SKIT

Karlsruhe Institute of Technology

Code-Switching using Language-Agnostic
Speech Modeling

Master’s Thesis of

Ugan, Enes Yavuz

at the Department of Informatics
Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr.-Ing. Tamim Asfour
Advisor: M.Sc. Christian Huber

Second advisor: M.Sc. Juan Hussain

01. June 2021 - 30. November 2021

I declare that I have developed and written the enclosed thesis completely by myself, and have
not used sources or means without declaration in the text.
Karlsruhe, November 30, 2021

(Ugan, Enes Yavuz)

Abstract

For many years now, research in the area of artificial intelligence has seen a massive surge.
Due to numerous developments like increased processing power, increased memory capacities
as well as the availability of more data the majority of new developments utilize deep neural
networks (DNN). Specifically, in the field of automatic speech recognition (ASR) neural network
architectures are utilized to a great extent.

As of today, there are many spoken languages, some with more and some with less available
data. Training a separate model for all languages with enough data is possible. Due to
restricted capacities on devices that are targeted for deployment, having a separate model for
each language is not always possible. Another issue occurs in cases in which the user speaks
multiple languages and mixes sentences or even uses different languages during one sentence.
These cases are referred to as inter-sentential and intra-sentential code-switching [38]. The
issues mentioned above can be addressed by training one model for multiple languages. Such
a system can greatly reduce the amount of storage capacity as well as the processing power
needed. This however may lead to lower recognition performances as the languages have to
share their model parameters.

In order to address and analyse the issues mentioned above, we conduct a series of experiments
on multilingual speech recognition in the case of the three languages German, Arabic as well
as English. All our models utilize encoder-decoder based sequence-to-sequence systems. The
encoder is based on bidirectional Long Short-Term Memory (LSTM) layers [12] and the decoder
on unidirectional LSTMs with an additional multi-head-attention mechanism. We will show
Word-Error-Rate (WER) results of different models on test sets consisting of monolingual data,
and data with intra-and inter-sentential code-switching between aforementioned languages.

Zusammenfassung

Seit einigen Jahren hat die Forschung im Bereich der kiinstlichen Intelligenz einen starken
Aufschwung erlebt. Aufgrund zahlreicher Entwicklungen, wie die verbesserte Rechenleistung,
eine erhohte Speicherkapazitit, als auch die Menge vorhandener Daten, fokusuieren sich mitt-
lerweile die Mehrheit der Entwicklungen auf die Verwendung von tiefen neuronalen Netzen.
Insbesondere finden diese neuronalen Netze im Gebiet der automatischen Spracherkennung
eine sehr intensive Anwendung,.

Heutzutage gibt es viele Sprachen die gesprochen werden, dabei haben einige mehr und andere
weniger verfigbare Daten. Das Training eines separaten Modells fiir Sprachen mit geniigend
Daten ist moglich, aufgrund der kumulierten Grof3e aller Modelle stellt sich jedoch die Frage der
Einsatzfahigkeit solcher Systeme. Da Geréte, welche fiir den Einsatz vorgeshen sind, begrenzte
Kapazitaten habenen ist es nicht immer moglich ein Modell fiir jede Sprache zu verwenden.
Ein weiteres Problem tritt in Féllen auf, in denen der Nutzer mehr sprachig ist. Satze konnen
dementsprechend in verschieden Sprachen gesprochen werden. Es kann sogar zur Verwendung
mehrerer in Sprachen in einem Satz kommen. Diese Fille werden als inter-sentential und intra-
sentential code-switching [38] bezeichnet. Diese angesprochenen Probleme, kénnen durch die
Verwendung eines multilingualen Modells angesprochen werden. Dabei werden sowohl die
Speicherkapazitat als auch die Rechenleistung, erheblich reduziert. Jedoch kann dies zu einer
reduzierten Erkennungsleistungen fithren, da die Modellparameter unter allen Sprachen geteilt
werden missen.

Um die oben genannten Fragestellungen zu adressieren und zu analysieren, fithren wir eine
Reihe von Experimenten zur mehrsprachigen Spracherkennung, fiir die drei Sprachen Deutsch,
Arabisch und Englisch durch. Alle unsere Modelle verwenden ein auf Encoder-Decoder basie-
rendes Sequenz-zu-Sequenz System. Der Encoder besteht aus bidirektionalen Long Short-Term
Memory (LSTM) Schichten [12] und der Decoder aus unidirektionalen LSTMs, mit einem
zusatzlichen multi-head-attention Mechanismus. Wir werden die Ergebnisse der Wortfehlerra-
te (WER) verschiedener Modelle auf Testsdtzen zeigen, die sowohl aus einsprachigen Daten
bestehen, als auch auf Datenséatzen mit intra- und intersentiellem Codewechsel zwischen den
oben genannten Sprachen.

ii

Contents

Abstract

Zusammenfassung

Contents

List of Figures

List of Tables

1. Introduction

2. Fundamentals

2.1.
2.2.

2.3.

2.4.

2.5.
2.6.
2.7.

Automatic Speech Recognition
Data Preparation. L
2.2.1. AudioPre-Processing o
2.2.2. TextPreparation
Neural Networks
2.3.1. Convolutional Neural Network
2.3.2. Recurrent Neural Network
2.33. Long Short-Term Memory
2.34. Bidirectional LSTM
23.5. Attention e
2.3.6. Multi-Head-Attention
23.7. Dropout
2.3.8. Encoder-Decoder Networks
Evaluation Metrics
24.1. WordErrorRate
242, Perplexity
Curriculum learning
Sequence-to-sequence Models oL
Code-switching

3. Related Work

3.1.

Language-agnostic multilingual seq2seqmodels
3.1.1. Mixing training set of multiple languages
3.1.2. Prediction language identifier and text output
3.1.3. Using language feature vectors

iii

vi

[N B = S B N

Contents

3.2. Code-switching in seq2seqmodels
3.2.1. Predicting language switch 0 0L
3.2.2. Multi-task learning
3.2.3. Code-switching with frame level language identifiers

4. Approach

4.1. Models
4.1.1. Basemodel
4.1.2. Different architectural additions00 L.
42, Data. e
4.2.1. Data for training and evaluation
422, BPEData
4.2.3. Inter-sentential code-switching
43. Experimental Setup
43.1. General Model Parameters
43.2. CurriculumLearning L o

5. Evaluation

5.1. First-curriculum
5.1.1. Monolingual Baseline Models
5.1.2. Multilingual Models oo oL
5.2. Second-curriculum
5.3. Additional Experiments

6. Conclusion and Future Work

6.1. Conclusion
6.2. Future Work e
Bibliography

A. Appendix

A.1. Evaluationtables

iv

23
23
23
24
25
26
28
28
30
30
30

31
31
31
32
36
42

45
45
46

48

52

List of Figures

2.1.

2.2.

2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.

4.1.
4.2.

4.3.

5.1

Two signals of the same utterance “rob ate my biscuits yesterday” recorded by
two different speakers. The x-axis depicts the time dimension and the y-axis
the signal amplitude.
Logarithmic Mel filter bank coefficients for the utterance “the feet down and re-
lease the hands”, with the identifier: 6-3W9CZHKKs-0007901-0008074. Brighter
colors depict higher values.
LeNet-5 architecture [19].
Simplified Elman-Network architecture.
Unfolded RNNin time axis.
Detailed display of an LSTM-cell and its connections.
LSTM-cell with three sequential inputs.
Eight attention heads of the Seq2seq model described in subsection 4.1.1. From
top left to to bottom right are the heads one to eight. The utterance is: haben
sie sich beinahe taglich wertlos oder schuldig gefihlt”.

Multilingual Network utilizing LFV’s.
Encoder-Decoder with MTL.
CTC model with frame-level language classification.

Base sequence-to-sequence encoder-decoder model.
a): Additional token-based language prediction. b): Additional frame-based
language classification. c): Additional language classification which is used to
determine the adapter module tobeused. L.
Sequence-to-sequence encoder-decoder model, previous language prediction is
used in following steps.

Attention of the most significant head for predicting the first token of the
utterance “sixty thousand” with the identifier: DanielKahneman_2010-0106939-
0107048. a) Left figure: Seq2seq_mt_dec. b) Right figure: Seq2seq_lid.

O 00 N

List of Tables

4.1.
4.2.
4.3.

5.1
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.

5.9.

Al

A2

A3.

Data used during training. Lo 27
Data used for cross-validation. L. 27
Test data to determine final performance of systems. 28
Results of monolingual models on monolingual test sets. 31
Results of monolingual models on code-switching test sets. 32
Results of multilingual models on monolingual test sets. 33
Results of multilingual models on code-switching testsets. 34
Results of multilingual models on monolingual test sets after second-curriculum. 37

Results of multilingual models on code-switching test sets after second-curriculum. 39

Average WER of multilingual models on all test sets after second-curriculum.. 41
Results of multi-lingual models on mono-lingual tests using different training
SetUPS. 42
Results of multi-lingual models on code-switching tests using different training
SELUPS. . . . e 43
Results of all models after training without code-switching data. Best WERs of
mono-& multilingual models are writteninbold. 53
Results of all models after training with code-switching data. Best WER per-
formances are writteninbold. oo oo oo 54

Results of all models upper part without lower part with inter-sentential CS
data seen during training. Best WERs of models trained with and without CS
are written in bold. Values of best performing monolingual models are written
inboldaswell. 55

Vi

1. Introduction

Automatic Speech Recognition (ASR) is the task of translating human speech into a sequence
of words which can be processed by machines.

ASR systems have many applications in our daily lives as well as in professional work envi-
ronments. For instance, such systems can be used on mobile devices in order to easily access
information by using speech only. Other examples are, starting phone calls, or defining new
destinations on navigation systems while driving which helps the user keep their eyes on
the street and thus reducing the threat of car accidents. Some example applications in work
environments would be Pick-to-Voice system in warehouses or the logging of medical processes
during examinations or even operations on patients which reduces the work of the medical
staff.

While classic systems modeled the acoustic and the language model separately new approaches
utilize neural networks (NN) and model these parts implicitly in one system. Due to the high
variation in the data collected, combined with less explicit modeling of phenomenons, these
NNs need more training data to yield good performances, when compared to classic approaches.
The variation of data is especially apparent in the case of speech recognition. Different dialects,
mixing languages, medical conditions which change the voice or multiple speakers speaking
simultaneously, which is referred to as the cocktailparty phenomenon, are just a few examples
which pose great challenges to current ASR systems. In order to overcome these difficulties we
need a large amount of training data that has many representations of these cases. As this is
often not the case some fine-tuning for the specific use case needs to be applied to achieve good
performance. This however, can lead to the forgetting problem reducing the models capabilities
in more general settings. A similar problem of not having enough data to train systems with
good performance appears for languages which are not as widely spoken or for which there
is not enough data collected. In order to overcome this specific problem, parameter sharing
can be applied. In this thesis, one ASR system for multiple languages is trained. This leads to
sharing the parameters of one model between all languages, aiming to benefit the language
with sparse or less representative training data. This can also help alleviate the problem of
recognizing code-switching utterances.

In this Thesis, we will analyse and conduct experiments for multilingual speech recognition
in the setting of having no specific language information. We will use sequence-to-sequence
models in an encoder-decoder setting based on Long Short-Term Memory (LSTMs) cells as well
as a multi-head-attention mechanism which has yielded good results in the past. The model
can be seen in subsection 4.1.1. The multilingual setting analysed in this thesis will include
three languages:

1. Introduction

« Arabic
o German
« English

The baseline models will be trained with all three languages mixed in one training set. We will
also analyse how the model performs after training on different multi-task settings in which
the second task, next to the main speech recognition one, is defined as predicting the correct
language. Models with a custom defined data-set consisting of artificially generated inter-
sentential code-switching samples will be trained too. Other models will also include some
incorporated language-embedding which will be obtained through the network as well. All
experiments will be evaluated with respect to the word error rates (WERs). The results will be
analysed on monolingual test sets, as well as on some artificially generated code-switching data.

The following section 2 will briefly describe fundamental pre-processing steps in ASR as
well as some basics of neural networks and the architectural components used in our model.
Chapter 3 will describe previous works related to this thesis. Work focusing on multi-lingual
models as well as aiming at enhancing code-switching performance will be presented. After-
wards in section 4 the model architectures, data-sets and the experimental setup used in this
thesis will be described. In the following chapter 5 the performance of the different systems
will be analysed on test data. Last but not least in section 6 a conclusion will be given and some
interesting future approaches to tackle the tasks of multilingual ASR and code-switching will
be discussed.

2. Fundamentals

In this chapter, a short introduction to the topics relevant for this thesis will be given. Subjects
covered will be data processing, evaluation metrics, training regimes, and neural networks. For
a more sophisticated explanation of the models, we refer the reader to the published papers
considering the topic of interest. These will of course be cited in the respective sections.

2.1. Automatic Speech Recognition

Automatic speech recognition describes the task of automatically translating speech into a
sequence of words. In the past, automatic speech recognition was divided into many sub-
modules such as the acoustic model, the language model, and a pronunciation dictionary.
The acoustic model in connection with the pronunciation dictionary was used to model the
probabilities of speech with respect to a sequence of words. The language model was used to
limit the possible words in the next decoding step as well as getting the best prediction for the
next word considering the previous words as well as the probabilities from the acoustic model.
The language model was also important in order to differentiate between similar sounding
words. These so called classic systems were mathematically described by the fundamental
equation.

- - P(X |W)-P(W)
W = arg mV%X PW|X)= argmv{a}x P(X) (2.1)

= arg mV%XP(X | W) - P(W)

with W being all possible word sequences and X the pre-processed speech data. W represents
the target word sequence which maximizes the function. While P(W) represents the language
model the representation of the acoustic model by P(X | W) is not one hundred percent accurate
as in the case of speech recognition X represents a continues space and not a discrete one.
The mathematically correct way would be using a probability density function instead of a
probability distribution. For more information about classic systems please refer to [33].

At first parts of these models where replaced with neural networks. Nowadays fully end-to-end
neural network systems have replaced those older sub-models combining all of them in one big
neural network. Most of these neural networks utilize an encoder-decoder framework which
are statistical models calculating the conditional probability

PY | X)=P(y,....ys | X)
=Py, | X) .- P(ys | Y15 ¥s-1,X)

where X denotes a sequence of speech features and Y denotes a sequence of target tokens. In
the end the final goal of such ASR systems can be formulated as

Y = arg m}a}x{P(Y | X))}, (2.3)

(2.2)

2. Fundamentals

which defines the result as the word or token sequence out of all possible sequences, with the
highest conditional probability.

