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Abstract
End-to-end multilingual speech recognition involves using a
single model training on a compositional speech corpus includ-
ing many languages, resulting in a single neural network to han-
dle transcribing different languages. Due to the fact that each
language in the training data has different characteristics, the
shared network may struggle to optimize for all various lan-
guages simultaneously. In this paper we propose a novel mul-
tilingual architecture that targets the core operation in neural
networks: linear transformation functions. The key idea of the
method is to assign fast weight matrices for each language by
decomposing each weight matrix into a shared component and
a language dependent component. The latter is then factorized
into vectors using rank-1 assumptions to reduce the number of
parameters per language. This efficient factorization scheme is
proved to be effective in two multilingual settings with 7 and 27
languages, reducing the word error rates by 26% and 27% rel.
for two popular architectures LSTM and Transformer, respec-
tively.
Index Terms: speech recognition, multilingual, transformer,
lstm, weight factorization, weight decomposition

1. Introduction
Multilingual modeling has been an important topic in applying
sequence-to-squence models to language applications ranging
from machine translation [1, 2] to automatic speech recognition
(ASR) [3]. It is possible to employ one single neural model for
multiple datasets with different languages with the goal of cap-
turing the shared features between the languages. This method
has been widely used to help under-resourced languages ben-
efiting from the knowledge acquired from the richer counter-
parts.

It is noticeable that the recent multilingual neural models
are based on a semi-shared mechanism in which the largest
body of the network architecture is exposed to all languages,
while a smaller weight subset provides a language specific bias.
This was shown to be more effective in a multilingual scenario
than fully sharing the whole network[1, 2] since each language
has certain unique features, and the single architecture often
struggles to handle a variety of languages [4].

There are two main drawbacks that are typically presented
in the existing implementations of the semi-shared mechanism.
On the one hand, the implementations often depends heavily on
a certain architecture being popular at the time, and the given
improvement is going to be diminished when a new architec-
ture evolves. For example, the language-specifically biased at-
tention [5] modified the self-attention architecture [6] specifi-
cally based on the assumption that each language can benefit
from a bias added to the attention scores. On the other hand,
the language-dependent components might require a consider-
able amount of parameters and struggles to scale to the num-

ber of languages. For example, the language adapters added to
the Transformer layers [7] are essentially feed-forward neural
network layers being similar to the counterpart already in the
shared Transformer body. A scenario with 20 languages con-
sequently generates hundreds of these layers accounting for a
large amount of parameters to be optimized.

In this work, we propose a multilingual architecture using
a factorization scheme that is both effective and highly scalable
with the number of languages involved. Moreover, this scheme
is applicable to any neural architectures as long as matrix-vector
multiplication is the dominant operation. The key idea of our
work is that each weight matrix in the shared architecture can
be factorized into a shared component and multiple additive
and multiplicative language dependent components. While each
language is assigned with extra weights to learn distinctive fea-
tures, simplicity and scalability are achieved by further repre-
senting those weights into as a rank-1 matrix, thus can be fac-
tored into two vectors. This method is demonstrated to be com-
putational friendly with a minimal overhead and can be applied
to a arbitrary neural architecture.

Subsequently, this weight factorization method is then eval-
uated on two different scenarios: one with 7 languages having
similar amounts of data, and one with 27 languages with various
extremely low resource data. The method is implemented on
two commonly used architectures: Long Short-Term Memories
(LSTM) and Transformers which show that both types of net-
works can benefit by weight factorization in multilingual ASR.
The reduction of error rate can be up to 47% rel. in the case
of low-resource languages such as Japanese1 and 15.5% rel. on
average with the moderately sized languages.

