgeschwindigkeit auf Wort-Level parame-

trisiert werden. Viele TTS-Modelle werden nur auf englischen Daten evaluiert, was zu

eingeschränkter Aussagekraft für andere Sprachen führt. Um dies zu vermeiden, wird

das Modell sowohl mit deutschen als auch mit englischen Daten trainiert. Anschließend

werden die Sprachqualität und die wortgenaue Prosodiekontrolle mittels einer Umfrage

evaluiert. Die Evaluationsergebnisse zeigen, dass beide Modelle in der Lage sind, Sprache

von hoher Qualität zu generieren und dass die wortgenaue Prosodiekontrolle genutzt

werden kann, um der generierten Sprache klar erkennbare Betonungen hinzuzufügen.

Das Hinzufügen der Betonungen führt zu keiner Reduzierung der Verständlichkeit und

die Natürlichkeit der generierten Sprache wird nur geringfügig verringert. Die Speech

Synthesis Markup Language kann benutzt werden, um die Parameter zur Prosodiekontrolle

einzugeben.
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1. Introduction

1.1. Motivation

The �eld of natural language processing (NLP) is one of the most important areas of

research for the ongoing undertaking of creating computer systems that are able to com-

municate with humans via natural language. These systems are increasingly part of our

lives in the form of robots, smart-house systems and digital personal assistants, to only

name a few. Increasingly, the form of communication with these systems switches from

written language to spoken language, as it is more e�cient and can be more easily inte-

grated into everyday activities. We can ask our smartphone about the weather forecast for

next week, ask our car which song is currently playing on the radio or tell our smart home

device to close the living room shutters. Therefore, Text-to-speech (TTS) systems are one

of the sub�elds of natural language processing which are of increasing importance as these

intelligent systems now need to be able to generate comprehensive and natural speech.

TTS systems are complex to construct, but much progress has been made during the last

few years, a big step being the move from traditional TTS methods to deep learning-based

TTS methods.

Since then, many successful neural TTS models were developed that are able to generate

very natural and comprehensible speech. However, a problem of these systems is that

they tend to generate speech with rather �at prosody as they learn the average prosody of

the speech data they were trained on. Even when ignoring the sometimes �at prosody,

explicitly controlling the prosody of the generated speech would be an important step

towards being able to participate in a natural dialogue with a human, as prosody plays a big

part in dialogues, conveying meaning as well as emotion. More precisely, prosody control

would be very useful for error correction in dialogue systems, as the computer would be

able to ask natural sounding questions when encountering ambiguities it cannot solve

without additional input from the human. It would also prove useful when the human

attention has to be drawn to urgent matters or sources of danger, as prosody control could

be used to convey the appropriate urgency. In these situations, fast inference times are

also of importance, as the usefulness of dialogue systems dwindles when generating the

next utterance takes too long.
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1. Introduction

1.2. Goal of this Work

This work aims at creating a deep learning-based TTS system with the ability to control

prosody on word-level and capable of being trained on data of various languages. Addition-

ally, the model should have low inference times, so that it may be used in environments in

which only limited processing power is available, without losing the ability to be used in a

�uent dialogue.

The created TTS system will be trained and evaluated by conducting a survey on the

comprehensibility and naturalness of the generated speech and the perceptibility of em-

phases which were explicitly added to the generated speech samples using �ne-grained

prosody control parameters. Additionally, the model will be trained for a language other

than English and evaluated in the same manner so as to discern if the model is also able

to utilize its prosody control capabilities when trained for other languages. The model

will be based on a modi�ed version of the Fast Speech 2 [Ren+20] TTS system, as Fast

Speech 2 ful�lls the prerequisite of fast inference times as it is non-autoregressive and also

already provides prosody control on utterance-level.

1.3. Structure

Chapter 2 will be used to quickly convey the prerequisites needed to understand the rest of

the work, and is split up into two main sections. The �rst of which, section 2.1, covers the

needed basics of deep learning, ranging from basic perceptrons and multilayer perceptrons

to more complicated architectures like convolutional neural networks. After the deep

learning basics, TTS basics are covered by section 2.2, starting at the traditional methods

like concatenative systems and then discussing the modern deep learning-based methods

in more detail and presenting di�erent TTS architectures while also mentioning their

respective strengths and weaknesses. After that, chapter 3 presents relevant works that are

either used in the proposed model or discuss a similar subject as this thesis. In chapter 4

the proposed model will then be described in much detail, starting with explanations of the

original Fast Speech 2 model in section 4.1, dealing with each module of the architecture

in a separate subsection. Section 4.2 is then used to go over the training process of a

Fast Speech 2 model and in section 4.3 the proposed model is presented by describing all

modi�cations made to the Fast Speech 2 architecture. In chapter 5, the evaluation of the

proposed model is presented. First, the evaluation method is described in detail in section

5.1 and the used datasets and hyperparameters are then discussed, together with the

general training process, in section 5.2. The evaluation results are then �nally presented in

section 5.3 with a subsection for each trained model. Subsequently, the discussion of the

evaluation results is done in section 5.4. Lastly, the thesis is concluded in chapter 6, where

the goals and respective results of the thesis are summed up in section 6.1 and potential

further work is outlined in section 6.2.
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2. Fundamentals

This chapter provides a short overview of the concepts and technologies used in this

work and is made up of two main parts. The �rst covers the basics of machine learning

with arti�cial neural networks, the second deals with the fundamentals of text-to-speech

systems.

2.1. Artificial Neural Networks

Arti�cial neural networks (ANNs) are biologically inspired computing systems made up of

many simple computing units called nodes or arti�cial neurons. The nodes of the networks

we are concerned with are still based on the perceptron which was popularized by Frank

Rosenblatt in the 1950s [Ros57]. An overview of the perceptron architecture is shown in

Figure 2.1.

Figure 2.1.: A Perceptron [Sha17]

A node of a modern ANN usually has multiple inputs and a single output value. The

output of the node is speci�ed by the application of a chosen activation function to the

weighted sum of all inputs. These weights are the parameters by which the output of the

node can be controlled. However, the weights are not set by hand but are set during the

training process, which tries to estimate the optimal weights to make the output of the

node estimate a goal function.

3



2. Fundamentals

The output is often interpreted as a binary value by assigning all negative outputs to

one class and all positive outputs to the other class. As seen in Figure 2.1, one of the inputs

of the node is special as it is a constant value of one. This input is called the bias and

it is needed to shift the node’s decision boundary away from the origin. Without it, the

node would not be able to change its output for an input of only zeros. But still, just as

the original perceptron, a single node of a modern ANN is severely limited as it can only

linearly separate the input data into two classes which makes it impossible for it to learn

most functions and even basic ones like the XOR function [MP69].

2.1.1. Multilayer Perceptron

To overcome the limitations of a single arti�cial neuron, multiple nodes can be connected

to form networks, the simplest form of which are multilayer perceptrons (MLPs). MLPs

are made up of multiple layers, each consisting of many nodes. Since MLPs are fully con-

nected, each node in layer = is connected to every node in layer =+1 as shown in Figure 2.2.

Just as with every input of a single perceptron, each of those connections has an as-

sociated weight. The weights of all connections between two layers can be represented

as a matrix of real numbers and the input, output and intermediate activations can be

represented as vectors of real numbers to make mathematical notation more comfortable.

Figure 2.2.: The structure of a multilayer perceptron [Shu19]

4



2.1. Arti�cial Neural Networks

Given an input G ∈ R= , a matrix of weights , ∈ R=G< and an activation function

5 (G) : R → R, the activation of a single layer can be described as � = � (, ∗ G) with �

being a function that applies the activation function 5 to each number in a given vector.

Computing the output of an ANN is called a forward pass because the input values are

passed through the network layer by layer. The activations of the nodes in the last layer

are the output of the network.

2.1.2. Backpropagation

Neural networks, like MLPs, of su�cient size are universal function approximators [Cyb89].

However, to make a given ANN estimate a goal function, the weights of the ANN need

to be set to appropriate values. The process of �nding these values is called training. A

widely used technique to train ANNs is the backpropagation algorithm [RHW85; RHW86].

Backpropagation can �nd suitable weights for an ANN in an iterative process by es-

timating the deviation of the network’s output from the goal function’s output using a

loss function. Then, the gradients of the loss function with respect to the weights of the

network are computed in an e�cient way. Lastly, the weights can be adjusted in the

direction opposite of the gradient to reduce the deviation.

A single iteration of the backpropagation algorithm starts by computing a forward pass

through the network for the given input data. The activation values of each layer are

stored for later use. Then, the error is computed by applying the loss function to the output

of the network and the desired output for the current input as given by the training data.

Now the derivative of the loss function with respect to the activation of the output layer

can be computed. Assuming a network with 8 layers, this is written as:

m!

m�8

with ! being the loss function and �8 the activation of the i-th layer, which is also the

output of the network. This is why we made sure to store the activation values of each

layer during the forward pass. To make the computation of gradients for layers further

from the output tractable, the algorithm makes use of the chain rule:

(5 ◦ 6)′ = (5 ′ ◦ 6) · 6′

This means that we can use the already calculated gradients for computing the gradi-

ents of the next layer. In this case next layer means the layer which is one step further

from the output, as the algorithm computes the gradients for each layer starting from the

output of the network, ending at the input. This is why this step is also called backward pass.