2.2. Data Preparation

In this part, the steps for preparing the data in order to train an ASR system, based on a neural
network will be explained. In subsection 2.2.1 the pre-processing of the audio data will be
described. In the following subsection 2.2.2 an explanation on how to utilize the target text to
train a neural network will be given.

Due to its one dimensional nature, one might think that audio signals as a feature should be
easier to use for automatic speech recognition, than for example two dimensional images in
computer vision. This assumption, however, is quite misleading as there are major obstacles
that need to be surpassed and can happen to be overlooked at first sight.

The information given in this chapter is based on [33]. The main difficulties of speech signals
can be described as continuity, variability, complexity, and ambiguity. Two of which can be
tackled in the pre-processing step. The problem of continuity becomes clear when plotting
a speech signal. In such signals it is generally hard to find the beginning and the end of
graphemes, syllables, or even words. The second major difficulty is the very high variability in
recorded speech signals. This variance is caused by many factors, such as the hardware used
for the recording, the structural surrounding of the microphone, the person who is speaking,
the mood of the speaker, or even health conditions, just to name a few. All of these parameters
affect the raw speech signal to a great extent and as such make the use of it a non optimal
approach. This will be further explained in the audio pre-processing step, subsection 2.2.1.
Example speech signals of the same utterance are given in Figure 2.1. Another obstacle for
successful automatic speech recognition is the complexity of the task which not only needs big
storage capabilities in order to store the audio data but also has a very huge search space. A
sentence with the length of L and a language with K words has K possible word combinations.
Reducing the number of words is addressed during the text preparation. Last but not least the
ambiguity of spoken words, so called homophones, words that have the same pronunciation
but different meanings is another difficult task to solve in the context of speech recognition.
An example of such words would be the "bank” on which people can sit and the "bank” in
which money is kept.

2.2.1. Audio Pre-Processing

In order to be processed by commonly used digital computers, the analog signal needs to be
converted to discrete values. This is done by sampling the signal. Research has shown that
information in the speech signal above 8 kHz is redundant. This is why the signal is low pass
filtered to only allow for frequencies below 8kHz and as such a sampling rate of 16kHz is
sufficient to avoid aliasing effects on such low pass filtered signals. This sampling rate is also
used for all the experiments in this thesis. Another point is to quantify the values of the signal,
which is usually done with 16bit, as it was shown that only 12bit is needed to quantify the data
with an information loss which can not be distinguished by human perception. Afterwards in
order to do a short-time spectral analyses a Hamming window on a frame of 25 ms is applied.

2. Fundamentals

0.6

0.4

0z

0.0

Y 15 20 25 30 0 1 2 3 4

Figure 2.1.: Two signals of the same utterance “rob ate my biscuits yesterday” recorded by two
different speakers. The x-axis depicts the time dimension and the y-axis the signal
amplitude.

These windows need to be small enough for the signal, to be considered stationary. As we
apply a Discrete Fourier Transformation on these windows, the trade off between frequency
resolution and time resolution becomes visible. Bigger windows yield a higher frequency
resolution but low time resolution and smaller windows vice versa. This is why the window
size was set to 25 ms in this thesis which has shown to be a good size in previous research.
In order to improve the resolution in time and account for changes at border regions of the
window, the frames have an overlap of 15 ms. In these windowed signals the Fast Fourier
Transformation Algorithm is calculated. As the input are real values the output after taking
the absolute of the discrete Fourier Transformation are symmetric discrete values. This is why
the data size can be reduced in half. Afterwards the spectrum is Mel-scaled and the logarithmic
values are taken as features. In the past a common step was to apply an inverse Fourier
Transformation and use the resulting Mel-Cepstrum’s as features. In this thesis, however,
we stopped after taking the logarithm of the Mel-Spectrum’s. Figure 2.2 shows an example
output of an utterance after the pre-proccessing step. The y-axis depicts the logarithmic Mel
coefficients which we set to 40 and the x-axis shows the number of frames. Afterwards this is
fed into the model as the input feature.

2.2.2. Text Preparation

Another important step to train automatic speech recognition systems is the text data prepa-
ration, as well as the definition of what the labels of the system should be. We applied the
following pre-processing steps. Numbers were replaced with their corresponding word rep-
resentation. All brackets and punctuation marks were deleted. Additionally, the text is also
lower-cased, as it was previously shown to yield better performance than mixed-cased text
[10].

Another important decision is what kind of target labels should be used. A few possible options
are using phonemes, graphemes, Byte pair encodings [9], among many others. In this work,
we decided to leverage the Byte pair encodings. Byte pair encoding tries to encode a given text
with a specific amount of tokens. Tokens can be words, parts of words, or even only letters.
In our case, we generated 4000 tokens as target labels. To achieve representative tokens in

2. Fundamentals

6-3W9CZHKKs-0007901-0008074

Imel coefficients

4] 20 40 60 80 100 120 140 160
frames

Figure 2.2.: Logarithmic Mel filter bank coeflicients for the utterance "the feet down and release
the hands”, with the identifier: 6-3W9CZHKKs-0007901-0008074. Brighter colors
depict higher values.

our multilingual setting, we mixed together text sets of the three languages German, Arabic,
along with English and applied the Byte pair encoding (BPE) algorithm on it. However there
are a few points which need to be considered here. First of all the different amount of available
text data for the languages. If one language is more prominent in the text, the BPE result will
be heavily favoring that language in the resulting tokens, meaning the tokens will be able to
represent that language very well but the other languages will suffer heavily. Another point
arises in the Arabic text corpus which has an overwhelming amount of news data and only
small amounts of general data from different domains. If used as such, the BPE tokens will be
focused on encoding text related to news but not general texts which in return will lead to a
harder recognition task for the resulting ASR system on general domain data. Following above
mentioned circumstances we first generate an Arabic text file with an over sampled amount
of general non news text. We than shuffle all our text files containing the three languages
separately. Afterwards we only pick the first 100.000 lines of each file and mix them into one
file. This resulting text data is than used to calculate the BPE tokens, which are used as target
labels for the multilingual systems used in this thesis.

2.3. Neural Networks

In this section, a brief introduction of the most general neural network architectures used in
this thesis will be given.

2. Fundamentals

Layer o LeNet -
Digit image 5
CONV1
CONV 2
avg avg FC FC
pool pool ‘ "
— —_— — > > |—»| >0 y
[[=2 5 5 =2 '
s=1 s=2 s=1 s§=2 - softmax
10 labels
32x32x1 28x28x6 14X14 X6 10X10X 16 5X5x16 120 84

Figure 2.3.: LeNet-5 architecture [19].

2.3.1. Convolutional Neural Network

In order to achieve invariance towards same features occurring at different times in a speech
signal at first, a Time Delay Neural Network (TDNN) was proposed by Waibel et al. in 1987 [45].
This yielded significant improvements over classic systems in the task of phoneme recognition.
TDNNs can also be considered a form of one-dimensional convolutional networks.

Similar to TDNNs developed in speech recognition, researchers in the field of computer vision
developed a two-dimensional convolutional network, generally only called convolutional neural
network (CNN). These CNNs aim at increasing invariance in two dimensions as well as reducing
the number of parameters when compared to fully connected layers. Nowadays CNNs are
commonly used in automatic speech recognition systems as well.

Convolutional neural networks combine architectural designs such as local receptive fields,
weight sharing, and spatial and temporal sub-sampling which to some extent achieve the
benefit of shift, scale and distortion invariance [18]. The kernel size determines the so-called
local receptive area and has one weight for each element. Determined by the stride this kernel
is then moved over the input and can be used for sup-sampling. While moving over the capture,
the weights of the kernel are kept the same, for each element, which is where the weight
sharing takes place. Using multiple such kernels resembles learning multiple feature extractors
which aim at finding different features all across the input.

Some of the most prominent models successfully utilizing the CNN architecture are the AlexNet
[17], VGG-16 [40] as well as the LeNet-5 [18] also shown in Figure 2.3.

2.3.2. Recurrent Neural Network

In the case of speech recognition, acoustically but also semantically, what is said during the
speech at one point has some dependency towards what was said at some previous point in
time. If we consider phonemes, for example, different languages have more often occurring
transitions between some phonemes in comparison to other transitions, which may even not
occur at all. Considering the grammar and vocabulary of languages it is save to say that there
are graphemes and word transitions which are more common than others and some are never
seen. Due to these settings in which dependencies need to be put into consideration, a specific
network, to model these dependencies over time was developed, the recurrent neural network
(RNN). One might think that CNNs are also able to capture some time dependencies if one
of the convolutions is done over the time dimension. However, due to the need of having

2. Fundamentals

features over multiple time-steps in advance, this needs a more complex data pre-processing.
In contrast, RNN only have one input at a time and are still able to capture dependencies over
multiple steps.

In the paper, [48] it is shown, that in the task of natural language processing (NLP) CNNs
perform better if the task is a classification task which can be solved considering some key words
or key parts of the input. RNN-architectures, however, outperform CNNs if there are longer
dependencies in an input sequence in which the beginning has a significant effect on the output.
They also show that classification based on short independent parts, as in CNNs, may mislead the
model’s results. In the ASR setting, its clear that utilizing RNN structures can be quite beneficial.

Probably the most basic RNN is the Elman Network. In Figure 2.4

an extracted and simplified example of the proposed network in Yoy
[8] is shown. In this system, the previous hidden state h(;_y) is

copied and used together with the input from the current time

step x4 to calculate the new hidden units ;). The combination

of the current input with the previous hidden state are deter-

mined by trainable parameters. Following, it is possible to say

that the output y,) at step ¢ is now influenced by previous inputs.

A recurrent network if unfolded can also be pictured as a feed hit1)

forward network without cycles, as shown in Figure 2.5. Here

it is possible to observe that all inputs are transformed using

the same weights W, The output and the transition “between”

hidden states respectively share their weights W, W as well. X
Looking at the unfolded structure in the image one can more eas-
ily comprehend that in order to learn the weights of a recurrent
model it is needed to back-propagate the error through time as
h(,_1) influences all hidden units and as such the output values
after time step ¢. In Figure 2.5 if we wanted to calculated the
gradient for h(,_;) and the sequence ended at ¢ + 1 the calculations would look like

h

Figure 2.4.: Simplified
Elman-Network
architecture.

OL _ OLiesn) Ohiesny Ol Ol Oy OLgey)
Ohi—1) Ohsry Ohy Ohgyy Oy hp—ry Ohy)

(2.4)

where L ;) and h(;) denote the loss calculated, and the hidden state, at time ¢. Looking at
equation 2.4 one potential problem becomes visible. In the left part of the addition, we can see
a chain of multiple multiplications which may lead to either exploding or vanishing gradients,
depending on the weights being slightly higher or lower than one. One possible solution for this
kind of problems are Long Short-Term Memory cells, which will be discussed in subsection 2.3.3.

2.3.3. Long Short-Term Memory

As mentioned in the previous subsection 2.3.2 the Long Short-Term Memory (LSTM) [12]
is a building blog that can be used to implement a recurrent system which deals with the
problems of vanishing and exploding gradients in applications with longer input sequences.
As the authors in [12] mention, the constant error back-propagation over many time steps

2. Fundamentals

o)

wo
H
@, Unfolded : :
wl

X(1) X(t-1) X(1) X(t+1)

Figure 2.5.: Unfolded RNN in time axis.

enables the models to learn longer dependencies over the time dimension as well. An example
visualization of an LSTM is given in Figure 2.6. Here z, € R%model depicts an input vector at
time t. h, ; € R%moac! represents the hidden state of the the previous LSTM-cell. In case of
the first input usually a zero-vector is used. The vector ¢, ; € R%mode! illustrates the cell state
vector which plays a major role in learning long term dependencies. The W values denote
weight matrices. There are four important components of an LSTM cell. The three gates.

+ The forget gate:
Je=0Wyzy +by+ Wyphy 4 +byy) (2.5)

Intuitively said, this gate regulates how much information from the previous cell state
should be kept for the current one. This can also be analysed mathematically as the
Sigmoid activation function only outputs values between zero and one in which, zero
would lead to a loss of information, and 1 would completely retain the information.

» The input gate:
it = O'(Wz, Ty + biWhihtfl -+ bhl) (26)

The input gate determines how much information of the current content will be added
to the cell state. As it is shown the activation is chosen to be the Sigmoid function
resulting in a similar behaviour as the forget gate. The current context is given as the
linear combination of the current input =, with the previous hidden state h, ;. The
element-wise multiplication is then able to adjust the influence of each dimension in the
linearly transformed current context g, which is afterwards accordingly added to the
long term cell state c.

gy = tanh(W x, + b, + W, hy 1 +by,) (2.7)
« The output gate:
0y = U(WO:L‘t + bO + Whohtfl + bho) (28)

Here the current content is used to decide which information of the cell state should be
outputted, using a Sigmoid function.

2. Fundamentals

he
A
%2 >O—>H > Ci
fT F’% fanl]
o] [o]
s A'T‘ (S SNEN > he

Tt

Figure 2.6.: Detailed display of an LSTM-cell and its connections.

The fourth important part of the LSTM-cell is the cell state which is influenced by the above
mentioned gates.

Cp = ft ©) Ci_1 + it ©) 9 (29)

Looking at Figure 2.6 and Equation 2.9, it is possible to see that there are multiple additive
errors which are now back-propagated from the previous time steps. These can balance each
other out and thus prevent the gradient from vanishing or exploding. Another important point
is the direct influence of the cell state at time ¢ to the next step ¢ + 1. This enables the error to
be back-propagated in a way which is more direct without being influenced by any weight
matrices and specifically enables the system to have a more meaningful gradient over longer
sequences. To give a more clear view of how cell states are connected, Figure 2.7 shows an
example of how three sequential inputs x are processed in an LSTM-cell.

2.3.4. Bidirectional LSTM

The idea of the bidirectional LSTM (Bi-LSTM) is the potential loss of the surrounding information
when creating the output at time ¢ as the hidden state is only based on the current and previous
inputs. In order to also account for the information which is following in the next steps, the
bidirectional LSTM was proposed. Basically, a second LSTM is used and fed the information
the other way round, with respect to the time axis. The output of both LSTMs is than combined
into one output at each step ¢. This combination can be done in varying ways, per addition or
concatenation just to name a few.