2. Methodology
A neural speech-to-text model transforms a source speech in-
put with N frames X = x1, x2, . . . , xN into a target text se-
quence with M tokens Y = y1, y2, . . . , yM . The encoder trans-
forms the speech input into higher level feature vectors hX

1...N .
The decoder jointly learns to generate the output distribution
oi based on the previous target tokens y1, y2, . . . , yi−1 while
looking for the relevant inputs from the input via the attention
mechanism [8, 6].

hX
1...N = ENCODER(x1 . . . xN ) (1)

hY
i = DECODER(yi, y1...i−1) (2)

ci = ATTENTION(hY
i , h1...N ) (3)

oi = SOFTMAX(ci ∗ hY
i ) (4)

yi+1 = sample(oi) (5)

1Error is measured in characters error rate here.
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Notably, there is a large variety of model architectures that
implement this encoder-decoder design. The core networks
in the encoder and decoder range from LSTM [9], convolu-
tion/TDNN [10, 11] to self-attention [12] or even a mix of the
above [13]

The universal multilingual framework [1, 2] employs a sin-
gle model to learn on a joint training dataset containing multi-
ple languages, which is different than the predating multi-way
encoder-decoder approach [14].

2.1. Multilingual weight composition

It can be seen that, the common ground of the aforementioned
architectures is the usage of linear combinations of lower level
features X ∈ RD which can be expressed as the matrix multi-
plication between input X and a weight matrix W . For exam-
ple, the LSTM contains four different projections for its forget,
input, output gates and candidate content [15], as can be seen in
Equation 6.

ft = sigmoid(W>fxXt + W>fhHt−1 + bf ) (6)

it = sigmoid(W>ixXt + W>ihHt−1 + bi) (7)

ĉt = tanh(W>cxXt + W>chHt−1 + bc) (8)

ot = sigmoid(W>oxXt + W>ohHt−1 + bo) (9)

Similarly, the main components of the Transformer layers
are self-attention layers and feed-forward layers. While the lat-
ter are fundamentally two layers of linear projections, the for-
mer is also comprised of linear projections that generate queries
Q, keys K and values V from the input X:

Q = W>QX (10)

K = W>KX (11)

V = W>V X (12)

SelfAtt(X) = softmax(QK>)V (13)

The main idea here is that each matrix multiplication Y =
WTX in the multilingual model can be decomposed into a
function of shared weights WS and additional language depen-
dent weights WML and WBL

Y = (WS ·WML + WBL)>X (14)

= (WS ·WML)>X + W>BLX (15)

Here the added weights include the first multiplicative term
WML that directly change the magnitude and direction of the
shared weights WS and the biased term WBL provides the net-
work with a content-based bias depending on the input features
X . Each language maintains a distinctive set of WML and
WBL so that the whole architecture is semi-shared.

2.2. Factorization

There is, however, an obstacle that both WML and WBL require
to be the same size with WS , which makes the language depen-
dent weights dominate the shared weights, while the intuition is
the opposite. Fortunately, it is possible to use rank-1 matrices
W̄ ∈ RDin×Dout that can be factorized into vectors [16, 17],
for example with two vectors r ∈ RDin and s ∈ RDout such

that W̄ = rs> which reduces the number of parameters from
Din ×Dout to Din + Dout.

One drawback in this method is the lacking representational
power of Rank-1 matrices. One solution is to modify the fac-
torization into using k vectors per language so that there are
k independent weight factors followed by a summation, which
increases the rank of the additional weight matrices.

W̄ =

k∑
i

ris
>
i (16)

2.3. Computational cost

The factorization above is applied to both WML and WBL

to ensure that the dominated force is still the shared weights,
while each language at k = 1 is characterized by an additional
Din+Dout
Din×Dout

amount of weights. In a typical network architecture
with Din and Dout being typically 512−2048, this amounts for
0.1− 0.3 percents of the total network’s weights per language,
therefore scalable to hundreds.

On the time complexity, the amount of extra computation
comes from generating the combinatory weight W from WS

and the multiplicative/bias terms WML and WBL. Fortunately,
this overhead coming from element-wise multiplication and ad-
dition is rather small compared to the matrix multiplication.
More importantly, it is possible to utilize the optimized imple-
mentation of the original network2 which minimizes the com-
putational requirements of our approach.

On the same subject, [16] proved that W does not have to be
explicitly computed, but their approach required to rewrite the
graph operation for the core networks in popular deep learning
frameworks.