For example, as we have already computed the gradients of the loss function with

respect to the output activation values, we can now calculate the gradients for the weights

of the connections between the last and second to last layer. Applying the chain rule gives

us:

m!

m,8

=
m!

m�8
· m�8
m,8

5



2. Fundamentals

This means that we can use the already calculated gradients for�8 and just need to compute

one more simple derivative to get the gradients for the weights,8 . These gradients can

now be used to change the values in,8 in a way to decrease the error. This is done by

changing the weights in the opposite direction of the gradient:

,8 ←,8 − U
m!

m,8

with U being the learning rate parameter, which controls the extent of the change. This

process can now be continued until the gradients for all weights have been computed

and the weights have been changed accordingly. Now the next iteration of the algorithm

can start by performing a forward pass for further input data. Performing the algorithm

for every datum in the training data is called one epoch. The training process can be

continued for a set number of epochs or, alternatively, the output of the loss function can

be monitored until it reaches acceptable values.

2.1.3. Convolutional Neural Networks

When dealing with more complicated inputs like images or long sequences, the usefulness

of standard MLPs is limited. Recurrent neural networks (RNNs) or convolutional neural

networks (CNNs) can be used in these cases to construct more e�ective models for the

problem at hand. As TTS systems are dealing with complicated sequences like texts,

phoneme sequences, spectrograms and raw waveform data, many modern neural TTS

models and all TTS models mentioned in this work use at least one of these types of

networks. But since the main model we are concerned with only makes use of CNNs, we

will focus on them.

Figure 2.3.: Overall structure of a typical CNN used for image recognition [LeC+98]

CNNs were originally introduced as time delay neural networks by Alex Waibel in 1987

[Wai87] and published in 1989 [Wai+89]. Their architecture generally consists of three

types of layers: convolutional layers, subsampling layers and fully connected layers.

6



2.1. Arti�cial Neural Networks

In the �rst part of a CNN, convolutional and subsampling layers are used in successive

pairs. In the second part, fully connected layers like in a MLP are used to compute the

�nal output of the CNN. The general structure of a CNN can be seen in Figure 2.3. Note

the pairs of convolutional and subsampling layers in the �rst part of the network and the

fully connected layers at the output.

In the convolutional layers, the weights are grouped in kernels, which are tensors of

the same dimensionality as the input data of that layer. While having the same amount

of dimensions, the kernels are usually much smaller in size compared to the input data.

Each kernel is used to create a so called feature map by carrying out a discrete convo-

lution of the input and the kernel. During this process the kernel is moved across the

input in steps of constant length. The length of these steps is also called stride. At each

step the sum of the element-wise multiplication of the kernel and the input at the cur-

rent location is calculated and stored in the feature map. See Figure 2.4 for an example

of how a feature map is calculated with kernel size two by two and a stride of one. To-

gether, the feature maps of all kernels of a convolutional layer form the output of that layer.

Figure 2.4.: A feature map is computed in a convolutional layer [TCW20]

In most CNNs, subsampling layers are then used to reduce the dimensions of the preced-

ing convolutional layer’s output. A common type of subsampling layer are local pooling

layers. They work by combining local clusters of the input, for example a two by two pixel

area of an image, into a single value. This can be done in various ways, such as computing

the maximum or the mean of the local cluster. An example of a max pooling layer is shown

in Figure 2.5. Many variables can be used to change the behaviour of the pooling layer.

These include the size of the local cluster, the usage of padding at the edges of the input

and the stride size.

After several pairs of convolutional and subsampling layers, the =-dimensional output

of the last subsampling layer is �attened and fed into the �rst fully connected layer of the

CNN. These layers are architecturally identical to the already described MLPs. The output

of the last fully connected layer is also the output of the whole CNN.

7



2. Fundamentals

The training process of a CNN is very similar to that of a MLP, since the backpropagation

algorithm can be applied to all types of layers as long as the derivative of their application

to input data can be computed which is the case for both convolutional and subsampling

layers.

Figure 2.5.: An example of max pooling as used in subsampling layers [Ran20]

A distinctive feature of CNNs is their shift invariance. This means that a CNN which

was successfully trained to detect a pattern in its input will still be able to detect that same

pattern when its location is shifted within the input. This is because the weights in the

kernels of the convolutional layers remain constant while the kernel is moved through the

input. The subsampling layers are used to gradually reduce the dimensions of the feature

maps while the convolutional layers detect higher level features in the feature maps until

they are small enough to be e�ciently processed by a fully connected network, which

then can detect non-linear combinations of these high-level features.

Even though CNNs are most prominently used in computer vision tasks, their application

area is not limited to them. They can also be applied to one dimensional inputs like plain

text, which is the input for most TTS systems. They are also more suited for parallel

computation than RNNs, since RNNs generally need the output of the last time step

to compute the next one. CNNs are therefore often used in TTS systems, as they make

achieving real-time inference possible even when using large networks with many millions

of connections. Real-time meaning the duration of the resulting waveform.

8



2.2. Text-to-Speech Systems

2.2. Text-to-Speech Systems

As the name suggests, TTS systems produce audio of human speech from text inputs.

The desired output is a natural sounding recitement of the given text. Until recently,

there has been no application of deep learning in this area and classic methods like

concatenation-based techniques or source-�lter systems have been used to synthesize

speech from text. This changed in 2016 when DeepMind showed that neural networks were

capable of generating raw waveforms of complicated audio like speech when proposing

their WaveNet model [Oor+16].

2.2.1. Traditional TTS Methods

Concatenative speech synthesis and source-�lter systems are two traditional TTS ap-

proaches that have been used since the 1970s [Gro74; RRT05]. Concatenation-based

systems, also called unit selection systems, work by combining (concatenating) fragments

of pre-recorded speech in a way that produces the desired output. If working on a su�-

ciently sized database of high-quality recordings, these systems generally produce very

natural-sounding speech as little digital signal processing (DSP) is involved. However,

there can occur audible glitches at the points of concatenation. Another downside are the

big, handcrafted databases from which recordings can then be fetched and concatenated.

These databases are needed at runtime and are often gigabytes in size and contain many

hours of recorded speech, an example being the CMU Arctic speech database for unit

selection systems [KB04].

An important distinction between di�erent unit selection systems is the resolution of the

basic recordings that are being concatenated. These range from the basic building blocks of

spoken language like phones or diphones to whole sentences and phrases, with the middle

ground being syllables. While TTS systems that are being built for narrow purposes like

transit schedule announcements can be built using a database of recorded phrases, this

would not be practical for general-purpose TTS systems, as either the database would

need to be unrealistically large or the system would be too limited by the few phrases

stored in the database. On the other hand, when the resolution is very high, for ex-

ample on diphone-level, the amount of sonic glitches typically increases as many more

concatenations are necessary. This can, however, be overcome with DSP techniques, as

diphone-based concatenative TTS systems like MBROLA [Dut+96] show. Generally, the

choice of unit resolution is speci�c to the area of application and language and therefore

varies even among general-purpose concatenative TTS systems [HB96].

Another important traditional approach to building TTS systems are source-�lter sys-

tems. They are based on the observation that the sound of human speech, described

in the terms of acoustic engineering, can be adequately speci�ed by the describing the

parameters of the source and �lters that form the resulting sound waves. In the case of

human speech, the source are the human vocal cords and the �lters being the current state

of the vocal tract.
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2. Fundamentals

Source-Filter systems do not use recordings of human speech during the synthesis

process but synthesize sounds based on handcrafted acoustic models. These acoustic

models can be based on a set of rules which determine how the sound source, which

models the glottal pulse of the human vocal cords, is �ltered in such a way as to model the

formant resonances of the vocal tract. This approach is called formant synthesis [Smi10].

The acoustic model in articulatory synthesis on the other hand is based on the geometry

of the vocal tract and its changes during articulation. From the geometry and the position

of the source within it, the resulting �lters can be derived [Bir14].

2.2.2. Deep Learning-Based TTS Methods

Even though both concatenative and source-�lter systems are capable of synthesizing

highly intelligible speech, concatenative systems tend to sound emotionless and source-

�lter systems mostly generate robotic-sounding speech [Sax17]. Additionally, both types

of systems are complex to construct since large and well-maintained databases are needed

for concatenative systems and the design of the �lter rules for source-�lter systems proved

to be complicated, requiring extensive knowledge in acoustical engineering. Another

disadvantage of traditional systems is that their attributes like speaker or spoken language

cannot be easily changed.

Most of these problems can be easily solved by using deep learning models to synthesize

speech directly from text. These are easier to built as no huge database is needed during

runtime and small imperfections in the training data don’t have a huge negative impact

on the �nal synthesis result. Also, no expert knowledge in acoustics is required to design

any rules or acoustical models. Deep learning models can also be easily adapted to new

or enhanced data, as the information in an already trained model can be leveraged when

retraining it on new or additional data. This means that, for example, when building a TTS

system for a speaker or language for which little data is available, pretrained systems can

be utilized in an approach called transfer learning [Tu+19]. One can even utilize sentence

representations learned by models in other areas of NLP during training of TTS model.

[Hay+19].