2.3.5. Attention

Previous encoder-decoder networks were designed to encode the input into a fixed-length
hidden representation and the decoder would decode that vector. The authors in [4] suggest
that such a fixed-length representation is a bottleneck for these models. And as such, they
propose to use an attention mechanism which decides for itself which parts of a variable-length
encoder output are relevant to predict the new output. Another effect of the attention module
is the potential alignment of the input with the output. In speech recognition this would be an
alignment of speech frames with output tokens which is other wise a non-trivial task, as there

10

2. Fundamentals

) |
—»>—X 2 >
@n>
A [Wag A
(o] [tann] (0]

|
© © &

Figure 2.7.: LSTM-cell with three sequential inputs.

are generally more speech frames than output tokens. In the following a description of the
attention mechanism implemented in this thesis will be provided.

Given h; € Rémodet | as the outputted hidden vector of the encoder for position j € N with
feature dimensions d,,;.;, the encoder output can be written as H € R7*%modet, The output
from the decoder token embedding is S € R*@modet, where I depicts the number of inputted
tokens in the decoder. s; € R¥modet is accordingly the embedding of the i-th output token, .
Now S and H are transformed to so called queries, keys and values via linear transformations.

Each of these linear transformation are calculated using a separate weight matrices W¢,, Wy, Wy, €

Rémoder*dmoder, Next up a similarity score is calculated using the dot product of the query
Q € RI*4moder with the transposed Key matrix K7 € R¥moder*/,

4q; k’;f
V dmodel

the result being e € R?*’. In order to avoid results with too high values causing unstable
gradients during training, a scaling factor is introduced to the similarity metric. Afterwards, for
each row of e, a Softmax is calculated over the similarity values, as depicted in Equation 2.14.
This results in a normalized vector defining the importance of each encoder output for the next
hidden state of the decoder with respect to the previous state which is encoded in the query.

elj = (2.13)

expe,; .
= # (2.14)
ZkZl €k

Last but not least for each row of o the weighted sum over the values V € R7*%modet s

calculated. X
€ = ijl Q5 V; (2.15)

11

2. Fundamentals

The result is also called the context vector ¢; € R%modacl, In this project, this is implemented via
matrix multiplication and yields the matrix C' € R!*%moder,

A special case of the above mentioned attention module is called self-attention. In this case, all
input parameters g, k, and v are of the same origin and thus the name self”.

2.3.6. Multi-Head-Attention

In subsection 2.3.5 the basic attention mechanism was described. One possible limitation of
this system is that there might be multiple encoder frames containing different but nonetheless
important information. In order to predict a token at time ¢, encoder frames not just around
frame ¢ but also at future steps further ahead might be important. However, having only one
module could only invest so much on specific parts of the input as due to the nature of the
Softmax distribution all probabilities add up to one. In order to enhance the representational
prowess of such modules the multi-head-attention (MHA) was developed.

After the first linear transformation of the query, key, and value inputs, those vectors are split
depending on the number of heads. In our thesis, this number is defined as eight. This means a

query now looks like this:
Q - |RZ'><8><(dmodel/8) (2_16)

Generally speaking the Equations 2.13, 2.14 and 2.15 are now calculated for each head separately
on queries, keys and values as depicted for queries in Equation 2.16. At the end of the attention
after calculating the context from Equation 2.15 for all heads, the context vectors of the different
heads are concatenated back to one vector with the original dimension d,,, ;- An example
image of the attention result of a model used in this thesis is given in Figure 2.8. Shown here
are the attention matrices for the eight attention heads for one example utterance. Brighter
colors depict higher influence of the corresponding encoder output at the respected position
of the output sequence. In all heads the alignment effect between acoustic feature and the
target label sequence, mentioned in subsection 2.3.5, are visible. In some cases the heads are
more focused on specific encoder frames for example in head five. In others like head six the
attention is more divergent and focuses interestingly on the last encoder frame. As one would
expect, a diagonal importance trace can be seen which roughly shows which position in the
acoustic corresponds to which output token.

2.3.7. Dropout

In the context of artificial intelligence and specifically neural networks, dropout describes
the probability with which a neuron is disabled during one training iteration. In our thesis a
dropout of 0,2 was applied on specific layers, this means that about 20% of the neurons in these
layers are disabled during training. One idea behind the dropout is to enable the model for
better generalization and preventing feature co-adaptation. Another important point, however,
is the theory that each dropout can be considered to train a separate model. These models have
shared parameters as the still active neurons and their connections are still the same. During
inference the dropout is not applied, which results in a collective model of many systems and
thus yields better performance. In [11] the authors show how a random dropout of neurons
prevents the models from over-fitting as well as increases its performance. Although their

12

2. Fundamentals

frames frames frames

Figure 2.8.: Eight attention heads of the Seq2seq model described in subsection 4.1.1. From top
left to to bottom right are the heads one to eight. The utterance is: “haben sie sich
beinahe taglich wertlos oder schuldig gefiihlt”.

example shows results in the task of computer vision, the effects persist in other tasks such as
ASR or neual machine translation as well.

2.3.8. Encoder-Decoder Networks

Encoder-decoder Networks are made up of two parts. The first part is the encoder and the
second one is the Decoder. The encoder network can be made up of any kind of layers or
sub-modules, for example, the ones mentioned in section 2.3. The idea is to encode an input
into a hidden representation which is usually not human interpretable. The decoder is made up
of different layers and sub-modules similar to the encoder and tries to decode the information
given in the hidden representation. In [43] the authors talk about the problem normal deep
neural networks have with variable length inputs and outputs and propose a sequence-to-
sequence model based on an encoder-decoder introduced in [7]. They use this setup in the
context of translation and map the variable length input sentence in one language to a fixed
sized vector. This vector is then used in the decoding steps as an extra input and as such

13

2. Fundamentals

provides the system with some compressed information about the text which was inputted
to be translated. This example shows a general use case of an encoder-decoder framework in
neural machine translation as well as in tasks such as automatic speech recognition.

2.4. Evaluation Metrics

In this section, two ways of evaluating a speech recognition system are explained. While the
perplexity (subsection 2.4.2) is used to evaluate the model during training, the Word error rate
(subsection 2.4.1) is used as a final evaluation of the model to have some comparable numbers
with systems of other labs or researchers.

2.4.1. Word Error Rate

In the field of speech recognition one of the most commonly used evaluation metrics is the word
error rate (WER) or its aberrations like Character Error Rate (CER) in the case of languages
which do not use an alphabet as the writing system, like Chinese or Japanese.

The WER is a metric comparing the hypothesis prediction of an ASR model with its ground truth
reference text. The value of the metric is defined by the minimum number of insertions #ins,
substitutions #sub and deletions #del which are needed to transfer the hypothesis transcription
into the reference text. The sum of those values is then divided by the number of words #words
in the reference text and than multiplied with 100%. Accordingly a number closer to zero
percent is desirable. In the case of CER the same is done as in WER only with characters instead
of words. The calculation is shown in Equation 2.17.

#ins + #sub + #del
Hwords

This WER is usually calculated on a separate test set data which was not seen during training.

WER = * 100% (2.17)

2.4.2. Perplexity

In the field of Information theory, the perplexity (ppl) can be described as a metric of how
uncertain a probability model is when it comes to predicting a specific output. This means
that high values show that the model has a hard time predicting the expected sample, while a
low value means that there is little confusion and the outputted probability distribution of the
model is similar to the expected one.

In order to determine the improvements of the training process, in this thesis, the perplexity
of the model on some cross-validation data is used. This metric is used to decide whether the
model has trained to saturation and as such an early stopping can be applied, and to restrict
the training time and prevent the model from over-fitting on training data. The calculation is
shown in Equation 2.18.

ppi =y wep(Y In(a(r,) @18)

N denotes the total number of words which are to be predicted. ¢() is the probability distribution
of the ASR model and as such, ¢(x;) depicts the probability of the model predicting the correct
token x at time .

14

2. Fundamentals

2.5. Curriculum learning

Inspired by the structured way of how humans learn, starting from simple tasks during child-
hood towards complex problems in the following years, the authors in [5] propose a training
schema called curriculum learning. The main idea is to utilize previously learned concepts
which are easier, in order to simplify the learning of more complex tasks for a DNN system. They
also suggest that curriculum learning might be comparable to the unsupervised pre-training
of a model, helping the system to converge faster towards a better solution. How currciulum
learning is applied in this work will be explained in subsection 4.3.2.

2.6. Sequence-to-sequence Models

Sequence-to-sequence (seq2seq) Models are artificial neural networks working with sequences
of inputs. As the name suggests the output of such a system is also a sequence. These models
can be used for many different kinds of tasks. An example use case would be describing a short
video clip. Here, the input would be a sequence of pictures and the output would be some
text describing what was shown in the video. Other examples are Neural Machine Translation
(NMT) which essentially is treated like seq2seq task in state of the art approaches [29]. Here
the input is a variable length sequence of words in language A and the target should be the
corresponding translation in a language B. Important to note is that usually not only the input
sentences but also the output sentences are made up of a variable number of words which
makes it hard to use non seq2seq models, as they often times do not provide necessary flexibility.
Another task which has rather similar circumstances when it comes to the variability of input
and output lengths is automatic speech recognition. Here the input sequence are the features
calculated over the frames of the original speech signal. The output sequence are the tokens
or other possible classification tasks, which can be used to decode towards text, as previously
mentioned in subsection 2.2.2.

2.7. Code-switching

Code-switching (CS) in speech is referred to as the act of changing back and forth between
languages or varieties of one language while speaking [22]. There can be multiple reasons for
a person to use more than one language while speaking. If a person is learning a new language
and struggles explaining his thoughts, this person might start speaking his native language in
order to be able to communicate more easily. Another motive could be expressing solidarity, as
speaking or using words of another language can establish a rapport with the addressed listener
as well [41]. Tt could also be done for convenience reasons. In bilingual communities it can be
used to communicate faster with each other without anybody missing out on information.
Code-switching can be divided into multiple categories [30]:

15

2. Fundamentals

« Inter-sentential CS: The switch between languages happens at sentence boundaries.
Usually, the speaker is aware of the language shift.

« Intra-sentential CS: Here the second language is included in the middle of the sentence.
This switch mainly occurs unaware of the speaker. Additionally, the word used from the
second language can happen to be adapted to the grammar of the major language as well.

« Extra-sentential CS: In this case, a tag element from a second language is included, for
example at the end of a sentence. This word is more excluded from the main language.

Out of the three CS examples presented here, this thesis focuses only on the first two categories.

16

3. Related Work

This chapter will briefly cover previous work related to this thesis. As there are two tasks
which are looked into, research considering the two areas of language-agnostic multilingual
speech recognition and systems enhancing the performance in a code-switching setting will be

described.

3.1. Language-agnostic multilingual seq2seq models

In this section, an overview of previous approaches on language-agnostic multilingual ASR
systems will be given.

There is a long tradition in investigating multilingual systems and using more diverse data
to enhance the capabilities of classic automatic speech recognition systems, mentioned in
section 2.1. In [42] the authors investigated the multilingual training of articulatory feature
detectors. They show that pooling feature detectors from multiple languages outperforms
monolingual ones. They also demonstrate that their ASR performance improved when incor-
porating feature detectors trained on multiple languages. In another work [34], the authors
present that by using language independent acoustic models for cross-language transfer, the
recognition accuracy for low resourced languages can be improved significantly. The authors of
[35] also show results improving their systems capabilities when adapting a multilingual system
towards a new language instead of only training a monolingual system. These observations
suggest that there is great potential in training language-agnostic ASR models in general.

In contrast to classic models, nowadays, similar to the model used in this thesis, the overwhelm-
ing majority of automatic speech recognition systems are based on all neural network models.
This being said there are only few approaches considering fully end-to-end trainable neural
network based language-agnostic systems.

3.1.1. Mixing training set of multiple languages

One basic approach of training multilingual models can surely be mixing the data sets of
multiple languages into one set. It could also be considered to use some specific mixing ratio
when generating the training set or even in a later stage considering the ratio of the batches
seen during training. The first of these two approaches was proposed in [25]. In this paper three
data sets of Russian, Kazakh and English are combined into one. The amount of data, however,
is very unbalanced. Specifically the availability of transcribed English audio is available in
larger amounts when compared to Russian or Kazakh data. This is why the writers suggest
to sample a similar amount of audio duration for all languages in order to train their model.
Target labels used in there work are graphemes. As the considered languages have different
grapheme sets they try two different approaches of combining them. The first method is to

17

3. Related Work

utilize the adjunction of the three grapheme sets.
Gall = sz U Gru U Gen

Here the G represents the grapheme set for the respective language. In the second method, the
authors concatenate the three sets by adding language identifiers to each grapheme.

Gall = sz + Gru + Gen

As there are shared graphemes between Russian and Kazakh the second approach slightly
increases the number of target tokens.

The authors then compared monolingual models of each language with multilingual ones
using the target tokens as described earlier. The results show that the multilingual system has
comparable results to the monolingual ones. Interesting to note is that the WER on the English
test set with Kazakh accent was reduced by up to 3,3% from 41,6% WER for the monolingual
English model to 38,3% WER in the multilingual setting.

3.1.2. Prediction language identifier and text output

In [46] the authors propose a monolithic multilingual system for ten languages. In order to
achieve language independence, the union of graphemes appearing in all languages namely,
English, German, Spanish, French, Italian, Dutch, Portuguese, Russian, Japanese, and Chinese
is taken as target labels. They also add language identifiers (LIDs) to the target set. When a
target sequence is predicted, the model is trained to first predict the language ID and then the
rest of the sequence of labels. An example of a German prediction would have the form

'[DE] ALSO VORWARTS' ,

taken from [46]. In contrast to [25] presented in subsection 3.1.2, this work does not sample
the languages to have a similar share in the training data.

The authors show that especially in cases for low-resourced languages the CER is reduced by
2-3% on average compared to their monolingual counterpart models. Important to note is that
the authors incorporate an additionally learned language model, which is learned separately.
This makes the approach not a fully end-to-end system. Leaving this part out, however, would
make it end-to-end trainable. A similar approach to this one was also used to improve the CER
in the code-switching task. In that case instead of predicting the language label one time at
the beginning, the language needs to be predicted every time the language is changed in the
utterance. This will be further elaborated in subsection 3.2.1.