3. Related works and Comparison
In the world of speech recognition, training a single recognizer
for multiple languages is not a thematic stranger [3] from Hid-
den Markov Model (HMM) based models [18, 19], hybrid mod-
els [20] to end-to-end neural based models with CTC [21, 22]
or sequence-to-sequence models [23, 5, 24, 25, 26, 27], with
the last approach being inspired by the success of multilingual
machine translation [1, 2]. The literature especially mentions
the merits of disclosing the language identity (when the utter-
ance is supposed to belong to a single language) to the model,
whose architecture is designed to incorporate the language in-
formation.

One of the manifestations is language gating from either
language embeddings [22] or language codes [21, 28] that aim
at selecting a subset of the neurons in the network hidden layer.
In our current approach, this effect can be achieved by factoriz-
ing further Equation 15 [16]:

Y = (WS ·WML)>X + W>BLX (17)

= (WS · (rms>m)>X + (ras
>
a )>X (18)

= (W>S (X · sm) · rm) + (ras
>
a )>X (19)

In Equation 17, the multiplicative matrix WML is factor-
ized by two vectors rm and sm. The left hand size of Equa-
tion 19 shows us that the those vectors can be learned to gate
the input vector X and the output of the linear projection

2such as the CUDA implementations of LSTM and Self-Attention
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(W>S (X · sm). This intuition also suggested us to initial-
ize rm and sm to one-vectors similarly to normalization tech-
niques [29, 30]. Since layer normalization often comes before
the linear projection layers in Transformers, this scheme also
helps our model to generalize to assigning to each language a
different normalization scale and variance [31].

On the other hand, the right hand side of Equation 19 gives
us the bias to the linear projection which has been used in either
language embeddings [32] and customized attention layers with
language biases [5].

A different line of research involves using language
code [21] to differentiate language coming from a separate clas-
sifier. The language code is often trained separately and then
mixed into the ASR architecture later [28] giving the lingual
bias. Our method can provide a similar effect with end-to-end
training and without architectural modification. The advantage
of this method is to exploit unlabeled (transcript-wise) data to
gather language-specific information.

Architecture wise, [7] makes the network language aware
using language-dependently adaptive feed-forward layers at the
end of each Transformer block. While this method is able to
be effective in translation [33] and speech recognition scenar-
ios [5], it requires a considerable amount of parameters per lan-
guage3 and probably becomes incompatible with future archi-
tectures because it is specifically designed for Transformers.

The closest to our work is the parameter generator [4] that
composes a weight matrix W ∈ RDin×Dout using a shared ten-
sor WS ∈ RDin×Dout×DL and a language embedding vector
L ∈ RDL . The main disadvantage with that approach is that the
amount of parameters linearly scales in the size of the language
embedding DL, and the whole body of parameters participates
in every language. Our initial experiments cannot produce a
reasonable result for a straight comparison, partly because the
memory is quickly overwhelmed by the number of parameters.

For a larger context, weight factorization has been investi-
gated to generate distinguishable yet cheaper copies of an exist-
ing network to allow for economical ensembles [16], Bayesian
networks [34] or continual learning without catastrophe forget-
ting [17]. Similar ideas to use different weights for different
languages have been investigated early on by [35].

4. Experiments
4.1. Datasets

The effects of the weight factorization methods are mea-
sured on datasets publicly available including Mozilla Com-
mon Voice [36] containing up to 27 languages, Euronews [37]
and Europarl-ST [38] having 4 and 9 languages respectively.
The preprocessing steps include converting audio into 40-
dimensional feature frames, and generating BPE for each lan-
guage with 256 codes each. Only Japanese and Chinese are
handled at character level4. All of the three mentioned datasets
come with the predefined validation and test partition, which
are used in our experiments.

Two experimental scenarios are investigated in our work:
initially we work on a set of 7 European languages: German
(de), Italian (it), Spanish (es), Dutch (nl), French (fr), Polish
(pl) and Portuguese (pt) each of which contain at least 60 hours

3Each feed-forward component accounts for around 25% the
amount of parameters of each encoder block.