It still took until 2016 that researchers were able to create a generative deep learning

model of high-quality raw audio waveforms. The �rst of these models was DeepMind’s

WaveNet [Oor+16] which was able to generate realistic human speech from linguistic

features like mel spectrograms. Mel spectrograms are modi�ed spectrograms of audio

signals acquired by applying short-time Fourier transforms, with their frequency axis

converted to a logarithmic mel scale and it’s amplitude dimension, usually represented by

color, converted to decibels [Rob20]. The mel scale is a scale for pitch designed in such a

way so that pairs of pitches of equal distance on the mel scale sound equally distant to a

human listener [SVN37]. E.g. a pitch of 1 000 mels sounds equally distant to a pitch of 2 000

mels as a pitch of 500 mels sounds to a pitch of 1 500 mels. This results in a logarithmic

scale when displayed in hertz, as increasingly large intervals are needed to make human lis-

teners perceive equal pitch increments. See Figure 2.6 for an example of a mel spectrogram.
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2.2. Text-to-Speech Systems

Figure 2.6.: A mel spectrogram [Gar19]

Often, the y-axis is still displayed in a logarithmic hertz scale to make it easier to read,

as is the case in the given example.

While some early deep learning-based TTS models, like 2017s Tacotron [Wan+17], work

end-to-end, meaning a single model generates audio waveforms directly from text, these

systems either su�er from di�cult and long training processes or only use deep learning

models to generate mel spectrograms and then use hard-coded algorithms, like the Gri�n-

Lim algorithm [GL84], to reconstruct these spectrograms into audio signals. To solve this,

many neural TTS systems emerged that worked by combining two separate deep learning

models. The �rst model generates a mel spectrogram of appropriate human speech from a

given text input, the second model then generates raw audio waveforms from that mel

spectrogram. The �rst model in this design is called the TTS model, while the second

model, which generates the audio from mel spectrograms, is called the (neural) vocoder.
One of these early TTS systems was the successor of Tacotron, Tacotron 2 [She+18]. It

used a WaveNet conditioned on mel spectrograms as its vocoder model. According to

its evaluation, this model achieved speech quality comparable to professionally recorded

speech and was easier to train as the vocoder would not have to be retrained when making

changes to the TTS like switching speakers or languages.

Figure 2.7 shows the high-level architecture of Tacotron 2. As many sequence-to-

sequence models, it is split up into what is called an encoder-decoder architecture. This

means that the input sequence is �rst converted into an encoded internal representation by

the encoder, shown in blue in the �gure, which tries to encapsulate all relevant information

of the input in a compact way. The decoder, shown in orange, then predicts the output

sequence from that internal representation. The model also has a attention feature, shown

in gray, which means that it is able to weight di�erent parts of the internal representation

di�erently for each part of the output sequence.
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2. Fundamentals

Figure 2.7.: Architectural overview of Tacotron 2, a modern TTS model [She+18]

As seen in the �gure, the output of Tacotron 2 is a mel spectrogram that acts as input

for the vocoder. The vocoder then converts the mel spectrogram into raw audio waveform.

In this case, the vocoder used is WaveNet.

Later TTS models focused on reducing training complexity while further improving

audio quality. Another problem of the �rst deep learning TTS systems were slow inference

times as both models, TTS and vocoder, were using autoregressive architectures, which

makes parallelization di�cult as every part of the output sequence depends on all parts

that came before it. For example, Tacotron 2 makes use of many RNN-type networks called

LSTMs [HS97] which struggle to model the very long dependencies in speech [Li+19]

and work autoregressively. Later models [Li+19] tried to alleviate this problem by using

the Transformer architecture [Vas+17], which improved training times but still worked

in an autoregressive manner. The 2019 TTS model Fast Speech [Ren+19] was the �rst

non-autoregressive TTS model which improved inference times signi�cantly but still

su�ered from long training times due to its teacher-student architecture which still used

autoregressive parts but only during training. Fast Speech 2 [Ren+20], which is the main

TTS model used in this work, improved the architecture of Fast Speech by removing

the need for a teacher model and therefore eliminating all autoregressive parts from the

network. This resulted in faster training, much faster inference and higher audio quality

than Tacotron 2 or Transformer TTS. But this came at the cost of some additional work

before being able to train the model, as text-audio-alignment information for the training

data is needed. For further inquiry, an example of text-audio alignment data is given in

Appendix A.
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2.2. Text-to-Speech Systems

Vocoder models also improved since WaveNet. Non-autoregressive versions of WaveNet

like WaveGlow [PVC19] provided considerably better inference times but were huge

networks with Waveglow having around 90 million parameters [KKB20]. Still, WaveGlow

�nally made real-time end-to-end inference possible when combined with a fast TTS

model like Tacotron 2.

Other vocoder systems solved the inference time problem by utilizing the GAN archi-

tecture [Goo+14] which is a generative architecture originally designed to generate image

data but used by models like MelGAN [Kum+19] and HiFi-GAN [KKB20] to generate audio

from mel spectrograms. While MelGAN improved the training and inference times of

WaveGlow manyfold, it did so with reduced audio quality. HiFi-GAN further improves

both while also improving audio quality over WaveGlow [KKB20]. HiFi-GAN is also the

vocoder used in this work.
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3. Relevant Works

There exist several other works concerned with prosody control in neural TTS systems.

Fast Speech 1 [Ren+19] and Fast Speech 2 [Ren+20] can control the speech rate, pitch

variance and volume of the output, but the control is not �ne-grained and only the prosody

of the whole utterance can be controlled. Before that, multiple works, for example by

Skerry-Ryan et al. [Ske+18], dealt with prosody transfer, which is the task of transferring

the prosodic parameters of one utterance to another one. In layman terms, this is a "try

say it like that" task. Wang et al. [Wan+18] then designed a model to learn a clustered

latent space of style-embeddings, so-called global style tokens, from which a prosody style

can be chosen during inference. There have also been systems that allowed �ne-grained

prosodic transfer instead of transfers on utterance-level [Kli+19]. The drawback of these

approaches that perform unsupervised learning of a prosodic latent space is that all vari-

ance apart from linguistic content, and sometimes speaker identity, is learned that way.

This includes di�erences in noise level, recording setup and voice quality among other

unwanted variables.

There have also been papers proposing TTS models that work towards direct prosody

control instead of prosody transfer. One of these is CHiVE [Ken+19] which samples slightly

randomized variations from the prosody latent space to increase naturalness. While it

succeeded in providing minor prosody variations that proved to increase naturalness, it

did not o�er a possibility to control these variations. Raitio et al. proposed a TTS model

which did o�er control of several intuitive prosodic features, but did not provide �ne-

grained control, as the prosody was only parameterized for the whole utterance and also

the audio quality su�ered slightly even when not using the prosody parameters[RRC20].

One of the most capable models in the realm of prosody control is the Tacotron 2 based

model proposed by Sun et al. [Sun+20]. While providing �ne-grained prosody control, the

model itself is based on Tacotron 2 and therefore autoregressive, which comes with the

aforementioned drawbacks concerning training and inference times and occasional audio

glitches like word repetitions or words skips [Ren+20]. As the used method to control

prosody involves a variational autoencoder and latent space, the same drawbacks that

were mentioned above apply here too. Thus, not only prosody parameters are embedded

in the latent space but all information that is not speaker identity or phonetic content.

There is therefore no guarantee that the embedding only represents the desired prosody

parameters. The proposed model also had no mentioned method to easily input text with

the desired prosody parameters.
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The TTS model proposed in this work is based heavily on the Fast Speech 2 model[Ren+20]

and more precisely on the implementation
1

of Fast Speech 2 by Chung-Ming Chien and

Chie-yu Huang for their 2021 Paper on multi-speaker TTS [Chi+21]. The implementation

includes support for multiple vocoder models. HiFi-GAN [KKB20] is the one used for

this work, the implementation is based on the one of Jungil Kong
2
. For training the

English model, the LJ Speech dataset [IJ17] was used, downloaded from Keith Ito’s web-

site
3
. The German model was trained using the German part of the CSS10 dataset [PM19],

downloaded from the author’s GitHUb repository
4
.

1
https://github.com/ming024/FastSpeech2

2
https://github.com/jik876/hi�-gan

3
https://keithito.com/LJ-Speech-Dataset/

4
https://github.com/Kyubyong/css10
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4. Model

In this chapter, the proposed TTS system for �ne-grained prosody control is presented.

First, the unmodi�ed architecture of the Fast Speech 2 model, which the proposed model is

heavily based on, is described in detail. After that, the training process is outlined. Lastly,

the used implementation and modi�cations thereof are discussed.

4.1. Fast Speech 2

Fast Speech 2 [Ren+20] is a non-autoregressive TTS model based on Fast Speech [Ren+19]

which was proposed in 2020. During runtime, it takes character sequences as input and

converts them into a mel spectrogram of a recitement of the given text. It is designed in a

way that tries to reduce the one-to-many mapping problem of text-to-speech synthesis,

which describes the fact that for a given text there are many possible audio variations

that would pose as valid recitements of the text. It tries to alleviate this fact by adding

information about speech variation as additional input to the decoder, which narrows

down the possible audio variations. During training, this information, which includes

duration, pitch variation and energy (volume), is extracted from the goal waveform. Dur-

ing inference, this information is provided by predictor networks, which are also trained

during the main model’s training process. This also enables the model to control the

prosody of the resulting speech, as the predicted prosody information is interpretable

and can be modi�ed in a way to purposefully alter pitch, duration or energy of the utterance.