3.1.3. Using language feature vectors

In [24] the writers utilize a learned language feature vector (LFV) to enhance the performance
of their model. In contrast to the first two approaches subsection 3.1.1 and subsection 3.1.2
this system is not trained in an end-to-end way. In the first step some model for extracting
bottleneck features from the input audio feature is trained. The next step uses these bottleneck
features and trains a DNN which classifies nine languages. The second last layer of the language

18

3. Related Work

LFV
2D CNN / C e . Output
TDNN Layer Bi-directional LSTM Layer Layer

Figure 3.1.: Multilingual Network utilizing LFV’s.

classification network is than used as the language feature vector. After putting the speech
features through two convolutional layers the outputs are than concatenated with the LFV for
that speech sequence and inputted into a multi-layer neural network. This network is than
trained separately utilizing the Connectionist Temporal Classification (CTC) loss. Figure 3.1
shows the model architecture and how the LFV is utilized.

In their experiments, the incorporation of the LFV increases the performance of the multilingual
models and can even surpass monolingual models if trained with an early abortion of the
training on mono-lingual cross-validation set.

3.2. Code-switching in seq2seq models

In this chapter an overview of previous research on the topic of recognizing speech that contains
code-switching will be given. In ASR, code-switching is referred to as the act of switching
between two or more languages during an utterance. This switch can happen in multiple
ways.As described in section 2.7, if the language changes at sentence boundaries it is called
inter-sentential, if the switch between languages occurs inside one sentence it is referred to
as intra-sentential CS. As there is only very few data available, there has been only sparse
research on this topic, most of them utilizing one of the few code-switching data sets that are
available. Some example corpora available are [2] for code-switching between French and
Algerian speech, [21] containing utterances switching between Mandarin and English and [6]
having gathered data with CS between English and Cantonese.

3.2.1. Predicting language switch

Similar to subsection 3.1.2 the authors of [36] propose a model which has the union of graphemes
of all languages plus language specific tags as the target label. However, in order to have better
results in the task of code-switching, they suggest artificially generating training data that
contains code-switching utterances. In order to achieve this, they combine full length utterances

19

3. Related Work

of different languages. A maximum number of speech sequences to combine is defined. First
one utterance is drawn, the next time two utterances are drawn and the third time three
sequences are concatenated, this is repeated until the audio duration of the union of the original
corpora is reached. The probability of sampling from a language is proportional to the duration
of that language in the unified corpus. In order to prevent the same speech from occurring
too often in the training set they also define a number limiting how many times a utterance is
allowed to be used for generating CS data. When concatenating the corresponding targets the
language specific token is also added before the target sequence of the respective utterance.
An example target sequence would than look like:

"[DE] ALSO VORWARTS [EN] WHERE ARE YOU"

In this paper, it is also proposed to use curriculum learning similar to section 2.5. In the first
step, the authors train the multilingual models on data without code-switching. In the second
step, they take the model from step one and train it with above mentioned code-switching data.
In their results, there is up to 26,35% CER improvement comparing curriculum training with
directly training on code-switched data. Interesting to note is that the authors register CER
improvements in almost all languages comparing the multi-lingual setting with the monolingual
one, even if they have big amounts of data. Their multilingual system even outperforms the
monolingual models if no CS data was used during training, which might be due the increased
amount of parameters in their multilingual network.

In [49] it is also proposed to use a language prediction before predicting target labels of the
next language. Aside from using a different model architecture, the authors were also able to
utilize the SEAME data-set [21] which contains code-switching data between Mandarin and
English. As they only looked into the task of code-switching between those two languages they
only use the that data and report their results on a test set containing CS between Mandarin
and English speech with South East Asian accent.

They show that including the prediction of the language tag yields improvements of up to
1,2 mixed error rate (MER) which is a combination of WER and CER. Adjusting the output
posteriors by the previous language id additionally improves their model.

3.2.2. Multi-task learning

Another approach which was able to utilize data containing natural code-switching was
presented by the authors of [39]. However, they propose to solve the problem of code-switching
using a multi-task learning (MTL) approach. The authors investigate training a model predicting
a sequence of labels as well as predicting a language ID at different levels. The effect, of
classifying the language is measured on the following three layers of the network.

1. The context vector which is outputted by an Attention layer
2. The context vector after the residual connection from the decoder
3. The output of the decoder which contains information about the language model

A visualization of the proposed model is given in Figure 3.2 which was taken from [39].

20

3. Related Work

Without the multi-task setting the writers report a CER of 8,15%, the best improvement was
achieved using the language classification on the context of the attention. This yielded a CER
of 7,60%. They also reported even further improvements when they used monolingual speech
data as well and fine-tuned the model with code-switching data afterwards. This resulted in
their best performing model achieving 6,49% CER. However, the authors are mainly concerned
with the performance on code-switching, and as such do not report the performance of the
model on monolingual data which may have degraded and perform worse than a monolingual
model.

This issue was addressed in [37]. Here the authors show that indeed the performance degrades
on monolingual test sets if only code-switching data is used. They show that using monolingual
and code-switching data during training yields better results. An amount of 25% of data
containing code-switching resulted in the best performing model. Alternatively, they also
suggest using a regularization when fine-tuning on code-switched data. Here the Kullback-
Leibler divergence between a previously trained monolingual models output distributions with
the model which is fine-tuned for CS, is minimized. The combination of the CTC loss with this
additional Kullback-Leibler regularization also improved on the basic models which combined
monolingual and code-switching data during training.

3.2.3. Code-switching with frame level language identifiers

In [20] the authors propose to train two separate
models. One CTC model for speech recognition
and another one for frame level language predic- y

tion. During decoding, if the current frame has l, '
a very high probability for the blank symbol the f ?
blank label is emitted, otherwise the output prob-
abilities of English tokens are multiplied with the @f @ A _ _@_t __________ A he
probability of this frame being English and the b H >

C == } dec
Chinese labels are multiplied with the probability (1l |
of this frame being Chinese speech. An overview E@«—@
of proposed architecture, which was taken from hee
[20] is given in Figure 3.3. The authors mention Encoder A
that CTC models are very sensitive to initialization
and as such they suggest to train the model first
on monolingual data of the majorly used language
in their code-switching set. Afterwards they train
their model a second time utilizing all data. Two
different approaches are proposed for the frame
based language classification. One is based on Bi-LSTMs and the other one is a DNN with a
context window of 41 frames. In their experiments, they show that the highest accuracies for
frame-level LID prediction are achieved when the models are trained only on code-switching
data. Another important point is that the Bi-LSTM based model outperforms the DNN model

if code-switching data is used during training but performs worse in the case of not seeing
code-switching data, which seems to be expected due to the memorizing nature of the LSTM

| Projecion&Softmax| | Projecion&Softmax|

X = Xy Xy ey Xp

Figure 3.2.: Encoder-Decoder with MTL.

21

3. Related Work

i [softmax

'
\CTC Model

Input

Figure 3.3.: CTC model with frame-level language classification.

architecture.
In their results, they achieve improvements over the baseline model without the additional

language ID probabilities incorporated, even if there was no code-switching data seen dur-
ing training. When training the models with code-switching data the authors show further
improvements on their CS test set, this is however accompanied by a trade-off with the mono-
lingual WER. In there experiments if a setting improves the code-switching WER it worsens the
performance on the monolingual sets. This shows that there is the need for some more analysis
in this approach as well, especially if it is desirable to be able to keep a high performance on
monolingual data.

22

4. Approach

This chapter will describe the architectures used in this thesis. The data used for training and
how it was used will be explained, too.

4.1. Models

Here a brief description of the models used will be given.

4.1.1. Base model

In this thesis, the basis of all models, is the seq2seq encoder-decoder based model, as described
in [26]. An abstract display of the model is given in Figure 4.1. The model consists of an encoder
and a decoder network. The encoder is made up of two two-dimensional CNN layers with 32
filters. The window size is three over both the time and the frequency dimensions. The stride
with which the window is moved is defined as two for both dimensions. The outputs are than
inputted into six bidirectional LSTM layers. As we do not have future outputs during inference
of the model the decoder is made up of two LSTM layers which are not bidirectional. Afterwards
the output of the decoder and encoder LSTMs are fed to the Multi-Head Attention network,
which uses the decoder LSTM output as the query and the encoder output as the key and the
value. This module than determines on which encoder frames to focus in order to predict the
next output token. Afterwards the output goes through a linear layer followed by a residual
connection depicted by the "Add” bloc. This is then put into a linear layer, which projects
the input to a dimension equaling the number of output tokens which are to be classified.
Afterwards a logarithmic soft-max function is applied to get a probability distribution over
the target labels. While the input of the encoder are the log-Mel spectrum’s of the utterance,
the input to the decoder are the embeddings of previously outputted tokens and the start of
sentence token in case of the first decoding step. An abstract description of the neural network
would look like:

enc = Bi-LSTM(CNN(IMel_Spectrum))
tgt_emb = LSTM(Embedding(out_tokens))
dec = (MHA(enc,enc,tgt_emb) + tgt_emb)
output = log_softmax(dec)

23

4. Approach

Output,

t

‘ Log-Softmax

A

Linear

A

Add

A

Linear

A

Multi-Head Attention

|

&

f

Speechfeatures

Figure 4.1.: Base sequence-to-sequence encoder-decoder model.

LayerNom\

¢

Output Embedding

T

Outputy, ..., Output;_

4.1.2. Different architectural additions

In this section, the different architectural additions to the baseline will be shown. In order to

simplify the figures, the residual connections are not displayed.

« The first architecture we tried was a model which learns a token based language identifier
next to predicting the next token of the target text. The architecture is shown in Figure 4.2

a).

« Figure 4.2 b) shows a multi-task learning approach similar to the first model. Instead
of classifying the language IDs on the output of the decoder, a frame based language

classification is applied on the output of the encoder.

« In order to further utilize the language prediction not only implicitly but also through
incorporating this information, inspired by [14] the model shown in Figure 4.2 c) utilizes
additional language dependent adapter modules. They modulate the output previous to
the projection layer. Which adapter module to choose, is determined based on the current

24

4. Approach

Outputy

Outputy Outputy

[CNN | Output Embedding [ONN | Output Embedding | ONN | Output Embedding
a) Speechfeatures Outputy, .., Outputy 4 b) Speechfeatures Outputy, .., Outputy 4 C) Speechfeatures Outputy, ..., Outputy¢

Figure 4.2.: a): Additional token-based language prediction. b): Additional frame-based lan-
guage classification. c): Additional language classification which is used to deter-
mine the adapter module to be used.

language classification. The adapter modules consist of a down projection with a relu
activation. This is followed by an up projection, which modulates the previous vector via
a residual connection.

 Another way to utilize the already predicted language IDs is to add the language em-
bedding on top of the output target embedding which can be regarded as a simplified
version of [24] which was described in subsection 3.1.3. Figure 4.3 shows the architecture
of suggested network.

4.2. Data

As this thesis is concerned with language-agnostic multilingual speech recognition, at first we
started with generating a multilingual training set for the three languages used here, namely
German, Arabic, and English.

The English set is made up of two public data sets.

« How2 [32]: This set contains speech in which explanations about different topics are
given.

« TED-LIUM ([31]: This is data collected from TED talks.
For the German data four corpora are used.

« Common Voice [3]: A data set consisting of general domain speech collected via Mozilla’s
Common Voice initiative.

« Europarl [16]: This corpus contains speeches collected from the European Parliament.

25

4. Approach

’ Output Embedding LID Embedding

Speechfeatures Outputy, ..., Output;. LIDy, ..., LIDy4

Figure 4.3.: Sequence-to-sequence encoder-decoder model, previous language prediction is
used in following steps.

« Lectures: This is data collected from lectures given at the Karlsruher Institut fiir Tech-
nologie.

« Mini-international Neuropsychiatric Interview (MINI)-Data: A data set collected in co-
operation with the ZI-Mannheim, containing recordings of MINI questions as well as
answers.

The Arabic data consists of two corpora.

« Alj. 1200h [1]: This data set is made up of 1200 hours of broadcast videos taken from
the Aljazeera Arabic TV channel. The speech is non-overlapping and mainly consists
of modern standard Arabic (MSA) speech but utterances spoken with dialect are also
present.

« MINI-Data: Data with Arabic speech of MINI questions and answers.

4.2.1. Data for training and evaluation

An overview of the data used during training is given in Table 4.1. In total, our data consists of
784h English, 865h German, and 1166h of Arabic transcribed speech. As will be described in
section 4.3 we trained monolingual and multilingual systems. In order to keep the data settings
used, as similar as possible, we decided to use all available data instead of reducing them to be
similar in duration.

The English and German training data consist of many different speakers with a more free style
of speaking compared to Arabic utterances. They also have more diverse recording settings
especially considering the How2 set. The wast majority of the Arabic set, however, consists of
speech which is read from a given text. As this data was collected from a news center it also
has a very similar recording setting and most of the time a very high quality recording of the
speech.

26

4. Approach

Language Data-set Utterance length | Number of utterances

English How2 345h 210k

TED-LIUM 43%h 259k

German | Common Voice 314h 196k
Europarl 46h 20k

Lectures 504h 353k

MINI-Data 1h 498

Arabic Alj. 1200h 1127h 375k
MINI-Data 3%9h ok

Table 4.1.: Data used during training.

During training, the data sets are randomly combined in batches. Accordingly, a batch can
contain utterances of all three languages.

As mentioned in subsection 2.4.2 a cross-validation data-set was used to calculate the improve-
ments of the model and prevent effects like over-fitting. Table 4.2 shows the data distribution
of the cross-validation sets. The cross-validation set is quite similar to the training data. One

Language Data-set Utterance length | Number of utterances

English How2 10h 6k
TED-LIUM 8h 5k

German Common Voice 25h 15k
MINI-Data 24min 173

Arabic Alj. 1200h 9h 5k
MINI-Data 2h 454

Inter-sentential | German, Arabic, English 53h 32k

Table 4.2.: Data used for cross-validation.

difference being that only Common Voice data was used in the case of German cross-validation.
This is due to the nature of Common Voice covering a very general domain and as such yielding
a good reflective data set. As the goal of this thesis is to enhance a models prowess on code-
switching data, an artificially created inter-sentential data set is also used. This code-switching
set is made up of all the other cross-validation data-sets. An example for such a code-switching
sample is shown below.

"was heiflt das auf englisch our customers want them”

This example utterance transcription is a concatenation of sentences from the German Common
Voice and the English Wall Street Journal (WS]J) data sets. It is taken from the test data which
is shown in Table 4.3.