4Our initial experiments with joined BPE gave worse results for the
27-language dataset

of training data. The second scenario later expands to a total of
27 languages of more origin and diversity.

4.2. Model and Training description

The experiments are conducted with two model architectures,
two of which are commonly used in end-to-end speech recog-
nition [39]: a) LSTM-based encoder-decoder networks [40] in
which the LSTMs have 1024 hidden units and the encoder is
downsampled using two 3 × 3-filter convolutional layers, and
b) Transformer networks [6] with relative attention [41] with
weight factorization for this multilingual setup. For the Trans-
former, we use the Transformer-Big configurations in [6] with
model size 1024 but with 16 encoder layers with stochastic
layer dropout with the same setting as in [12]. We found that
using k = 4 for the additive biases and k = 15 for them multi-
lingual biases is sufficient.

All models are trained on single GPU by grouping a maxi-
mum 45, 000 frames per mini-batch6, and the gradients are up-
dated every 16 mini-batches with adaptive scheduling in [6]
using the base learning rate 1.57 and 4, 096 warm-up steps.
The inputs are masked with SpecAugmentation [40]. Given the
large configuration, we train all models up to 150, 000 updates
or up to 2 weeks. It is notable that the factorized versions have
minimal overhead which results in a 10 − 15% training speed
reduction, while the adapter method requires at least 33% more.

4.3. Baseline models

The comparison in the upcoming result section involves two
previous works that were re-implemented. First, the language
embedding was concatenated to the speech features and word
embeddings at the encoder and decoder respectively which was
used in [32]. Second, the language dependent adapters [7] were
used. In this case, we use adapters in the form of feed-forward
networks with 1, 024 neurons in the hidden layer. While theo-
retically the language embedding is a subset of our factorized
network because the former is essentially a small set of weights
dedicated for each language, the adapter network is fundamen-
tally different because it requires extra layers, adding depths
and nonlinearity levels to the overall architecture, while our
factorization scheme keeps the interaction between inputs and
weights unchanged.

4.4. Experiments with 7 languages

The word error rates for each language using two baseline mod-
els (with Transformer (TF) and LSTM), their factorized ver-
sions and the TF with adapter [7] are shown in Table 1. Aver-
aged over the 7 languages, the error rate is reduced by 15.5%
and 7.2% rel. for the Transformer and LSTM respectively,
and the improvement is significant across languages, unlike the
Adapter technique which manages to reduce the error rate for 4
languages but is not better for the other languages.

Regarding the number of parameters, the Transformer and
its factorized variation has twice as many parameters as the
LSTMs, thus possibly explaining the improvement regarding
performance. While this seems to contradicts the large number
of parameters for the ADT model that needs 42% more space
than the factorized TF, the ADT actually adds more depth (2

5Partly because the initialization is desired to be 1.0
6speech inputs are often longer than their transcriptions, so grouping

mini-batches by frames is more efficient
7The actual learning rate maximizes at around 0.001 and gradually

decreases over the course of training
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per TF block). This is a significant change to the architecture
because with layer normalization, all languages share the same
layer mean and variance at each level, while this is not changed
with the adapter.

4.5. Experiments with 27 languages

Under this condition, the factorization method maintains the im-
provement across all languages, with overall 26% rel. WER re-
duction in average for Transformer and 27.2% rel. for LSTM,
as summarized in Table 2. Importantly, the factorized models
are effective while using only 15% more parameters, while the
ADT Transformer needs almost 1 billion parameters to achieve
a 21.2% rel. improvement, due to each language requiring 2
more layers per block.