Fast Speech 2 utilizes an encoder-decoder architecture based on network modules with

modi�ed Transformer [Vas+17] architecture. The encoder-decoder architecture can be

seen in Figure 4.1, which generally shows the overall architecture of Fast Speech 2. As

shown, the model can be split up into the embedding network, the encoder network, the

variance adaptor module and a decoder network. In the following sections, the architecture

of each of these network parts will explained in detail.
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4.1. Fast Speech 2

Figure 4.1.: Architectural overview of Fast Speech 2 [Ren+20]

4.1.1. Embedding Architecture

Before being fed into the model, any given text is converted into a phoneme sequence.

This sequence is then turned into a phoneme embedding sequence by the embedding layer,

which is the �rst part of the model. Embedding layers are a common �rst part in neural

networks, as they turn the very high dimensional but sparse one-hot encoded vectors

that encode the given character or phoneme sequence into dense vectors of �xed sizes.

This embedding space evolves during the training process to group related phonemes in

clusters, which then enables the rest of the network to perform better as the embedding

now includes useful features.

The phoneme embedding is then extended with positional encoding information, which

is a representation of the location of single phonemes in the whole sequence. The posi-

tional encoding enables parts of the encoder network that are based on the Transformer

architecture to make use of the order of the sequence.

4.1.2. Encoder Architecture

Now, the enhanced phoneme embedding sequence is being fed into the encoder. The en-

coder consists of four feed-forward Transformer (FFT) blocks, which are network modules

with modi�ed Transformer architecture and have already been used in the original Fast

Speech model. The structure of a single FFT block can be seen in Figure 4.2.
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4. Model

Figure 4.2.: Structure of a single FFT block [Ren+19]

As shown, a single FFT consists of a self-attention network and a one-dimensional CNN

of two layers. The self-attention part is multi-headed and thus able to extract cross-position

information from the phoneme-sequence. The original Transformer architecture uses

fully-connected layers instead of CNN layers. The decision to switch to CNNs was made

since in phoneme and spectrogram sequences, adjacent hidden states are more closely

related than distant ones and CNNs are better suited to detect local patterns independent

of their location. However, the residual connections and layer normalization steps used in

the original architecture are carried over.

4.1.3. Variance Adaptor

The variance adaptor’s purpose is to add variance information to the phoneme hidden

sequence in order to alleviate the one-to-many mapping problem inherent in speech

synthesis and make it possible for the decoder to know which speech variant is the right

one to decode to. The variance information used in the original Fast Speech 2 paper is

threefold: phoneme duration, pitch and energy. Phoneme duration acts on phoneme-level

and describes how many frames in the mel spectrogram a phoneme sounds. Pitch, or more

precisely: pitch contour, acts on frame-level and represents the �0 frequency of each frame.

Lastly, energy represents the frame-level magnitude of the mel spectrogram and correlates

with speech volume. Each of these variance parameters is predicted by a separate module.

As seen in the architectural overview of the variance adaptor in Figure 4.3, the phoneme

hidden sequence is �rst fed into the duration predictor, a two-layer one-dimensional CNN

with a single fully connected layer at the output. This submodule then predicts, on a

logarithmic scale, how many mel frames correspond to each phoneme in the given hidden

sequence.
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4.1. Fast Speech 2

Figure 4.3.: Architecture of Fast Speech 2’s variance adaptor and its submodules [Ren+20]

Subsequently, the phoneme hidden sequence and the output of the duration predictor

are fed into the length regulator module, denoted as LR in Figure 4.3. The length regulator

is then used to solve the mismatch between the length of the phoneme sequence and the

mel spectrogram sequence but can also control speech rate. As the duration predictor

gives a prediction 3= for every phoneme, describing how many mel frames correspond

to it, the length regulator can match the sequence lengths by expanding the hidden state

of each phoneme 3= times. To control the speech rate, the length regulator can expand

each hidden state G · 3= times, with G being a scaling factor. For example, an G value of

0.8 would result in each phoneme corresponding to 20 percent less mel frames and the

resulting speech would consequently be 20 percent faster.

The expanded phoneme hidden sequence is now consecutively fed into the pitch and

energy predictors. Both predictors share their architecture with the duration predictor but

di�er in their training targets. The pitch predictor is trained to predict a pitch spectrogram

[Sun+13; HT15] for the given hidden phoneme sequence, which can then be converted

into pitch contour information, assigning each frame’s pitch �0 one of 256 possible values

on a logarithmic scale. The embedded pitch information is then added to the expanded

hidden sequence.

19



4. Model

Figure 4.4.: E�ects of di�erent pitch control parameters on the resulting spectrogram

[Ren+20]

The energy predictor works similar, but instead of pitch contour, it predicts the L2-norm

of the amplitude of each mel spetogram frame as one of 256 values on a uniform scale.

The embedded energy information is now also added to the expanded hidden sequence

and this �nal hidden sequence now leaves the variance adaptor and is handed over to the

decoder. As shown in Figure 4.4, the predicted formant frequencies can be controlled by a

multiplicative parameter, which can �atten or exaggerate the predicted prosody contour.

The same method allows control of the predicted amplitudes. Note that these parameters,

just like the duration control parameter mentioned earlier, can only control the prosody

of the whole utterance and are therefore not �ne-grained.

4.1.4. Decoder Architecture

The decoder is architecturally very similar to the encoder. It also consists of four FFT

blocks, with the di�erence being that its output is a mel spectrogram with 80 dimensions.

As the FFT blocks operate non-autoregressively, the decoder can convert the expanded

hidden sequence into a mel spectrogram sequence in parallel.

As shown in Figure 4.1, the Fast Speech 2 paper presents two di�erent decoder op-

tions. The one seen in the top-left, denoted as Mel-spectrogram Decoder is the one we

are concerned with and which was described in the preceding paragraph. This decoder

corresponds to the common mode of operation in neural TTS systems, in which the

output of the model is a mel spectrogram that can then be converted into audio by a

vocoder. However, the paper also proposes an alternative architecture, called Fast Speech
2s [Ren+20] in which the mel spectrogram decoder is replaced by an alternative decoder,

as seen in the top-right of Figure 4.1, in which it is denoted as Waveform Decoder.

Using the waveform decoder turns the model into a true end-to-end TTS system, con-

verting text into audio without any intermediate outputs. But, as one can infer from the

presented results in the paper, this does not come with any remarkable advantages over

the default Fast Speech 2 model. Inference times are slightly reduced for Fast Speech 2s but

audio quality, while still good, drops below that of state-of-the-art autoregressive models

like Tacotron 2. Also, one of the main advantages of splitting up the TTS pipeline into two

models, which is the reusability of a trained vocoder model, is now absent. This results in
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4.2. Training Process of the TTS System

a many-fold increase in training time when switching from Fast Speech 2 to Fast Speech 2s.

While still being an exciting work towards end-to-end TTS models, the disadvantages

described above make using Fast Speech 2s impractical given the goals of this work, and

so the default mel spectrogram decoder will be used.

4.2. Training Process of the TTS System

Training the Fast Speech 2 model requires additional information, as the variance adap-

tor needs to be trained alongside the TTS model. This additional information includes

phoneme-level information about pitch, volume and duration. Still, only text-audio pairs

are needed as training data. The missing information is acquired from alignment data that

assigns every phoneme in the training data it’s corresponding time frame in the respective

audio �le. The model can then lookup the pitch and volume during the phoneme’s time

frame to get phoneme-level data about volume and pitch.

If the training data does not have alignments included, alignment applications like

the Montreal Forced Aligner (MFA) [McA+17] can be used to obtain alignment data for

the used dataset. To obtain alignment data, MFA needs a pronunciation dictionary for

grapheme to phoneme (G2P) conversion and an acoustic model to predict the relationship

between phones and time frames in the audio �le. Fortunately, MFA includes several

prebuilt pronunciation dictionaries and pretrained acoustic models. Alternatively, a G2P

model for dictionary creation and/or an acoustic model can be trained on the given dataset.

When the alignments are ready, the preprocessing process creates a mel spectrogram

from the audio �le of each datum. These can then act as training goals. During this

process the phoneme-level duration, volume and pitch information is also derived from

the alignment data as described above. This information is then used to train the variance

adaptor’s submodules. During training, the correct variance information as derived from

the alignments is added to the hidden phoneme sequence. The duration, pitch and energy

predictors all try to predict the respective variation information and are trained using the

actual values as goal. During inference, the variance information of the predictors is then

used.

4.3. Implementation and Modifications

The used implementation
1

of Fast Speech 2 is mostly faithful to the description in the

paper. There are only three deviations from the paper that are worth mentioning. For one,

the addition of a post-net adapted from Tacotron 2 that tries to ease the reconstruction

process for the vocoder by passing the predicted mel spectrogram sequence through a

�ve-layer CNN and adds the predicted residual to the sequence.

1
https://github.com/ming024/FastSpeech2
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Second, the implementation added the possibility to change the resolution of pitch pre-

diction as well as the resolution of energy prediction from frame-level to phoneme-level,

which may result in better prosody [Chi+21]. The third change is that the pitch predictor

directly uses �0 as target instead of predicting pitch spectrograms. This was also the case

in early versions of the Fast Speech 2 paper.

The implementation is written in Python and uses Pytorch [Pas+19] as deep learning

API. It includes code from di�erent vocoder implementations, the one used here is an

implementation of HiFi-GAN[KKB20]
2
. Both implementations were published on GitHub

under the MIT License, which allowed the author of this thesis to use them as basis for the

model proposed in this work. In the following subsections, all additions and modi�cations

are described that were needed to achieve the goal of �ne-grained prosody control in an

English model and a German model.