As a means to evaluate the models, independent test data is needed. This data is not used for
training or cross-validation. Table 4.3 depicts the data sets used for evaluating the models
discussed in this thesis. Next to using a separate small set from TED-LIUM, about an hour of

27

4. Approach

Language Data-set Utterance length | Number of utterances
English How2+TED-LIUM 3h 1k
WSJ 1h 503
German Common Voice 25h 15k
Arabic Alj. 10h 5k
Alj. 2h 2h 1k
Intra-sentential Denglish 6min 89
Inter-sentential | Comm. Voice, Alj. 2h, WS]J 3h 2k

Table 4.3.: Test data to determine final performance of systems.

WS]J speech was used for evaluating the English performance. This set contains recordings of
texts published in the Walt Street Journal. For the German language, a subset of the Common
Voice was used. In the case of Arabic, two separate test sets are analysed. The Alj. set contains
non-overlap MSA mixed with dialect data. The Alj. 2h set is a subset extracted from the
Alj. 1200h corpus’s test set which only contains MSA speech. Another set for evaluating
intra-sentential code-switching was also used. The name Denglish describes the nature of this
data which is German sentences with English words mixed in, for example.

”ich musste die harddisk neu formatieren weil der falsch gesteckte jumper

zur data corruption gefithrt hat und der computer gecrasht ist”

As it is visible in the illustration, Denglish utterances are mainly German text with only a few
English words mixed in. Many times these words are additionally adapted to German grammar.
The Inter-sentential data-set consists of code-switched utterances from the German Common
Voice, Arabic Alj. 2h and the English WS]J data sets. The process of how exactly this set was
generated is given in subsection 4.2.3.

4.2.2. BPE Data

The data-preparation applied to calculate the BPE tokens used in this thesis, is described
in subsection 2.2.2. The German text used consisted of MINI text data, as well as Lecture,
Common Voice, and Europarl text data. Additionally, a large corpus of only text was used.
In subsection 2.2.2 we described taking only the first 100.000 lines of this shuffled text for
our mixed text. In the case of determining the BPE tokens for the monolingual models, the
first 300.000 lines are taken after having shuffled the language specific files. In the case of
generating the text corpus for Arabic a big text-only corpus and MINI text data have been used.
For English How2, TED-LIUM and another text-only corpus have been used. With an eye on
having comparable results, a special emphasis was given on applying the same BPE generation
steps for both the multilingual as well as the monolingual BPE generation for each language.

4.2.3. Inter-sentential code-switching

As we do not have a data set containing multilingual transcribed speech with code-switching
we implemented an easy way of generating data artificially. Our general training data does

28

4. Approach

not contain an alignment between time-steps and exact words. The data only has aligned
sentences with their corresponding time in the audio file. If we wanted to create intra-sentential
code-switching data we would need to insert or append small utterances from one language to
another utterance from another language, but due to the lack of data with word-time alignment
this is a non-trivial task, as cutting out short sequences from a utterance could contain only
parts of words or no speech at all, which in turn could lead to bad training data. This is why in
this work only inter-sentential data was generated.

First, the total number of utterances from all sets are calculated, as they are all mixed into one
data set in the case of training with no code-switching data. Afterwards depending on the
expected percentage of code-switching data at least that amount of the original number of
utterances is generated as code-switching utterances. In our experiments, we set this value to

be 50%. As the original data consists of mainly utterances of 3-15 seconds length, %th of the 50%

2th
8

less than 15 seconds, %th less than 20 seconds and %th less than 25 seconds. Afterwards all the
utterances, which have not been used for the code-switching data, are added to the training set.
This is to avoid excluding utterances from training. If the training set has less utterances than
the concatenation of the original monolingual sets, utterances randomly selected will be added
to the training set as well. This is to make sure that only the specific percentage defined by the
user are utterances with code-switching. The way utterances are selected for code-switching
has following steps.

code-switching utterances are set to be less than five seconds, less than ten seconds, %th

« Firstly the language of the utterance is determined. This is done randomly which means
all languages have the same probability to be selected no matter the general size of the
training data of the language itself. This can enable to have a more equal distribution of
the number of samples between different languages during training.

« Afterwards a sample from the training set, of the previously selected language is drawn
randomly. If this utterance exceeds the time limit it will be ignored otherwise it will be
saved for the next step.

« The third step chooses a new language which must be different than the one of the last
used sample.

+ Next, a new sample from the language is drawn. If the total length of the previously
saved utterances together with the newly selected one exceeds the time limit this sample
gets discarded and the process is repeated beginning from step three. Otherwise, this
sample is appended to the previously saved utterance.

« After adding two or more samples into one utterance the total length is checked against
the time limit minus some offset which is set to two seconds. If it is longer than that value,
the labels of the utterances are also concatenated accordingly and this newly created
code-switching sample is added to the training set.

« Above steps are repeated for each time limit until each time the respective number of
samples has been generated.

29

4. Approach

4.3. Experimental Setup

In this chapter, a description of our experimental setup is given. An explanation of how
curriculum learning is utilized will be given as well. The implementation used in this thesis is
written in Python [44] and leverages the PyTorch [28] library which uses the highly optimized
CUDA [27] toolkit. This enables our models to utilize NVIDIA graphics processing units in an
optimized way during training. By dropping frequency’s and applying speed perturbations
the model is trained to learn better generalizations of speech. Another effect is that the data
augmentation artificially generates more data. These augmentations happen randomly in each
epoch on different frequencies and the speed is also altered randomly. The features were
calculated using a python and c++ [13] re-implementation of the feature calculation in the
Janus Recognition Toolkit [47]. An example of such a feature can be seen in Figure 2.2. For
training Adam optimization [15] is used. The adaptive learning rate depends on the number of
warm-up steps which we defined as 8000 and the learning rate itself, here this is set to 0,002.
For the first updates until the number of warm-ups is reached, the learning rate increases up to
0,002 during training. After that, the learning rate decreases linearly. The parameters of the five
best models are saved after each epoch. The performance is determined on the cross-validation
data set. If the model does not yield any improvements for five epochs, early abortion is applied.
After each epoch the batches are also randomly shuffled, as otherwise there might be some
form of over-fitting on long or short utterances depending on how the batches are sorted.

4.3.1. General Model Parameters

Unless otherwise mentioned the models are trained to classify 4000 target tokens. The input
dimension is always 40-dimensional logarithmic Mel-Spectrum’s, the specifics are explained in
subsection 2.2.1. The number of neurons used in the encoder and decoder are 1024. All models
utilize six bi-LSTMs in the encoder, and eight headed multi-head-attention mechanism with
two LSTM layers in the decoder. During training a dropout of 20% is applied on the bi-LSTM
outputs of the encoder except for the last one. The same dropout is applied on the output of
the first LSTM in the decoder. Additionally a dropout of 20% was utilized on the embedding of
the previously outputted targets which are used in the decoder.

4.3.2. Curriculum Learning

In this chapter, an explanation of how curriculum learning is utilized in training the models
mentioned in section 4.1 will be given. During the first phase of training, only monolingual
utterances are used. This means that even if the system is multilingual, each utterance in a
batch contains speech of only one language. One batch, however, can consist of utterances
from different languages. In our work, this step is referred to as the first-curriculum.

After the models are trained to saturation the so-called second-curriculum begins. In this step,
the models are trained with data in which 50% of the utterances contain two or more languages.
An explanation on how this is generated is given in subsection 4.2.3. In the second curriculum,
an epoch of training is finished after seeing the total number of target tokens of all monolingual
training sets. This is done in order to make training faster as the new training data with CS has
overall longer sequences while keeping the same amount of samples.

30

5. Evaluation

In this chapter, the results of different experiments conducted for this thesis will be shown
and discussed. All tests are conducted on the test data shown in Table 4.3 and are reported in
WER%.

5.1. First-curriculum

This section will present the performance of different models trained on data which does not
contain code-switching utterances.

5.1.1. Monolingual Baseline Models

In order to see how multilingual models compare to their monolingual counterparts a set
of monolingual systems were trained and evaluated for German, Arabic, and English ASR.
Table 5.1 shows the results of the monolingual models on monolingual test data.

model | How2+TED | WSJ | Alj.2h | Alj. | Comm.Voice || Average

Mono-De 98,15 91,04 | 131,36 | 128,42 11,71 92,14
Mono-Ar 108,08 100,46 | 9,72 15,69 102,47 67,28
Mono-En 7,49 5,52 | 177,29 | 170,92 143,82 101,01

Table 5.1.: Results of monolingual models on monolingual test sets.

As expected the results show that each model trained on one language has rather good
performances on their respective test set. Interesting to note is that the Mono-De model which
was trained solely on German training data was unable to predict anything on the How2+TED
set. On the WSJ set which is more strict speech, the model sometimes was able to predict small
parts of the utterance which is why the WER is lower in this case. As the example,

Reference: "the papers comprise the public record of the pennzoil versus”

Hypothesis: der patriarch comprice the public recording of the pensional fr”

shows it mainly outputs German words or sub-words with similar sounds if any. Another
interesting point is that the English words “the public” were recognized correctly, which
suggests that there has been some code-switching in the data which is supposed to only contain
German speech. This might be due to the fact that using English words is becoming more and
more common in the German language. On the Arabic test data the model outputs tokens with
similar sounds which are completely wrong as the reference expects Arabic words written in

31

5. Evaluation

Arabic and as such the resulting WER is even higher than 100%. When evaluating German
the WER is rather low. As mentioned in subsection 4.2.2 we tried to have the same setup for
all models and used similar ways to create the BPE targets. One would expect the resulting
monolingual labels to have a higher representational power concerning their language. In
the case of the German BPE however, the text from which the tokens were generated did not
contain any words with ”x” or q” which results in the model not being able to predict words
containing this letters correctly. The "x” are usually left out and "q”’s are replaced by the letter
u

Usually monolingual models output almost no hypothesis for utterances of different languages.
The English model (Mono-En),however, outputs hypothesis for German and Arabic test sets
which results in WER higher than 100%.

model | Denglish | Inter-sentential || Average
Mono-De | 16,67 83,80 50,24
Mono-Ar 100,40 73,33 86,87
Mono-En 105,73 89,74 97,74

Table 5.2.: Results of monolingual models on code-switching test sets.

Table 5.2 shows results of the monolingual models on inter- & intra-sentential code-switching
test sets. Interesting to see is that Mono-De has a rather good performance on Denglish data,
which is reasonable, as these utterances are mainly German utterances with some English
words mixed in. Depending on how common these English words are some can be predicted
by this model. This also supports the idea that using English vocabulary while speaking is so
common, that even our German training data contains such examples. An illustration of a
correctly recognized Denglish sentence is:

“es gibt standing ovations von den zuschauern”

As can be seen in the table, the performance on the Inter-sentential tests is very poor for all
models. This was to be expected after analysing the results of the monolingual models with
respect to the test data from different languages. The Mono-De model has the overall best
average WER over multilingual sets. However, this is mainly due to the performance on the
Denglish data.

5.1.2. Multilingual Models

When training multilingual models we first trained a model with the same network and
parameters as the monolingual models (Seq2seq). The only difference being the multilingual
training data and the shared BPE labels. We also evaluated a baseline model in which the bi-
LSTM outputs of the encoder are not added but used in a concatenated setting (Seq2seq_concat),
important to note is that this setting also increases the number of learnable parameters. In
Table 5.3 the model Seq2seq_lid describes the same model as the baseline (Seq2seq) with the
only difference being that the output tokens are 4003 in which the three additional tokens

32

5. Evaluation

model How2+TED | WSJ | Alj.2h | Alj. | Comm.\Voice || Average
Seq2seq 9,95 8,47 | 11,10 | 17,61 18,31 13,09
Seq2seq_concat 8,98 6,81 | 10,68 | 16,31 16,33 11,82
Seq2seq_lid 8,85 7,69 | 10,92 | 17,06 16,99 12,30
Seq2seq_mt_dec 8,18 6,73 9,97 | 15,93 14,86 11,13
Seq2seq_mt_enc 8,91 6,96 | 10,49 | 16,66 16,54 11,91
Seq2seq_add_emb 8,49 6,47 | 9,91 | 1594 15,47 11,26
SquSeq_adapt 8,20 6,58 | 10,19 | 16,12 14,88 11,19

Table 5.3.: Results of multilingual models on monolingual test sets.

are language tags for each language. This model is trained to first predict the language tag at
the beginning or when a switch happens in case of code-switching and then start predicting
the transcription similar to the setting described in subsection 3.2.1. Seq2seq_mt_dec is the
model depicted in Figure 4.2 a). Seq2seq_mt_enc is the model in Figure 4.2 b), Seq2seq_adapt is
Figure 4.2 c) and Seq2seq_add_emb is the model shown in Figure 4.3. The best performances
on each test set are shown in bold.

Table 5.3 shows that the baseline multilingual model trained with all training data randomly
mixed, generally speaking, performs better taking the average over all monolingual test sets.
However, considering the test data individually we see that the monolingual models outperform
the multilingual ones on their respective test sets. The average relative WER increases on the
English set by up to 41,58% and Arabic by 12,99% for the Seq2seq model. The performance of
the model also decreases on the German data by 56,36% relative WER.

Another point is that the baseline model, concatenating the encoder outputs performs slightly
better than the additive version, this is probably due to the additional number of learnable
parameters. That being said, it still can not reach the performance of the monolingual models.
As can be seen, all models trained with slightly different architectures outperform the additive
baseline model and the models Seq2seq_mt_dec, Seq2seq_add_emb and Seq2seq_adapt even
outperform the baseline using the concatenation of the bi-LSTM outputs, although they have
fewer parameters. Another interesting point here is, that out of these three models the one
with the fewest number of parameters has the best average WER, over the monolingual test
sets, with 11,13%.

The most significant decrease in performance compared to the monolingual counterpart is seen
for the German set. The Common Voice test data had the highest WERs of the monolingual
models in Table 5.1 as well. Looking at Table 4.1 we see that the training data from the Common
voice data set makes up only about 36% of all the German training data. Compared to the other
languages, this mismatch between training and test data could be the reason for the overall
worse WERs in the results. This effect seems to get enhanced, when additionally mixing in
training data from the other languages. And thus the performance decreases especially for this
test set.

The authors in [46] mentioned an increase in the CER performance when they used their
Seq2seq_lid model compared to the monolingual models. However, next to having increased
the number of parameters the authors have three differences when compared to our setting.
The first is that they used a CTC-loss based system, secondly they use graphemes as labels

33

5. Evaluation

and last but not least they trained their multilingual model on at least seven languages. The
Seq2seq_lid system in our setting with only three languages has only minor improvements of
6,04% relative WER over our baseline Seq2seq multilingual model but still performed worse
than the monolingual systems. Comparing our results to the relative improvement of 10,57%
CER and 16,74% in the case of more parameters mentioned in [46], this makes us believe that
such a systems probably profits more if it is trained on more than just three languages. Another
point to mention is that their improvements over the monolingual models are mainly due to
the very poor CER performances on languages like Spanish which is reported with a CER of
50,8% for the monolingual model. This is reduced to 29,6% in the multilingual system.