While the most resourceful languages such as German, Ital-
ian, Spanish and French observe the similar improvement com-
pared to the 7-language experiment, the lower resource coun-
terparts are often improved significantly compared to the base-
line, regardless of the model architecture. The error rates on
Japanese and Latvian testsets were decreased by 48% rel. com-
pared to the base Transformer, and multiple languages were
improved by 30% rel. including Arabic, Br, Cnh, Cv and Ta.
The only language that remains a relative high error rate is
Dhivehi, in this case staying over 60% regardless of the archi-
tecture. One explanation for the large improvements regarding
lower resource languages is that, the language weights are only
learned to optimize for those particular languages, while the
shared weights are frequently changed attempting to optimize
all different language/task losses. This problem is often alle-
viated using learnable and weighted sampling [42] to help the
gradients remain stable for the less frequently visited languages.

A direct comparison between two Transformer variations
shows that the factorization is consistently better in 21 lan-
guages and the adapters yielded better results in 6, given the
same time and computational constraints. While it is also pos-
sible for the adapters to obtain better performances by longer
training, the presented results provide evidences that our pro-
posed factorization scheme is able to outperform both the base-
line and the deeper language adapter network without extensive
tuning and with reasonable resources.

Table 1: Comparison on the 7-language dataset (WER↓). Our
baseline models include the Transformers (TF), LSTM and their
factorized (FTR) variations respectively. The last column is the
Transformer with Adapter (ADT) [7].

Language TF +FTR LSTM +FTR ADT

# Params 335M 350M 167M 172M 497M

de 15.78 14.62 15.75 15.53 14.71
es 16.06 13.47 14.66 14.09 14.81
fr 17.34 16.26 17.35 16.44 16.76
it 18.62 15.82 16.65 15.63 17.58
nl 26.61 22.33 24.18 22.57 31.84
pl 20.4 15.7 16.39 15.28 20.65
pt 25.8 19.3 23.21 19.49 25.19

Mean 20.08 16.97 18.31 17.00 20.2

Table 2: Comparison on the 27-language dataset. The models
being shown include Transformers (TF), LSTM (TF) and their
factorized versions (FTR). WER↓ .

Language TF +FTR LSTM +FTR ADT

# Params 355M 416M 177M 194M 980M

(ar) 26.2 17.81 28.73 20.02 16.56
(br) 51.85 34.69 71.53 40.49 40.21
(cnh) 52 38.33 62.19 36.59 55.18
(cv) 53.88 33.11 61.61 39.6 38.40
(de) 16.89 15.62 19.89 16.59 16.35
(dv) 71.63 63.72 80.18 64.82 65.23
(es) 16.05 14.53 18.41 14.82 15.27
(et) 33.95 30.43 39.63 34.26 28.12
(fr) 18.61 17.24 20.86 17.43 17.87
(ia) 49.86 33.24 48.39 31.96 42.40
(id) 28.78 17.28 32.9 20.22 22.79
(it) 20.76 18 21.99 18.07 19.60
(ja) 39.17 20.44 38.92 23.79 27.55
(lv) 66.17 34.3 66.66 37.93 43.57
(ky) 22.08 17.17 18.68 21.46 12.86
(mn) 42.03 35.03 46.42 38.5 34.12
(nl) 27.54 23.75 29.44 23.93 28.30
(pl) 21.81 17.8 19.92 17.19 18.75
(pt) 25.16 21.38 27.13 21.37 22.82
(ro) 39.39 32.15 34.7 26.73 41.71
(sah) 57.47 50.47 69.04 49.2 55.27
(sl) 49.73 22.01 48.92 29.66 20.77
(ta) 33.1 22.34 18.87 28 16.36
(tr) 6.04 5.16 4.99 8.29 2.40
(tt) 24.96 22.12 38.03 24.07 21.83
(zh) 24.05 22.53 33.01 23.54 25.99

Mean 35.4 26.2 38.5 28.0 27.78

5. Conclusion
In this work, we proposed a method to decompose and factorize
weights enabling multilingual end-to-end ASR models to learn
more efficiently. While the main results are promising and the
method can be applied to arbitrary neural architectures, we are
also aware that method requires the utterance to contain a single
language and thus is limited to such scenarios. Future work will
investigate the usage in a code-mixing scenario and incorporat-
ing unlabeled data for language-specific feature learning.
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