4.3.1. Modifications for German Model

To make training a Fast Speech 2 model for German language possible, the usable symbols

and method of G2P conversion had to be updated and a new set of text cleaners had to

be added. The usable symbols originally only included characters used in the English

language and the ARPABET phonetic transcription codes [Kla01]. These were changed

to character sets that included special characters used in German writing and a phonetic

transcription code for the German language created by Prosodylab [GHW11]. As described

in section 4.2, alignment data is needed for training the model. Like in the original paper,

MFA was used to generate alignment for the training data. MFA also has the ability able

to create G2P models, which was used to create a G2P model that was then integrated into

the German Fast Speech 2 version for G2P conversion of text inputs during inference.

4.3.2. Modifications for Fine-Grained Prosody Control

To achieve the goal of prosody control on word-level, several changes had to be made.

First, all control parameters needed to be turned into vectors of the desired resolution. As

we aim for word-level control, these vectors need to contain one parameter per word in the

input. As Fast Speech 2 internally works on phoneme-level (in the used implementations

even the predictors for pitch and energy), the parameter vectors now need to be extended

to the length of the phoneme sequence. During this extension process, we need to keep

track of word borders inside the phoneme sequence, so as to apply to each phoneme the

parameter set for the word it is part of.

During the G2P conversion, the amount of phonemes 0F added to the phoneme se-

quence is noted for each wordF , which then enables us to extend the parameter vectors

by expanding the parameter for each wordF exactly 0F times.

2
https://github.com/jik876/hi�-gan
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After this, the control parameter vectors are on phoneme-level resolution and can be

applied to the respective variance prediction.

As described above, the duration prediction consists of one value for each phoneme,

representing the amount of mel frames corresponding to it. An element-wise multiplica-

tion can now be applied to the vector of duration control parameters and the duration

prediction. This scales the duration of each phoneme according to the duration parameter

set for the word it is part of, and thus results in word-level duration control.

As for the pitch and energy prediction, they also contain one value for each phoneme.

The values in the pitch prediction describe the formant frequency 50 for each phoneme,

while the values in the energy prediction contain information about the mel spectrogram

amplitudes for each phoneme. These can also be controlled on word-level by applying

an element-wise multiplication to the prediction vectors and the respective control-value

vectors. The result is word-level control of pitch-variance and mel spectrogram amplitude,

which approximates speech volume.

Just like the single pitch control parameter in the original Fast Speech 2 model, the

word-level pitch parameter can only control pitch-variance and cannot speci�cally increase

or decrease pitch. This restriction can be overcome, however, by directly changing the

predicted pitch �0 of the targeted words. This additional control for absolute pitch was

implemented by allowing special keyword-strings in the vector of pitch control parameters.

For example, the keyword HIGH will make the system set the pitch �0 of the targeted

word to be ten percent higher than the maximum pitch �0 of the whole utterance. This

can be used to force speci�c words to be emphasized by high pitch.

Controlling the prosody of the utterance on word-level by entering dozens of parameters,

three values for each word, proved to be impractical, time-consuming and error-prone. To

improve the user interface for prosody control, support for the Speech Synthesis Markup

Language [TI97] (SSML) was added. SSML is an XML-based markup language used in

TTS applications, with tags that allow the user to add prosody information to the input.

This includes support for adding pitch, speech rate and volume parameters and a tag to

emphasize certain parts of the text.

The added SSML support allows users to enter SSML strings that contain prosody

information, with the following tags being currently supported to specify the desired

prosody: <prosody range> for the pitch parameter, <prosody rate> for the duration

parameter, <prosody volume> for the energy parameter and <emphasis> which can used

to automatically set the control parameters in a way so as to emphasize the words inside

the tag. The emphasis tag is currently handled by setting slightly lower duration and

energy parameters for all other parts of the text and using a higher duration parameter,

higher energy parameter and the HIGH keyword as pitch parameter for the words inside

the tag.
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As the many other tags included in SSML are currently ignored by the parser, the model

can only be said to support a dialect of SSML. Integration of additional tags or full SSML

support will for now be left for future work. An example of a valid SSML input that uses

various prosody tags is given below.

<prosody rate=1.2> Would you please </prosody> give me the <emphasis>

red </emphasis> <prosody volume=-20%> cup over there? </prosody>

Given the above string, the model will synthesize speech with the desired prosody. The

�rst three words will be about 20 percent slower than the second three words. The word

red will be emphasized by slow and loud speech, as well as by increased pitch. Finally, the

last three words will have reduced volume compared to the rest of the utterance. As seen

in the example, the tags support both percentage parameters and decimal parameters.
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5. Evaluation

The goal of the evaluation is twofold. The �rst goal is to assess whether the added

capabilities for �ne-grained prosody control can be used to add clear emphases to the

synthesized speech and to what extent the �ne-grained control parameters a�ect synthesis

quality. The second goal is to investigate whether the prosody control parameters of the

modi�ed Fast Speech 2 model can be used to control prosody of a language other than

English.

5.1. Evaluation Method

Two Fast Speech 2 models were trained for evaluation: one model for English speech

and one for German speech. These models were then used to synthesize two versions of

several texts from the respective test set. One version was synthesized without utilizing

the prosody control parameters, the other version was synthesized using a set of control

parameters that aimed at emphasizing a certain word or part of the text. Then, a survey

was conducted to obtain Mean Opinion Score (MOS) [CP06] values for naturalness, com-

prehensibility, and, for the speech samples with explicitly added emphasis, perceptibility

of that emphasis. Intelligibility evaluation by calculating the word error rate, which is the

fraction of words that are substituted, skipped or deleted during speech synthesis, was not

used for evaluation as non-autoregressive TTS models like Fast Speech 2 rarely display

these errors, which are typical for autoregressive models [Ren+20]. Nevertheless, any

intelligibility problems would still cause low comprehensibility scores and thus not go

undetected.

To establish a baseline for naturalness and comprehensibility, ground-truth audio sam-

ples taken from the datasets were also evaluated by the participants. The evaluation

results will thus allow for an analysis of the performance of the Fast Speech 2 models

regarding naturalness and comprehensibility of the synthesized speech compared to the

ground-truth quality.

The �rst goal, determining whether �ne-grained prosody control can add emphases and

how it a�ects speech quality, can be achieved by analyzing the results regarding emphasis

perception and comparing the results of synthesized samples without added prosody and

samples with added prosody. This will establish whether the prosody control parameters

a�ect speech quality and if the added emphasis is easily perceptible. The second goal of

the evaluation, determining if the modi�ed Fast Speech 2’s �ne-grained prosody control

can be used in languages other than English, can be attained by comparing the results of

prosody-controlled outputs of the German and English models.
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5.2. Evaluated Models

In this subsection, the training process of the evaluated German and English Fast Speech

2 models is described. This includes information about the used datasets and data prepro-

cessing, as well as the used hyperparameters. Lastly, the selection and synthesis processes

for the evaluation samples are outlined.

5.2.1. Datasets

The well-known LJ Speech dataset by Keith Ito [IJ17] was used for training the English

model, as it is known for its high quality and suitability for TTS model training [Dun19].

The dataset is made of up approximately 24 hours of recorded speech, split into 13 100 short

audio clips with durations between one and ten seconds. All audio clips are recordings

of a single female speaker reading extracts from seven non-�ction books that are in the

public domain. The recordings were made by the LibriVox project [Kea14] and curated by

Keith Ito for the dataset.

The required alignment data was generated by the MFA program [McA+17], using the

Librispeech pronunciation dictionary for the English language [Pan+15] and the English

acoustic model that is included with MFA, which is also trained on the Librispeech corpus.

For the German model, the German part of the CSS10 dataset [PM19] was used for

training. It contains roughly 16 hours of speech recordings, distributed over 7 500 audio

clips with a duration mostly between two and �fteen seconds. Like LJ Speech, CSS10 is a

single speaker dataset built from readings of public domain books. Due to lower sampling

rates, the audio quality is somewhat worse compared to the high-quality audio of LJ

Speech but still acceptable. Also, the recording environment changes between recordings

of di�erent books, which leads to di�erent noise-levels and slight changes in voice quality

between samples.

As the audio samples of the CSS10 dataset are taken from audiobooks which are recited

in a remarkably calm way, pauses are often noticeably longer than in everyday speech

which would lead to a less natural speech synthesis result and even caused some problems

during training as the model struggled to converge because of the highly varying pause

durations. To �x this problem, the pause durations in the audio data were adjusted to a

maximum of 300 milliseconds. This was achieved by analyzing the audio data using a

voice activity detection algorithm called WebRTC VAD
1

and stunting all pauses longer

than 300 milliseconds to a random length between 250 and 300 milliseconds.

Just like for the LJ Speech dataset, MFA was used to generate text-audio alignments

for the German training data. During alignment, the German acoustic model by Prosody-

lab[GHW11], trained on the Globalphone dataset [Sch02] and the German pronunciation

1
https://webrtc.org/
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dictionary
2

by Prosodylab were used.

The dictionary was also utilized to train a G2P model for conversion of German words

from graphemes to phonemes of the Prosodylab phone set for German. This G2P model

was used during inference in order to convert words that were not found in the dictionary

to phoneme sequences compatible with the trained Fast Speech 2 model.