Our model depicted in Figure 4.2 a) yields the best results and is able to reduce the average
WER relative by 14,97%. In the case of the multilingual models it achieves best scores on
How2+TED, Alj. and Common Voice sets. In contrast to WS] and Alj.2h, these data mainly
contain more challenging speech due to being free or dialect data. This suggests that the token
based classification of the language restricts the model to focus on more detailed information
of the context vector of the Multi-Head-Attention system, resulting in higher scores on these
kind of utterances. The WERs on WSJ and Alj.2h are one of the best as well, which shows that
this system has no focus shift towards the acoustic model as it still performs very good on
speech following a more grammatically correct structure.

Another model improving over the baseline model is the Seq2seq_mt_enc system. Although
having a quite similar structure to the Seq2seq_mt_dec system, the results show a decrease in
performance on the Comm.Voice set. This suggests that only restricting the encoder to be able
to identify the correct language is not enough of an extra restriction for the overall model. As
the restrictions on the decoder show better improvements.

In our model which utilizes the previously predicted language ID in the decoder via additionally
using its embedding (Seq2seq_add_emb), we see an improvement over both baseline models.
Most interestingly though, are the results on the WS] and the Alj.2h data sets. Here this system
has the best WERs of all multilingual models, with 6,47% and 9,91% WER. This shows that
the additional embedding of the language in the decoder is especially useful for transcribing
utterances which follow a grammatically correct structure without many free speech elements.
Although not having the best WER on any single test set, utilizing adapter modules, as in
Seq2seq_adapt, clearly shows improvements and generally good results. This is supported by
having the second best average WER 11,19%, over all monolingual test sets. This corresponds
to a relative improvement of 14,51% WER over the baseline model.

model Denglish | Inter-sentential || Average
Seq2seq 18,67 43,35 31,01
Seq2seq_concat 17,47 37,71 27,59
Seq2seq_lid 16,67 51,93 34,30
Seq2seq_mt_dec 15,33 49,38 32,36
Seq2seq_mt_enc 17,33 45,92 31,63
Seq2seq_add_emb 17,20 62,22 39,71
Seq2seq_adapt 16,93 49,44 33,19

Table 5.4.: Results of multilingual models on code-switching test sets.

34

5. Evaluation

Table 5.4 shows the results of our multilingual models on code-switching test sets. Similar
to the results depicted in Table 5.3 the two baseline models achieve similar scores with the
Seq2seq_concat version having a slight edge.

An interesting point, however, is the result on specifically the Denglish data. Both multilingual
baselines have a decrease of the performance. The Seq2seq model decreases by 12,00% WER in
relation to the monolingual German model. Although generally speaking the decreases for
intra-sentential code-switching becomes more clear when looking at some examples.

Reference: “lass uns ein paar ideen brainstormen”
Mono-De: “lasst uns ein paar ideen brain stammen”

Seq2seq: "lass uns ein paar ideen brainstormen”

This example shows that the multilingual model in contrast to the monolingual one is better able
to predict English words like “storm” in "brainstormen”. Despite that the over all performance
decreases due to examples like.

Reference: “nach der priifung chillen wir erst mal”
Mono-De: "nach der priifung chilen wir erst mal”

Seq2seq: "nach der priifung tschithen wir erstmal”

These examples suggest that the acoustic model of the system gets enhanced due to the more
diverse phonemes in all languages. As can be seen in the second example this can lead to
suboptimal results. Specifically the second example could be due to some sort of bias of the
decoder for tokens which were seen during training for the currently decoded language. This
hypothesis will be further evaluated in section 5.2.

The best performance on the Denglish data is achieved by the Seq2seq_mt_dec model with a
WER of 15,33%. This corresponds to a relative improvement of 17,89% WER over the multilingual
baseline model and 8,04% WER over the monolingual German system. This model yields further
improvements in correctly predicting English tokens.

Reference: "wir miissen einen teil des konzerns downsizen”
Mono-De: "wir missen einen teil des konzerns downseisen”
Seq2seq: "wir miissen einen teil des konzerns down zeisen”

Seq2seq_mt_dec: "wir miissen einen teil des konzerns downsizen”

In the case of this example, however, the model did not predict the language ID for English
and kept on classifying German as the language. This might be due to the argument maximum
which is applied to get the language ID with the highest probability at each decoding step.
As such this does not show if the probability for English was just short of the German ID.
Moreover looking at the overall language ID prediction we see that the model only predicts
the German language ID for the whole Denglish set. This is probably due to fact that during
training the model never saw that an utterance could contain multiple languages and as such
has a bias to predict the language ID based on the token embeddings previously outputted, due
to the nature of the LSTM used in the decoder. This holds true for all models which apply a
multi-task learning.

35

5. Evaluation

On the Inter-sentential data, all models struggle to predict especially the long sequences. This is
probably because such long utterances are heavily underrepresented in the training data. While
it seems that systems like Seq2seq_adapt and Seq2seq_mt_dec have an easier time predicting
languages IDs than Seq2seq_mt_enc or Seq2seq_lid as can be seen in the following example
transcription results as well.

Reference: "J5u| 2 :\f‘\!\ lrj 4l 3 hat frankfurt mehr einwohner als gieflen”
Seq2seq: *Jlul Lis e Uis s cilion J3ull o oT3ally Lol b 37
Seq2seq_mt_dec: "d3dl iy] L'/o‘Y\ LFT 4l & hat frankfurt mehr einwohner als gieffen”
Seq2seq_adapt: "J5.Jl & :\",ag‘kﬂ Lrj 4l & hat frankfurt mehr einwohner als giefSen”
Seq2seq_mt_enc: "J5udl 2 ;\2'/03!\ L(j ale &

Seq2seq_lid: "3l sV ol al: 37

There are still many cases in which all systems struggle to predict code-switching when
decoding the utterance. Looking at the following hypothesis below. A common appearance is,
that only one language is predicted and the utterance of the other one is just left out in the
transcription.

Reference: ”(ILJ\ S J=dl &) g% e these powers are important to us”
Seq2seq: ”(XLJ\ S iUl o) g o
Seq2seq_mt_dec: ”(ll.«J\ S Jdl S A
Seq2seq_mt_enc: ”}LJ\ Sl & R
Seq2seq_lid: ”gw\ S ‘},J\ o) EaF
This happens especially often in the case of code-switching utterances between Arabic and
German or English. In some cases with code-switching, the systems generate hypotheses for

speeches of both languages. However, as can be seen in the following example they decode
tokens for one language only.

Reference: "wie alt bist du they are the products of a success profile”
Seq2seq: “the ordges do they are the products of a success profile”
Seq2seq_mt_dec: “the artist war they are the products of a success profile”
Looking at the predicted language ID the model Seq2seq_dec_mt only predicted the English
language and accordingly tried to decode an English transcription. This is observed with all
models predicting languages. They struggle to predict more than one language per utterance.

The results of all models after training the first-curriculum can be seen in Table A.1 in the
appendix.

5.2. Second-curriculum

In this chapter, the models presented in subsection 5.1.2 are trained a second time as described
in section 4.3. After the systems were trained to saturation the parameters which yielded the

36

5. Evaluation

lowest perplexity on the cross-validation sets are taken and trained a second time, but this time
with utterances containing code-switching.

As we are more concerned with different architectural set-ups and the effects of using manu-
ally generated code-switching data, we only used the Seq2seq model as our baseline for the
second-curriculum. Comparing the best models performance from the first-curriculum with

model How2+TED | WSJ | Alj.2h | Alj. | Comm.\Voice || Average
Seq2seq 7,13 546 | 9,43 | 14,93 13,28 10,05
Seq2seq_lid 7,23 5,33 | 9,39 | 15,12 13,05 10,02
Seq2seq_mt_dec 6,97 5,44 9,25 15,02 13,11 9,96
Seq2seq_mt_enc 7,25 5,77 9,39 15,26 13,19 10,17
Seq2seq_add_emb 7,40 554 | 9,40 | 15,30 13,10 10,15
Seq2seq_adapt 7,47 570 | 9,70 | 15,18 13,32 10,27

Table 5.5.: Results of multilingual models on monolingual test sets after second-curriculum.

11,13% WER in Table 5.3 to the new WER of 9,96% in Table 5.5, in which 50% of the utterances
seen during training contain code-switching, a relative improvement of 10,51% WER can be
observed.

A very important observation, however, is that using only code-switching without any archi-
tectural changes yields very impressive improvements even on the baseline model. Whereas
the original baseline had a WER of 13,09% the same model after training the second-curriculum
has 10,05% WER which is a relative improvement of 23,22%. Another point is that the overall
discrepancy between the performance of the baseline model and the different architectures
is closer after the second-curriculum, which indicates that this training regime is especially
useful and helps for a better generalisation in the case of the baseline architecture. Having a
better generalisation in the acoustic model results in better predictions in cases with difficult
pronunciations which otherwise might get confused with more commonly appearing words,
such as the word "unscathed” as shown in the example below.

Reference: ”is about emerging on the other side of a challenging experience
unscathed or unmarked by the experience”
First-Curriculum Seq2seq: ”is about emerging on the other side of a challenging
experience unscaped or unmarked by the experience”
Second-Curriculum Seq2seq: “is about emerging on the other side of a challenging

experience unscathed or unmarked by the experience”

Another interesting result is that the sentence "thank you thanks” was only predicted correctly
by the Seq2seq and Seq2seq_adapt models.

37

5. Evaluation

Reference: “thank you thanks”
Seq2seq: “"thank you thanks”
Seq2seq_lid: "right here because”
Seq2seq_mt_dec: “here thanks”
Seq2seq_mt_enc: “here thanks”
Seq2seq_add_emb: “here thanks”
Seq2seq_adapt: “thank you thanks”

This suggests that the additional multi-task loss can lead to worse results although the language
was classified correctly. The adapter modules, however, are able to learn some additional
information in order to re-correct the probability distribution. An interesting example which
might yield some light on why the Seq2seq_mt_dec model has the best results on the How2+TED
set is the following sample.

Reference: ”sixty thousand”
Seq2seq: "sechzig tausend”
Seq2seq_lid: ”sixty thousand”
Seq2seq_mt_dec: “sixty thousand”
Seq2seq_mt_enc: “sechzig phase”
Seq2seq_add_emb: “sechzig tausend”
Seq2seq_adapt: “sixty thousand”

This example shows interesting results and the effects of different architectures. Firstly we see
that most models confused the English utterance with a German one and as such predicted
German tokens. Interestingly all models which predict language IDs start predicting a German
ID except for Seq2seq_lid which correctly predicts English this suggests that this model has
an approach looking into a broader context when predicting the language than the other
multi-task systems. Secondly only the Seq2seq_mt_dec model is able to predict the English
language after first wrongfully predicting German for the first few tokens. Accordingly these
two models are able to decode the utterance correctly. To support the hypothesis attention
heads with the broadest attention on the first token prediction are shown in Figure 5.1. In the
right image it is possible to see that the the model which first predicts the language itself has a
higher attention around the 9th and also the 22th frames. In contrast image a) mainly focuses
on the first four frames. It can be seen that the Seq2seq_lid focuses on more frames when
predicting the first token which is always a language identifier. The Seq2seq_mt_dec model
instead focuses on fewer frames in order to predicting the first target token. Another point is
that although predicting the wrong language the adapter modules are still able to decode the
correct sequence which could be due to some CS data between English and German, which
seems to be present in the German training corpus as was deduced in subsection 5.1.1.
Comparing the best model’s average WER of 6,21% on the English sets with the 6,51% WER of
the Mono-En model from Table 5.1 we see a relative improvement of 4,61%.

38

5. Evaluation

Looking at the average WER of 12,14% over the Arabic test sets compared to 12,71% of the

Mono-Ar a relative improvement of 4,48% WER can be seen.

In the case of testing on German test data, we see a deterioration of the performance from
11,71% WER for the Mono-De model to 13,11% WER. As mentioned in, subsection 5.1.2, this
might be to the generally more difficult test data and the general data distribution in the German

training data.

DanielKahneman_2010-0106939-0107048

out tokens

o B N W & U o N ®

Figure 5.1.: Attention of the most significant head for predicting the first token of the utterance
“sixty thousand” with the identifier: DanielKahneman_2010-0106939-0107048. a)

DanielKahneman_2010-0106939-0107048

Left figure: Seq2seq_mt_dec. b) Right figure: Seq2seq_lid.

Table 5.6 shows results of multilingual models trained with 50% code-switching on CS test data.
Maybe the most striking result is the Inter-sentential WER result of the Seq2seq_add_emb.

model Denglish | Inter-sentential || Average
Seq2seq 14,80 8,98 11,89
Seq2seq_lid 14,13 9,02 11,58
Seq2seq_mt_dec 14,53 8,77 11,65
Seq2seq_mt_enc 14,53 9,05 11,79
Seq2seq_add_emb 15,07 59,92 37,50
Seq2seq_adapt 15,20 9,06 12,13

Table 5.6.: Results of multilingual models on code-switching test sets after second-curriculum.

With 59,92% WER, it is by far the highest error. Analysing the following example utterance,
we can see that while other models were able to transition from predicting Arabic towards

39

5. Evaluation

German this model failed to do so.
Reference: CA st Olsgudl © g (3 & L sie schaden uns”
Seq2seq: "adt s b (sn Olsgudl ©yr 3 S Lo sie schaden uns”
Seq2seq_lid: ”ciq ;‘:92) Ols sl O g L"; & b sie schaden uns”

»

Seq2seq_mt_dec: oMt Ols gl Gy (3 & b sie schaden uns”

Seq2seq_mt_enc: ”Ci{ JORE] O3 gudl g &; & e sie schade uns”
Seq2seq_add_emb: ”Cﬂ, st Olsgudl Cyor 3 S Lo sie sie sie
o Olsgudl S (3 S Lo DL sie sie sie
Jesieptt « o L}“‘idbﬂ‘ O B Ode boany)
Seq2seq_adapt: ”C.‘L{ ¢L§1 @ Ols sudl O g ‘_} &l Lesie schaden uns”

In the above example, the prediction for the Seq2seq_add_emb model was cut off as it kept
going on in a similar fashion. Analysing the transcription hypothesis as well as the predicted
language IDs of this model it shows that the model is not able to predict the second language
after starting to predict Arabic. This might be caused, due to the reason that the language
embedding of the previously predicted language is added on the previously outputted token
embedding. If the model is not able to predict the correct language when the switch from one
language to the other happens it is not able to break the bias towards that one language which
is being decoded. Another reason for this model performing poorly on this data set is that
during the decoding step a beam search is only applied on the outputted BPE tokens and not
on the language IDs as well, and as such only the language with the highest probability at each
step is used in the following steps, which can worsen the results.