5.2.2. Training Preparations

Before training, preprocessing of the training data was required. From the text-audio pairs

and the respective alignments, much information is derived. First, mel spectrograms for all

audio samples are generated for later use as training targets for the decoder. Then, all texts

are converted into phoneme-sequences using the G2P model already needed for the creation

of the alignment data. Lastly, the alignment data and respective mel spectrograms are used

to obtain phoneme-level duration, pitch �0 and spectrogram amplitude information. These

can easily be gathered by looking up the mel frames corresponding to a given phoneme.

The amount of frames is the duration information, while the amplitude and pitch �0 of

those frames are the energy information and pitch information, respectively.

5.2.3. Training Configuration

Both models were trained on a server with an Intel 4124 CPU, 32 gigabytes of memory

and a single NVIDIA RTX Titan GPU. The hyperparameters for the English model are

as follows. In the encoder, four FFT blocks were used with hidden phoneme embeddings

and self attentions of size 256. Two attention heads were used. The kernel size in the

one-dimensional two-layer CNN of the FFT blocks was 9, with input and output sizes of

256 and 1024, respectively, for the �rst layer while input and output sizes of 1024 and 256

were used in the second layer. The decoder is parameterized in a similar manner but uses

six FFT blocks instead of four. A dropout rate of 0.2 is applied to both the encoder and the

decoder network. The variance predictor was set to a kernel size of 3 in its one-dimesional

CNNs, with input and output sizes of 256. A dropout rate of 0.5 is applied here.

These hyperparameters mostly match the ones described in the paper. Only slight

adjustments were made, like the increased amount of FFT blocks and reduced hidden state

dimensions in the decoder when compared to the encoder. Also, a slightly higher dropout

rate was applied to the encoder and decoder, as it originally was set to 0.1. A batch size of

64 was used and the model was trained for 500 000 steps.

The German model’s hyperparameters are very similar, but the dropout rate in the

encoder and decoder was increased to 0.3 to achieve better generalization on the smaller

German dataset. Also, a lower batch size of 48 was used as the german audio samples are

longer on average, which led to increased GPU memory requirements. The German model

was trained for 400 000 steps. For both models, the training time was about 72 hours.

2
https://github.com/prosodylab/prosodylab.dictionaries
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5.2.4. Synthesis of Evaluation Samples

The texts from which the evaluation samples were synthesized were taken from the test

part of the dataset. Eight texts that are complete sentences with lengths ranging from four

to twenty words were randomly chosen from each dataset. From these texts, speech was

now synthesized using the model for the respective language. Now, one to two suitable

words were chosen and now speech was synthesized using prosody control parameters

to emphasize these words. The emphasis was either achieved by using the <emphasis>

tag or by using a similar prosody control con�guration as the <emphasis> tags creates,

but instead of increasing pitch for the emphasized part, the pitch was lowered. The more

appropriate approach was selected for each sentence before synthesizing. No decision was

revised. This decision process may be automated in later works, as it can be based on the

pitch �0 in the default synthesis at the location of the words that should be emphasized.

All evaluation samples, except for one, were only synthesized once. One sample
3
,

however, only contained noise and was synthesized a second time. The behavior could

not be reproduced. It was maybe caused by the short length of the input text, which was

only four words long and is the lower limit appearing in the training data.

Additionally, �ve audio samples of complete sentences from each dataset were chosen

and added to the other samples to later establish a baseline for evaluation. The order of

the samples was randomized.

5.3. Evaluation Results

The results of the evaluation survey are presented in this section. The presented mean

opinion scores (MOS) give a numerical estimation of speech comprehensibility, natu-

ralness and, if present, perceptibility of emphasis. Scores are given on a Likert scale

[Lik32] of 1 to 5, with 5 being the best score. Later, the comprehensibility and naturalness

scores are combined into a general MOS. Obviously, MOS values are inherently subjective

and heavily depend on the expectations of the participant. Therefore, the variances of

MOS values for single samples as well as overall variances have to be analyzed additionally.

MOS values were calculated as arithmetic mean of the respective scores:

"$(G =

#∑
==1

BG8

with:

G being the sample evaluated

BG8 being the score given to G by participant 8

# being the number of scores taken into account for this MOS

3
Deutsch07.wav, see Appendix A for more information
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The survey included seven participants, all of which are German native speakers and

�uent in English.

5.3.1. English Model

The MOS evaluating comprehension and naturalness for the ground-truth samples are

shown in Table 5.1. The samples are denoted as GT 1 through 5. As expected for ground-

truth samples, both comprehension and naturalness scored quite high with a total MOS of

4.45 for comprehension, while naturalness received a slightly lower 4.34. Variance was

generally low for both measures, except for sample GT 3 which had a variance of 0.9 across

its comprehension scores. This might be due to its length, as the corresponding text, "A
thorough inspection would have involved washing and cleansing the back, and this is not
practical in treating an acutely injured patient.", is the longest text used in the evaluation.

As the participants of the survey are no English native speakers, this rather long and

complicated sentence might have caused the di�erences in English pro�ciency between

the participants to become more apparent and in�uence their comprehensibility rating.

GT 1 GT 2 GT 3 GT 4 GT 5 All

Comprehension

MOS

4,43 4,28 4,28 4,71 4,57 4,45

Comprehension

Variance

0,61 0,57 0,90 0,24 0,29 0,49

Naturalness

MOS

4,13 4,00 4,42 4,57 4,57 4,34

Naturalness

Variance

0,47 0,33 0,28 0,61 0,28 0,40

Table 5.1.: Comprehension and naturalness MOS and respective variances for English

ground-truth samples

Now, we will inspect the MOS results for synthesized samples with default prosody

parameters as shown in Table 5.2. In the table, the synthesized samples are called S

1 through S 8. Comprehension scores have decreased slightly but are still high with

an overall MOS of 4.32. The decrease is expected even when evaluating a well-trained

model, as the model has to generalize from the training data. Generalization enables it to

perform well on unseen data, but comes at the cost of a small hit to performance on all

data, including training data and of course unseen data such as these texts from the test set.

Naturalness scores decreased a bit more compared to ground-truth samples, receiving a

total MOS of 4.0. This is probably due to small audio artifact, which sometimes are audible

even in samples from well performing TTS systems. These do not hinder speech compre-

hension but can sound unnatural and therefore lead to reduced scores on naturalness.
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Both variances are higher than the ones seen in the ground-truth results, which is

partly because values further from the limits of the scale can be more spread out across it.

Additionally, some of the participants might be more sensitive to the mentioned minor

audio artifacts while others don’t notice or deem them too minor to cause a score reduction.

This would also explain a slightly higher variance.

S1 S2 S3 S4 S5 S6 S7 S8 All

Comprehension

MOS

4,43 4,29 4,00 4,43 4,43 4,29 4,14 4,57 4,32

Comprehension

Variance

0,62 0,90 0,66 0,61 0,61 0,90 0,80 0,28 0,62

Naturalness

MOS

4,14 4,57 4,43 3,86 4,00 4,00 3,29 3,71 4,00

Naturalness

Variance

0,47 0,61 0,61 0,47 0,33 0,66 0,23 0,57 0,58

Table 5.2.: Comprehension and naturalness MOS and respective variances for English

synthesized samples with default prosody

The last results for the English model are presented in Table 5.3. These again show MOS

values for comprehension and naturalness, but now for samples synthesized using prosody

parameters in order to add an emphasis to part of the utterance. An additional MOS

evaluates the perceptibility of the added emphasis. The texts used here are the same as in

the evaluation of synthesized samples with default prosody parameters, so the S1 sample

in Table 5.2 is synthesized from the same input, apart from prosody control parameters, as

the S1 E sample in Table 5.3.

Comprehension MOS have increased when compared to the default prosody samples,

with an overall MOS of 4.46. Interestingly, this is even higher than the comprehension

MOS of the ground-truth samples. This may be due to slightly increased audio durations

as the emphasized words are spoken somewhat slower, which could enhance compre-

hension. However, the added emphasis and increased comprehensibility came at the

cost of a lower naturalness MOS of 3.82. Still, while slightly decreasing naturalness, the

emphases seemed to be well perceptible as the perceptibility MOS across all samples is 4.13.

Variances are in line with previous observations with a 0.39 variance in comprehension

MOS, 0.69 naturalness MOS variance in 0.76 variance in the emphasis perceptility scores.

This further indicates that the emphases were generally well perceptible. Upon further

inquiry, it can be noted that, while well perceptible, the addition of emphasis might have

slight robustness problems, as sample S8 E scores only 3.0 on perceptibility, which is the

reason for the increased variance in the perceptibility MOS when compared to naturalness

and comprehension.
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S1 E S2 E S3 E S4 E S5 E S6 E S7 E S8 E All

Comprehension

MOS

4,42 4,28 4,42 4,71 4,57 4,57 4,42 4,28 4,46

Comprehension

Variance

0,61 0,57 0,28 0,23 0,28 0,28 0,28 0,90 0,39

Naturalness

MOS

3,85 4,00 3,57 3,85 3,57 4,28 3,85 3,57 3,82

Naturalness

Variance

0,47 0,66 1,61 0,80 0,28 0,90 0,80 0,28 0,69

Emphasis

MOS

4,28 4,85 4,71 4,85 3,57 3,42 4,28 3,00 4,13

Emphasis

Variance

0,57 0,14 0,23 0,14 0,62 0,28 0,57 0,33 0,76

Table 5.3.: MOS and variance for comprehension, naturalness and perceptibility of the ex-

plicitly added emphasis for English synthesized samples with modi�ed prosody

Generally, the English model seems to perform well and provide comprehensibility

comparable to that of ground-truth samples but at a slight reduction in naturalness. Adding

prosody parameters in order to emphasize parts of the input results in perceptible, mostly

even well perceptible, emphases and increases in comprehensibility compared to ground-

truth levels. However, this reduces naturalness again, but the naturalness di�erence

between prosody controlled synthesis and default synthesis is smaller than the one dif-

ference in naturalness observed between ground-truth and default synthesis. The result

regarding comprehensibility and naturalness can be summarized in three numbers by

combining naturalness and comprehensibility scores into a combined MOS. Using this

combined MOS, gound-truth samples received a score of 4.40, synthesized samples reached

4.16 and synthesized samples with explicit prosody scored 4.14.

The corresponding texts for each sample used in the evaluation of the English model

are listed in Appendix B.

5.3.2. German Model

Table 5.1 shows the MOS results regarding comprehension and naturalness for the German

ground-truth samples. The overall MOS for comprehensibility is very high with a score of

4.82 with low variance of 0.21, showing an increase over the 4.45 comprehension score of

the English model. This is very likely due to the participants being native German speakers,

which makes comprehension of German speech inherently easier than comprehension of

other languages, even when speaking them �uently, and explains the increase over the

English ground-truth comprehensibility MOS.
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As for the naturalness MOS, it is comparable to the respective English MOS with a score

of 4.28 and a low variance of 0.33. Interestingly, the gap between comprehensibility and

naturalness scores is much more pronounced in the German dataset.

GT 1 GT 2 GT 3 GT 4 GT 5 All

Comprehension

MOS

4,85 4,71 4,85 4,85 4,85 4,82

Comprehension

Variance

0,14 0,57 0,14 0,14 0,14 0,21

Naturalness

MOS

3,85 4,42 4,42 4,42 4,28 4,28

Naturalness

Variance

0,47 0,28 0,28 0,28 0,23 0,33

Table 5.4.: Comprehension and naturalness MOS with respective variances for German

ground-truth samples

The MOS results for synthesized samples with default prosody parameters are shown in

Table 5.5. Comprehension scores are still very high with a score of 4.69. But, as with the

English model, the comprehension score decreased slightly compared to the ground-truth

samples. The overall higher comprehensibility over the English model can still probably

be traced back to the participants being native speakers. Comprehension score variance is

nearly unchanged at 0.25.

Naturalness scores provide a di�erent picture. The overall MOS decreased to 3.59 from

the ground-truth value 4.28 with variance also increasing to 0.72. The decrease in natural-

ness score is much more pronounced than in the English model. This may be explained

by various properties of the German dataset. For one, the English dataset is consists of

24 hours of speech recordings, which is a 50 % increase compared to the 16 hours of the

German dataset. This might explain why the German model seems to generalize worse

than the English one. Also, the recording parameters of the contained speech recordings

vary within the German dataset, leading to variations in noise level and even voice quality.

This additional variation is not present in the English dataset, which may lead to improved

training results.

Lastly, the results for synthesized prosody-cotrolled samples inferred by the German

model are shown in Table 5.6. These, as always, include MOS results for comprehensibility

and naturalness but also an MOS rating the perceptibility of the added emphasis. As in the

English results, the texts used here are the same as in the evaluation of the synthesized

samples with default prosody parameters, the only di�erence being the prosody control

parameters.
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S1 S2 S3 S4 S5 S6 S7 S8 All

Comprehension

MOS

4,43 4,71 4,86 4,86 4,57 4,71 4,57 4,86 4,69

Comprehension

Variance

0,28 0,23 0,14 0,14 0,28 0,23 0,62 0,14 0,25

Naturalness

MOS

4,14 2,58 4,43 3,42 3 4,14 3,57 3,43 3,59

Naturalness

Variance

0,81 0,28 0,61 0,28 0 0,47 0,61 0,28 0,72

Table 5.5.: Comprehension and naturalness MOS and respective variances for German

ground-truth samples

As observed in the English model, comprehension MOS values have increased when

compared to the default prosody samples, now scoring 4.71. But, unlike the English

model, the German model does not achieve better comprehensibility with emphases than

ground-truth samples did. Comprehension MOS values might only be slightly lower than

for ground-truth samples, but this still reinforces the assumption that the German model

performs not quite as good as the English one.

The similarities continue as the naturalness MOS is also worse for prosody-controlled

samples than samples synthesized with default parameters, with the emphasized samples

scoring 3.29 against 3.59 for unemphasized samples. It seems, that the emphases, while well

perceptible, either reduce audio quality or, more likely, do not entirely sound like natural

emphases. This is probable as the model was not trained to produce natural sounding

emphases and the parameters used to change the model’s behavior in order to create a

desired emphasis were hard-coded.

Still, like in the English model, the emphases are generally well perceptible, while

naturalness scores decrease slightly. The samples received a MOS for perceptibility of

3.75. This score matches the pattern that emerged in the previous results, and the German

model shows similar behavior as the English model did, but generally performs slightly

worse. The same possible reasons described before apply here too. Variances for compre-

hensibility and naturalness are quite low, with values of 0.35 and 0.42, respectively. While

the variance of comprehension is unremarkable, 0.42 is the lowest overall naturalness

variance measured, which suggests that, while the synthesized prosody-controlled samples

are not highly natural, no outliers occurred that sounded particularly unnatural.

The German model overall also performed well but earned slightly worse scores than

the English model did. While Comprehensibility was always very good, even comparable

to ground-truth, naturalness occasionally su�ered somewhat. As observed in the English

model, this got worse when utilizing prosody control parameters. The generated emphases

were generally perceptible, with all samples except for one achieving MOS values greater
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S1 E S2 E S3 E S4 E S5 E S6 E S7 E S8 E All

Comprehension

MOS

4,43 4,71 5,00 4,86 4,57 4,71 4,57 4,86 4,71

Comprehension

Variance

0,62 0,57 0,00 0,14 0,62 0,23 0,62 0,14 0,35

Naturalness

MOS

3,57 3,00 4,00 3,42 2,86 3,00 3,14 3,29 3,29

Naturalness

Variance

0,61 0,00 0,66 0,62 0,14 0,33 0,14 0,23 0,42

Emphasis

MOS

4,29 4 4,29 4,14 2,71 4,14 3,29 3,14 3,75

Emphasis

Variance

0,57 0,66 0,23 0,47 0,57 0,47 0,23 0,47 0,73

Table 5.6.: MOS and variance for comprehension, naturalness and perceptibility of the ex-

plicitly added emphasis for German synthesized samples with modi�ed prosody

than three. The result can again be summarized in three numbers. When combining

naturalness and comprehensibility scores into a combined MOS, ground-truth samples

received a MOS of 4.55, synthesized samples of 4.14 and synthesized samples with explicit

prosody control scored 4.0.

The corresponding texts for each sample used in the evaluation of the German model

are listed in Appendix C.

5.4. Discussion

The presented results achieved the �rst evaluation goal, as the evaluation indicates that the

�ne-grained prosody controls described in this work can be utilized to add well perceptible

emphases to synthesized utterances with the loss of audio quality being within tolerable

limits. The second evaluation goal was achieved by showing that the prosody control

of Fast Speech 2 does indeed work for other languages than English as shown by the

evaluated German model, which was able to add perceptible emphases to synthesized

samples with perceptibility MOS values comparable to those of the English model. All

prosody controlled samples were still very comprehensible and naturalness scores only

dropped less than ten percent, which is well within limits as the prosody control parameters

were hard-coded and only rudimentary adaptions to the current sample were made.
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Another factor that might impair the model’s ability to drastically alter, as is needed for

adding clear emphases, is the lack prosodic variance in the training data. When training a

default TTS model without prosody control, it is desirable for the training data to have little

variance in speech volume and speech rate. Also, extreme prosodic features like strong

emphases are avoided so as not to obscure the training goal of natural and comprehensible

everyday speech.

As the used datasets are intended for use in TTS model training, these points hold true

for them. While bene�cial for the training of default TTS models, the evaluated models

thus have trouble generalizing across a broad range of prosodic parameters as very little

variance is provided during training. This is especially noticeable for the energy parameter,

as volume is the dimension of prosody control with the least amount of variance in the

training data. While volume can be controlled by tweaking the energy parameter, this

is only possible within quite narrow limits and changes in the parameter result in loss

of speech quality much more quickly than it does for the other two prosody parameters.

Thus, the little volume variance in the training data is presumably responsible for a large

part of the naturalness reduction in the synthesized samples with added emphases.

As for the score di�erences between the English and German models, some of them

might be explained by the native language of the participants, as German native speakers

might tend to award higher comprehension scores to German speech than to English

speech. The lower naturalness scores of the German model on the other hand might have

to do with dataset di�erences, as the German dataset is about 50 % smaller than the English

dataset and the included samples display more variation in noise level and recording setup

than the English dataset.

Variance of MOS was high at times, reaching values of over 0.7 in Table 5.3, Table 5.5 and

Table 5.6. This shows that, while MOS can approximate objective quality assessments from

multiple objective scores, the participants sometimes evaluate the samples quite di�erently,

which can get lost in the single MOS value. An important cause of the rating di�erences are

probably varying expectations among participants. While a person with prior knowledge

in computer science or an interest in technology may know or suspect that constructing a

TTS system is a hard task and therefore can be impressed easier, someone without this

knowledge might compare the samples to the naturalness of in-person small talk and is

then easier to disappoint.
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This �nal chapter gives a brief overview of the proposed model and attained evaluation

results, followed by a conclusion to the questions that were aimed to be answered in this

thesis. Finally, possible future works based on the achieved results are outlined.