Although the other results are all quite close to each other, with a WER of 8,77% the Seq2seq_mt_dec
model outperforms all other models and improves the baseline by about 2,34% relative WER.
Comparing it to the best result from the first-curriculum systems which was the Seq2seq_concat
model with a WER of 37,71% we can see a relative improvement of 76,74% WER.

In the case of the Denglish test set, the best performing model is Seq2seq_lid. It shows a
relative improvement of 4,53% WER over the baseline model with 14,80% WER. In the following
example utterance, all models predicting a language classified German as the LID. However, it
is possible to see that models which aim at being more aware of code-switching get confused
when decoding "wann hast du”.

Reference: “sag mal wann hast du dir diesen schonen oldtimer gekauft”
Seq2seq: “sag mal wann hast du dir diesen schonen oldtimer gekauft”
Seq2seq_lid: “sag mal wannners du dir diesen schoénen oldtimer gekauft”
Seq2seq_mt_dec: “sag mal wannna studiert diesen schonen oldtimer gekauft”
Seq2seq_mt_enc: "sag mal wann er studiert diesen schonen oldtimer gekauft”
Seq2seq_add_emb: “sag mal wann hast du dir diesen schonen oldtimer gekauft”
Seq2seq_adapt: “sag mal wannna so dir diesen schon oldtimer gekauft”

It seems that systems which have an additional task on focusing on the language spoken,
have a less strict language model or focus too much on the acoustic model, which can lead to

40

5. Evaluation

mistranscriptions. The Seq2seq_add_emb however is able to predict the correct sequence. In
this case, having the language as an additional embedding seems to be an advantage over the
other models. Listening and looking at other utterances it is possible to infer that this model is
able to enhance the language model and is able to produce good results although the utterance
was spoken unclear and are partially mumbled. However, in cases where an English word is
expected to be decoded during the mainly German speech this effects the prediction negatively.
With a WER of 14,13% the Seq2seq_lid model performs best. The following example suggests
why this might be the case.

Reference: “wir miissen einen teil des konzerns downsizen”
Seq2seq: "wir missen einen teil des konzerns downs heiflen”
Seq2seq_lid: "wir miissen einen teil des konzerns downsizen”

Seq2seq_mt_dec: "wir miissen einen teil des konzerns down sizen”
Seq2seq_mt_enc: "wir miissen einen teil des konzerns down seisen”
Seq2seq_add_emb: "wir missen einen teil des konzerns downs eisen”

Seq2seq_adapt: “wir miissen einen teil des konzerns downes eisen”

Interestingly the only model which predicted a switch of languages in the utterance was the
Seq2seq_mt_dec one. Technically this system transcribed the speech correctly however, it did
not integrate the English word into the German grammar. In contrast, the Seq2seq_lid was
able to do that. This suggests that in the case of intra-sentential code-switching this model
might be preferable as it only slightly restricts the transcription towards a language but still is
able to decode words of different languages as it has to watch out for potential code-switching
cases. Not having predicted an actual code-switching might be due to our training data, in
which the frames present after switching are larger in numbers and as such the model might
not predict the actual switch.

model Total Average
Seq2seq 10,57
Seq2seq_lid 10,47
Seq2seq_mt_dec 10,44
Seq2seq_mt_enc 10,63
Seq2seq_add_emb 17,96
Seq2seq_adapt 10,80

Table 5.7.: Average WER of multilingual models on all test sets after second-curriculum.

The average WERs over all test sets is given in Table 5.7. We can see that the overall best
performing model is the Seq2seq_mt_dec closely followed by the Seq2seq_lid.
Table A.2 in the appendix shows the results of all models after the second-curriculum.

41

5. Evaluation

5.3. Additional Experiments

A few additional experiments were also conducted to further analyse our experiments. The
Seq2seq_lid_emb model is a multilingual model which gets the language embedding as addi-
tional information during the decoding. As such this model can not be considered language-
agnostic. In order to analyse the effect of different code-switching ratios, the Seq2seq baseline
with only 20% code-switching utterances was tried as well (Seq2seq_0.2). To further look
into the influence of code-switching data during training the baseline model was also trained
with the same ratio of 50% but the data did not contain any transition from Arabic to German
utterances (Seq2seq_noarde). These two models where also trained with curriculum learning.
To investigate the effect of applying curriculum learning a baseline model Seq2seq_nocurr was
trained with 50% of the utterances containing code-switching without applying a two step
training. Table 5.8 shows the WERs of the above mentioned experiments to see the effect of

model How2+TED | WSJ | Alj.2h | Alj. | Comm.\Voice || Average
Seq2seq 7,13 5,46 9,43 14,93 13,28 10,05
Seq2seq_lid_emb 7,87 5,09 | 9,86 15,87 13,42 10.42
Seq2seq2_nocurr 8,26 7,16 | 10,74 | 16,57 15,42 11,63
Seq2seq_0.2 6,91 5,24 9,34 | 14,86 12,75 9,82
Seq2seq_noarde 7,07 5,59 9,64 15,28 13,26 10,17

Table 5.8.: Results of multi-lingual models on mono-lingual tests using different training set
ups.

different code-switching settings as well as our reference model, which is not language-agnostic,
on monolingual test data.

An important result we can conclude from these evaluations is that applying a curriculum
during training yields significant improvements over not using it. This is supported by the
WERs of the Seq2seq_nocurr model which are higher than all other models. With an average
WER of 11,63% the performance, compared to the Seq2seq result with 10,05% WER a relative
decrease of 18,38% WER can be seen.

Another very interesting conclusion which can be drawn is that the system which gets the
language embedding as additional information in the decoder is outperformed on all test tasks
by the language-agnostic models which were trained in a curriculum fashion. The only test
set in which the Seq2seq_lid_emb model performed better is the WSJ data. This suggests
that this model and the additional language embedding mainly benefit for very formal and
grammatically correct utterances as this is mainly the case in the WSJ set, whereas the other
corpora are primarily made up of free- or dialectal speech.

Even though the Seq2seq_noarde model had no transitions from Arabic speech to German it is
interesting to see that the model does not suffer the same problems the models had after only
training the first-curriculum. In section 5.1 it was shown that the models struggled to predict
the transcription of another language after starting to decode in one language. This model
however, although having never seen a transition from Arabic to German is able to decode

42

5. Evaluation

utterances with such a code-switching case. This is shown in the example below.

Reference: "iyuze Lyl 352~ dl> e umso grofler ist ihre beliebtheit in der tirkei”
Seq2seq_noarde: "z Syl G 5a> Wl Do b umser grofier ist ihre belebtheit in der tiirkei”

The most striking result however is achieved by the Seq2seq_0.2 model. Training the baseline
model has shown a significant improvement over the other language-agnostic models. It is
only outperformed by the Seq2seq_lid_emb model on the WS]J set which is probably due to
its very formal nature. The average WER decreases from 10,05% WER to 9,82% which is a
relative enhancement of 2,31% WER over the Seq2seq model trained with 50% code-switching
data. This result shows that the exact portion of code-switching data needs to be further
elaborated as it is a hyperparameter. The improvement could be the result of how the code-
switching data is generated. As it is trained to generate shorter utterances containing multiple
languages some utterances get reused multiple times. This in return reduces the diversity of the
utterances seen during training. Reducing the portion of code-switching data however, might
have a better balance between sequences with multiple languages while keeping the data more
diverse. Another aspect is that even using less than 50% code-switching data is able to break
the bias towards one language which was seen in the evaluation of the first-curriculum results
section 5.1.

model Denglish | Inter-sentential || Average
Seq2seq 14,80 8,98 11,89
Seq2seq_lid_emb 14,53 77,22 45,88
Seq2seq2_nocurr 16,27 10,50 13,39
Seq2seq_0.2 13,73 8,62 11,18
Seq2seq_noarde 15,07 9,14 12,11

Table 5.9.: Results of multi-lingual models on code-switching tests using different training set
ups.

In table 5.9 the results of the same models on code-switching test sets are depicted. As the
Seq2seq_lid_emb model needs to have the correct language embedding at each decoding step
which is not possible during inference the language ID used for the Denglish set was the
German one as these utterances are mainly German speech, section 4.2. For the Inter-sentential
data the language ID of the first utterance was taken.

The Seq2seq_lid_emb has a very good performance of 14,53% WER on the Denglish data which
is probably due to the reason that as we previously inferred, in subsection 5.1.1 the monolingual
German data already contains some English words. The Denglish utterances being mainly
German words and following German grammar rules thus might be handled by this system
more easily. However, as one might expect the WER on the Inter-sentential data is extremely
bad when compared to the other models.

Again similar to the results on the monolingual sets, training without curriculum learning
significantly worsens the models WER on all test data. The average 13,39% WER shows a

43

5. Evaluation

relative degradation of 12,62%WER compared to the Seq2seq model trained with 50% code-
switching data in the second-curriculum.

Although Seq2seq_noarde was given 50% code-switching utterances only missing out on
transitions from Arabic to German a slight degradation on both Denglish and Inter-sentential
data can be seen. This could probably be due to the reason that by eliminating this transition
the general amount of German and Arabic data gets slightly reduced and as such the Seq2seq
system is moderately better on both test sets especially on the Denglish one in which German
speech is an essential part. The training set of the Seq2seq model had German speech in 47%
percent of all samples whereas the Seq2seq_noarde only had it in 42,85% of the samples.

As already seen in Table 5.8 again the baseline model trained with only 20% code-switching
data outperforms all other models. Here the average WER is improved by 8,44% WER relatively
over the baseline model which again shows that the portion of how much training data is made
up of multiple languages is an important hyperparameter.

To account for an easier comparison with other models a table with all results is given in
Table A.3 in the appendix.

44

6. Conclusion and Future Work

6.1. Conclusion

In this work, we looked into the task of code-switching by utilizing language-agnostic multilin-
gual speech recognition systems. We evaluated the intra- & inter-sentential code-switching
performance in the context of the three languages Arabic, German and English. We also tested
our models on monolingual sets to consider a potential performance degradation on such
data as well. For the intra-sentential tests, we used a small in-house data set which contained
Denglish data which is mainly German sentences with English words mixed in. In case of the
inter-sentential data we generated our own artificial corpora based on data sets of the three
languages as described in subsection 4.2.3. We used the same algorithm to generate a training
set containing code-switching data as well.

Several experiments for developing multilingual models were conducted. We trained different
model architectures with different tasks. Models were trained with and without utilizing the
artificial code-switching data. In order to compare our models, we strictly applied the same
processes in all experiments. Monolingual models were also trained and their performances
were evaluated and compared to the multilingual ones. Additionally a non language-agnostic
multilingual model was trained and evaluated on our test sets.

« In our experiments we show that plainly training a language-agnostic multilingual model
decreases performance on monolingual utterances when compared to their respective
monolingual counterpart models. The performance on CS data is also underwhelming.

« We show that utilizing code-switching data during training significantly improves the
WER over the baseline and should be applied when training multilingual models.

+ The models heavily benefit from applying a curriculum learning regime when training
with code-switching data, as it improves their performance remarkably.

We demonstrate that the above mentioned methods not only significantly improve the perfor-
mance on code-switching data but also improve on the English and Arabic monolingual tests
as well. Additional to our baseline system we also explored multiple different architectural
additions as well as predictional changes.

« One model has additional three language IDs in its target set and predicts one of them
whenever a new language is decoded.

+ In another model we adopted a multi-task learning approach in which the feature vector
used to predict the target token is also used to predict the language ID for each token.

45

6. Conclusion and Future Work

« The third approach used the output of the encoder to predict the language in a frame-based
manner.

« We also implemented two systems which explicitly utilized language predictions. One
of them applied a language specific adapter module on the decoder output based on the
language which was classified in the current step.

+ The second model utilized the token based language prediction by autoregressively adding
its embedding on the previously outputted token embedding.

Our results show improvements of these models on the intra-sentential code-switching test
when trained without data containing code-switching. However, after training the second-
curriculum as described in section 5.2 all models improve and there is only a relative improve-
ment of 1,23% WER over the baseline model when using the above mentioned token based
multi-tasking model, which is depicted in Figure 4.2 a).

Strikingly, after training the second-curriculum, all our language-agnostic models outperform
the multilingual reference model which is given the correct language embedding at all decoding
steps. This again underlines the importance of showing the model code-switching data during
training even if it was generated artificially. In section 4.3 we also analysed using a smaller
portion of code-switching data. This further improved our results which suggests that this a
hyperparameter where the optimal value needs still to be determined.

6.2. Future Work

Currently, we are collecting inter-sentential CS test data fur the purpose of having a more
expressive evaluation set to work with.

In the future, we would like to explore the effect of training a massively multilingual monolithic
system with our code-switching data and see the effects on such a system. We hope that this
training regime could even be beneficial for languages with fewer data in such setups and could
alleviate problems caused by underrepresented languages when training multilingual systems.
Interesting to observer would be if the models still improve over the monolingual baselines
even in a heavily multilingual setting as well.

As the results for the baseline model with only 20% code-switching data have shown improve-
ments over the model with 50% we further need to analyse the best portion as well as invest in
researching a more enhanced algorithm for creating this kind of data. One improvement of the
algorithm could be to limit the number of times a specific utterance is allowed to be used for
creating the data containing multiple languages.

In [20] the authors showed that including code-switching data increases the frame based
language ID classification accuracy by a significant amount. Generating intra-sentential code-
switching utterances where the task of transcription is left out and only training to classify
the language might help in the case of the transcribing speech which contains intra-sentential
code-switching. This could potentially lead to worse results, in the case of Denglish as well, as
the grammar of the main language usually needs to be applied to the transcription even if it is
a foreign word.

In their work in [23], the writers showed that using additional features such as the pitch and the

46

6. Conclusion and Future Work

fundamental frequency variation feature yielded impressive improvements when transcribing
tonal languages, such as Vietnamese or Chinese. In our system the encoder implicitly learns
to extract information important for the transcription task. Adding a tonal language into our
multilingual setup could further enhance the prowess of our acoustic model, as none of the
three languages used in this thesis are tonal.