6.1. Conclusion

In this work, a modi�ed TTS model based on Fast Speech 2 was proposed to achieve

�ne-grained prosody control in a modern, deep learning based TTS system. A German

and an English model were trained and evaluated to discern whether the modi�ed model

is capable of synthesizing high-quality speech while enabling �ne-grained prosody control

and if the variance adaptor of the modi�ed Fast Speech 2 model performs well on languages

other than English.

The modi�ed Fast Speech 2 model was mostly realized by extending the existing vari-

ance adaptor in Fast Speech 2, which originally only allowed for utterance-level prosody

control. These modi�cations made it possible to use word-level prosody parameters to

control the internal embeddings for speech rate, pitch and volume created by the variance

adaptor. Additionally, a parser for parts of the Speech Synthesis Markup Language was

added to make the input of complex prosody parameters for a given text more practical

and user-friendly and allow for later integration of the model into work�ows involving

SSML.

The evaluation of both trained models con�rmed that the proposed model is able to

synthesize high-quality speech samples both in German and English, with the English and

German model receiving an overall MOS of 4.16 and 4.15, respectively, which is close to

the ground-truth MOS of 4.40 for English samples and 4.55 for German samples. It was

further shown that �ne-grained prosody control is achieved by the model as it was able

to add various, well perceptible emphases to the synthesized samples by varying speech

rate, pitch and volume. This claim is supported by the evaluation, in which emphasis

perceptibility received a MOS of 4.13 for the English model and 3.75 for the German model.

As both the English and German model were able to add emphases to the synthesized

speech using �ne-grained prosody control, it can be con�rmed that the proposed model can

be used to control prosody in languages other than English. As mentioned, the modi�ed

model was able to synthesize high-quality speech while controlling prosody on word-level.

However, the speech quality su�ered somewhat when compared to samples obtained using

the default parameters. But the deviation was within tolerable limits as MOS values for
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comprehension even increased slightly, while the overall MOS for naturalness decreased

by 0.18 for English samples with emphasis and by 0.69 for German samples with emphasis.

Alleviating these minor drawbacks of �ne-grained prosody control is left for future work.

6.2. Future Work

There are multiple pathways for further enhancements of the results of this work. One

major area of enhancement are further modi�cations to the model, allowing for more

precise prosody-control or increased user-friendliness. The other area are the used datasets,

as experiments with other or even new datasets may lead to possible �xes for the decrease

in speech quality when making big changes to the prosody parameters.

Model Enhancements

A possible way to enable even more precise prosody control is leveraging the fact that,

internally, the model works with phoneme-level prosody parameters. As of now, only

word-level prosody parameters can be controlled, which are then extended and applied to

all phonemes of the corresponding word. It would be worth researching, whether applying

some smoothing to the parameters on prosody-level in order to create less harsh changes

between word borders in the prosody sequence leads to more natural sounding results.

Also, being able to directly control prosody parameters on phoneme-level might useful for

some users in certain situations.

As for user-friendliness, a more complete integration of SSML would also be a desirable

enhancement for the model, as it would allow for better integration into SSML environ-

ments and more possibilities for automation. Introducing extensive error checking on the

input SSML string would also further increase user-friendliness.

More diverse prosody control parameters could be introduced. This is achievable either

by adding more variance predictors to the model or by handcrafting sets of prosody pa-

rameters that correlate with certain desired prosody types. These handcrafted parameter

sets may also be templates that are then automatically adjusted to �t the given text. For

example, the <emphasis> tag might be automated in such a way, so that the default pitch

�0 of the words that shall be emphasized are examined to decide whether increasing or

decreasing pitch for emphasis would sound more natural.

Lastly, the variance adaptor of Fast Speech 2, which is shown in Figure 4.3, can be

modi�ed to contain more than three variation predictors, which would consequently

increase the amount of controllable prosody dimensions. Possible additions are emotional

content and strength of emphasis. However, training goals for any new prosody predictors

are needed and therefore, these additional prosody dimensions would have to be known

for the training data.
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6. Conclusion

Alternative Datasets

Another possibility for future work would be to retrain the German model using a larger

and higher quality TTS dataset. The used CSS10 dataset is rather small, containing only

16 hours of speech recordings, and has further drawbacks as the long pauses caused by a

very pronounced audio-book-style speech pattern make it harder to synthesize natural

speech. Additionally, suboptimal sound quality and varying noise levels and recording

environments worsen the problem. The recently released Open German Voice Dataset
1

might be a good alternative and could potentially close the observed gap in audio quality

between the English model and the German model.

Major improvements in the sound quality of samples with extensive prosody control

may be possible if the model is trained on a dataset with high variance in the used prosody

parameters, including speech rate, pitch and volume. These variances are usually kept at

a minimum in commonly used TTS datasets, as it makes training TTS models without

variance adaptors harder. But as Fast Speech 2 can use the embeddings of these prosody

parameters during training, it may even ease the training process in this case. Also, training

a model on such a dataset probably leads to an increase in prosody control capabilities

as the variance adaptors will be able to generalize better and will therefore able to better

predict embeddings, especially for extreme values. The higher prosody variance may

be achieved by data augmentation or by constructing a new dataset speci�cally for this

purpose.

1
https://github.com/thorstenMueller/deep-learning-german-tts
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A. Alignment Data Example

Alignment data generated by MFA [McA+17] are stored in plain text using the following

format. The example below contains alignment data on word-level for the text "in being
comparatively modern". As shown, the time interval during which each word is heard is

stored in the data, with xmin and xmax denoting the respective start time and end time in

seconds. Phoneme-level alignment data is stored equivalently.

item []:

item [1]:

class = "IntervalTier"

name = "words"

xmin = 0

xmax = 1.8995

intervals: size = 5

intervals [1]:

xmin = 0

xmax = 0.14

text = "in"

intervals [2]:

xmin = 0.14

xmax = 0.41

text = "being"

intervals [3]:

xmin = 0.41

xmax = 1.27

text = "comparatively"

intervals [4]:

xmin = 1.27

xmax = 1.83

text = "modern"

intervals [5]:

xmin = 1.83

xmax = 1.8995

text = ""
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B. English Evaluation Sentences

Below, the sentences used in the evaluation of the English model are listed, preceded

by their respective ID. The words that were emphasized during evaluation of emphasis

perceptibility are written in capital letters.

GT 1: He was generally supposed to be a surgeon.

GT 2: It should be remembered that in every big job there are some imperfections.

GT 3: The court itself can best undo what the court has done.

GT 4: This was at least in part because of the close physical confines in

which some of the work had to be done.

GT 5: As the motorcade approached elm street.

S 1(E): A Dallas police car and several motorcycles at THE REAR kept

the motorcade together.

S 2(E): A thorough inspection would have involved washing and cleansing the back,

and this is NOT practical in treating an acutely injured patient.

S 3(E): SOME rooms remained quite empty and unoccupied,

while others were full to overflowing.

S 4(E): And had certain unattractive features, including a LOW ceiling

with exposed conduits and beams.

S 5(E): Decent clothing and bedding, and a diet SUFFICIENT to support him.

S 6(E): In the DEPLORABLE situation in which many of them now are.

S 7(E): Every prison containing FEMALE prisoners was to have a matron

who was to reside constantly in the prison.

S 8(E): Partly because of the greater speed and comfort of travel AND partly

because of the greater demands made on the president.
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C. German Evaluation Sentences

Below, the sentences used in the evaluation of the German model are listed, preceded

by their respective ID. The words that were emphasized during evaluation of emphasis

perceptibility are written in capital letters.

GT 1: Flüchtig hingesehen, erschienen die weißen Linien wie ein Flug Wildgänse,

die in einer Landschaft über Baum und Hügel hinflogen.

GT 2: Meister Floh hatte während dieser Zeit seine natürliche Gestalt angenommen

und war spurlos verschwunden.

GT 3: Und dieser schwarze Strick, der die Dicke eines Männerarms hat,

wird noch heute in einer Lacktonne im Tempel von Kioto aufbewahrt.

GT 4: Gehab dich so lange wohl, meine herzgeliebte Ulla. Bald bin ich wieder hier.

GT 5: Die Frau starrte die schlafende Katze an, aber die gemalte Katze

hielt die Augen geschlossen und blinzelte nicht.

S 1(E): Und HANAKES Gesicht wurde wieder höflich und freundlich und unbeschrieben

wie eine weiße Eierschale.

S 2(E): Das ist das Bild, das ich HIER malen will.

S 3(E): SEHR weise gesprochen, sagte die alte Dame.

S 4(E): Die ihre Blüten und Blätter aus der tiefsten Tiefe emporrankten und

auf ANMUTIGE Weise ineinander verschlangen.

S 5(E): Der andere aber musste SEINE Schulstellung aufgeben und wurde Polizist.

S 6(E): Ich höre IHN nicht.

S 7(E): Entsetzt ließ er die RUDER ins Wasser fallen.

S 8(E): Ich habe zwar nie einen solchen Baum gesehen, ich KENNE aber seine

Rindenschrift wie die Linien meiner Hand.
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