Another approach could be to utilize a text auto-encoder which is trained with either synthetic
or natural code-switching text-only data. In this scenario the decoder would be shared with the
ASR system and as such would decode intra- & inter-sentential code-switching during training
which could lead to a more flexible and sophisticated decoder.

47

Bibliography

[1]

2]

(3]

Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui, Hamdy Mubarak, Steve Renals, and
Yifan Zhang. “The MGB-2 challenge: Arabic multi-dialect broadcast media recognition”.
In: 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2016, pp. 279-284.

Djegdjiga Amazouz, Martine Adda-Decker, and Lori Lamel. “Addressing code-switching
in French/Algerian Arabic speech”. In: Interspeech 2017. 2017, pp. 62—66.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh
Meyer, Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. “Common
voice: A massively-multilingual speech corpus”. In: arXiv preprint arXiv:1912.06670 (2019).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation
by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. “Curriculum
learning”. In: Proceedings of the 26th annual international conference on machine learning.
2009, pp. 41-48.

Joyce YC Chan, PC Ching, and Tan Lee. “Development of a Cantonese-English code-
mixing speech corpus”. In: Ninth European Conference on Speech Communication and
Technology. 2005.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. “Learning phrase representations using
RNN encoder-decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014).

Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990), pp. 179-211.

Philip Gage. “A new algorithm for data compression”. In: C Users Journal 12.2 (1994),
pp. 23-38.

Helen Gremmelmaier. “Multilingual Sequence-To-Sequence Speech Recognition”. PhD
thesis. Karlsruhe Institute of Technology, 2021.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. “Improving neural networks by preventing co-adaptation of feature
detectors™. In: arXiv preprint arXiv:1207.0580 (2012).

Sepp Hochreiter and Jirgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-
putation 9.8 (1997), pp. 1735-1780. por: 10.1162/neco0.1997.9.8.1735.

48

https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography

[14]

[21]

[22]
[23]

ISO. ISO/IEC 14882:1998: Programming languages — C++. Available in electronic form for
online purchase at http: //webstore.ansi.org/ and http: / /www.cssinfo.com/. Sept. 1998,
p. 732. URL: http://webstore.ansi.org/ansidocstore /product.asp ?sku=ISO%2FIEC+
14882 %2D1998; %20http: / / webstore . ansi. org / ansidocstore / product . asp 7 sku =
ISO%2FTEC+14882%3A1998;%20http: / /www.iso.ch/cate/d25845.html; %20https:
/ /webstore.ansi.org/.

Anjuli Kannan, Arindrima Datta, Tara N Sainath, Eugene Weinstein, Bhuvana Ram-
abhadran, Yonghui Wu, Ankur Bapna, Zhifeng Chen, and Seungji Lee. “Large-scale
multilingual speech recognition with a streaming end-to-end model”. In: arXiv preprint
arXiv:1909.05330 (2019).

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

Philipp Koehn et al. “Europarl: A parallel corpus for statistical machine translation”. In:
MT summit. Vol. 5. Citeseer. 2005, pp. 79-86.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097-1105.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324. por:
10.1109/5.726791.

LeNet-5Arch. https: / /www.topbots.com /important - cnn-architectures/. Accessed:
2021-08-30.

Ke Li, Jinyu Li, Guoli Ye, Rui Zhao, and Yifan Gong. “Towards code-switching ASR for
end-to-end CTC models”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 6076-6080.

Dau-Cheng Lyu, Tien-Ping Tan, Eng-Siong Chng, and Haizhou Li. “An analysis of a
Mandarin-English code-switching speech corpus: SEAME”. In: Age 21 (2010), pp. 25-8.

Rajend Mesthrie. Introducing sociolinguistics. Edinburgh University Press, 2009.

Florian Metze, Zaid AW Sheikh, Alex Waibel, Jonas Gehring, Kevin Kilgour, Quoc Bao
Nguyen, et al. “Models of tone for tonal and non-tonal languages”. In: 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding. IEEE. 2013, pp. 261-266.

Markus Miiller, Sebastian Stiiker, and Alex Waibel. “Language adaptive multilingual CTC
speech recognition”. In: International Conference on Speech and Computer. Springer. 2017,
pp. 473-482.

Saida Mussakhojayeva, Yerbolat Khassanov, and Huseyin Atakan Varol. “A Study of
Multilingual End-to-End Speech Recognition for Kazakh, Russian, and English”. In:
International Conference on Speech and Computer. Springer. 2021, pp. 448-459.

Thai-Son Nguyen, Sebastian Stueker, Jan Niehues, and Alex Waibel. “Improving sequence-
to-sequence speech recognition training with on-the-fly data augmentation”. In: ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2020, pp. 7689-7693.

49

http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;%20http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998;%20http://www.iso.ch/cate/d25845.html;%20https://webstore.ansi.org/
https://doi.org/10.1109/5.726791
https://www.topbots.com/important-cnn-architectures/

Bibliography

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89. 2020. URL:
https://developer.nvidia.com/cuda-toolkit.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024-8035.
URL: http: / / papers.neurips.cc / paper /9015- pytorch-an-imperative-style- high -
performance-deep-learning-library.pdf.

Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, and Alex Waibel. “Improving zero-shot
translation with language-independent constraints”. In: arXiv preprint arXiv:1906.08584
(2019).

Shana Poplack. “Sometimes i’ll start a sentence in spanish y termino en espanol: toward
a typology of code-switching1”. In: (1980).

Anthony Rousseau, Paul Deléglise, and Yannick Esteve. “TED-LIUM: an Automatic
Speech Recognition dedicated corpus.” In: LREC. 2012, pp. 125-129.

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond Elliott, Loic Barrault, Lu-
cia Specia, and Florian Metze. “How2: a large-scale dataset for multimodal language
understanding”. In: arXiv preprint arXiv:1811.00347 (2018).

Ernst Gunter Schukat-Talamazzini. “Automatische Spracherkennung : Grundlagen, statis-
tische Modelle und effiziente Algorithmen”. PhD thesis. Braunschweig [u.a.], 1995. ISBN:
3528054921.

Tanja Schultz and Alex Waibel. “Experiments on cross-language acoustic modeling.” In:
INTERSPEECH. 2001, pp. 2721-2724

Tanja Schultz and Alex Waibel. “Language-independent and language-adaptive acoustic
modeling for speech recognition”. In: Speech Communication 35.1-2 (2001), pp. 31-51.

Hiroshi Seki, Shinji Watanabe, Takaaki Hori, Jonathan Le Roux, and John R Hershey.
“An end-to-end language-tracking speech recognizer for mixed-language speech”. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2018, pp. 4919-4923.

Sanket Shah, Basil Abraham, Sunayana Sitaram, Vikas Joshi, et al. “Learning to recognize
code-switched speech without forgetting monolingual speech recognition”. In: arXiv
preprint arXiv:2006.00782 (2020).

Changhao Shan, Chao Weng, Guangsen Wang, Dan Su, Min Luo, Dong Yu, and Lei Xie.
“Investigating End-to-end Speech Recognition for Mandarin-english Code-switching”.
In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2019, pp. 6056—6060. por: 10.1109/ICASSP.2019.8682850.

50

https://developer.nvidia.com/cuda-toolkit
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/ICASSP.2019.8682850

Bibliography

[39]

[44]

[45]

[46]

[47]

Changhao Shan, Chao Weng, Guangsen Wang, Dan Su, Min Luo, Dong Yu, and Lei Xie.
“Investigating end-to-end speech recognition for mandarin-english code-switching”. In:
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 6056-6060.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

Richard Skiba. “Code switching as a countenance of language interference”. In: The
internet TESL journal 3.10 (1997), pp. 1-6.

Sebastian Stuker, Tanja Schultz, Florian Metze, and Alex Waibel. “Multilingual articu-
latory features”. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). Vol. 1. IEEE. 2003, pp. I-L

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409.3215. UrL: http://arxiv.
org/abs/1409.3215.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. I1SBN: 1441412697.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. “Phoneme recognition
using time-delay neural networks”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 37.3 (1989), pp. 328-339. por: 10.1109/29.21701.

Shinji Watanabe, Takaaki Hori, and John R Hershey. “Language independent end-to-end
architecture for joint language identification and speech recognition”. In: 2017 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE. 2017, pp. 265—
271.

Monika Woszczyna, Naomi Aoki-Waibel, Finn Dag Buo, Noah Coccaro, Keiko Horiguchi,
Thomas Kemp, Alon Lavie, Arthur McNair, Thomas Polzin, Ivica Rogina, et al. “JANUS 93:
Towards spontaneous speech translation”. In: Proceedings of ICASSP’94. IEEE International
Conference on Acoustics, Speech and Signal Processing. Vol. 1. IEEE. 1994, pp. [-345.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schiitze. “Comparative study of CNN
and RNN for natural language processing”. In: arXiv preprint arXiv:1702.01923 (2017).

Shuai Zhang, Jiangyan Yi, Zhengkun Tian, Jianhua Tao, and Ye Bai. “Rnn-transducer
with language bias for end-to-end Mandarin-English code-switching speech recognition”.
In: 2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP).
IEEE. 2021, pp. 1-5.

51

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1109/29.21701

A. Appendix

A.1. Evaluation tables

52

A. Appendix

UT UJILIM 91 S[OPOW [enSUI[I}NUI 29-OUOW JO SYTA 159¢ "BIep SUIYOIIms-apod noyjrm Sururer) 193je SPPOU [[e Jo s}NsaY :'T'V [qeL

‘PIoq

8P LT vh6b €691 8P 2191 | 61°0T | 859 02‘8 1depe basgbag
6€°61 8229 02°LT L¥'ST P6°ST | 16% L¥9 6%°8 quo” ppe basgbag
PSLT 26'SH WA $S91 9991 | 6%°0T | 969 16°8 oua” Jur basgbag
02°LT 8¢‘6¥ €e's1 98¥%1 €6°ST | L6%6 €L9 81°8 09p W basgbag
6S°8T €616 L9°91 6691 90°LT | 26°0T | 69°L 688 pI[basgbag
6502 CeLL €SPI rer L8‘ST | 986 60°‘S LS‘L quid” pI[basgbag
€€91 1LLE LYLT €€91 I€9T | 8901 | 189 86°8 1e0U00 basgbag
1281 Gecy L9°8T 1€91 19T | OTTT | L¥'S 566 basgbag
L0001 vL°68 €LS0T 28°cv1 26°0LT | 62°LLY | TS‘S 67°L ug-ouoy
88°CL ceel 0%°00T L¥°20T 69°ST | TL‘6 | 9%°001 80°80T Iy-Ouop
91°08 08°¢8 L9991 ILI1 2821 | 9€IET | $0°16 G186 9(J-OUON
9GeIdAY || [ETIURIUAS-IAIU] | YSI[SUS(| 9ITOA WWIOD) v yzliv | [Sm | QdL+zmoH [epowx

53

A. Appendix

"PIOq UT USPLIM dTe sooueuriojrad YT 1s9g “erep SUIdIIMS-9pod YJim Sururel) I19)je S[POu [[e JO sNsSAY "7V [qeL

zL0T ¥I‘6 LO‘ST A 8Z°CT | ¥9'%6 | 6S°S LOL apreou basgbag
0801 90°6 0Z‘ST zeeT SIGT | 0L%6 | 0LS L¥ L 1depe~basgbag
96°L1 26°6S LOST 01°¢T 0¢'ST | 0F'6 | ¥S°S 0¥'L quid~ppe” basgbag
€9°01 S0‘6 €SF1 6T°CT 9ZCT | 6£6 | LLS GZL oua jur basgbag
Zal)! LLS €SF1 I1cl 20ST | €26 | ¥F'S L6°9 29p Jw basgbag
L¥0T 206 EIF1 So‘cT ZIST | 6£6 | €£°6 €L pI[basgbag
1201 29‘8 €LET (YA 98F1I | ¥E6 | TS 169 2’0 basgbag
LS0T 868 0871 A €6F1 | €F6 | 9F°S €I°L baszbag
€1zl 0S°0T LZ91 Zhs1 LSOT | $LOT | 9T°L 9Z°8 1m)ou” basgbag
aderoAy || [enuajuRs-1aju] | ysidua(| doAwwo) | iy | yg v | [Sm | qdL+gmoH [epowt

54

A. Appendix

TloM Se p[oq Ul UoPLIM oIk S[apoul [engurjouowr Sururiojiad 3saq Jo san[eA "p[oq Ul USPLIM I8) JNOYILM PUR [}IM paurer)

S[opoW JO SYI M 159g “Sururer} SuLmMp uaas ejep §Q) [eIIUajuas-Ia3ul 3im jred romof noyym 1red 1oddn s[apouu [[e Jo s3nsay "¢’y S[qel

zL01 v1°6 LO‘ST A 8ZCT | ¥96 65°S LOL apreou” basgbag
0801 90°6 0Z'ST ANt 8IGT | 0L6 0L'S L¥ L 1depe~basgbog
96°L1 2665 LOST 01°CT 0¢'ST | 0%6 AN 0v‘L quia” ppe basgbag
€9°01 606 €SYI1 61°¢T 92°ST 6€°6 LL'S GT'L ous Jwr basgbag
P01 LL'8 €GP IT°¢T 20T | SZ%6 | ¥F'S L6%9 09p Jwr basgbag
L¥0T 206 SIPI S0°CT ZIST | 6£%6 €e'g ¢T'L p1[basgbag
1201 298 €LCT GLTL 98FPL | ¥E6 v2's 169 2'0 basgbag
LS0T 86°S 08F1 8z‘cT €6FT | €76 9%°S €I’L basgbag
ANAl 0501 L2°91 Ayt LSO | ¥LOT | 91°L 92'8 1mQou” basgbag
VLI V6V €6°91 88%1 Zr'or | 61°0T | 859 02°8 1depe~basgbag
6€°6T 82°29 0Z°LT LV'ST V6'ST | 166 | L¥9 678 quis”ppe basgbag
PSLY 26°SH WA $S91 9991 | 6%°0T | 969 168 ous Ju basgbag
0Z°LT 8¢ 6¥ €e'GI 98%1 €6'GT | L6%6 €L9 31°g 09p W basgbag
6581 €616 L9°91 6691 90°LT | 26°0T | 69°L 688 p1[baszbag
6502 CeULL €SPI el LS8‘ST | 986 | 60°S LS‘L quio” pI[basgbag
€€91 TLLE LYLT €€9T I€9T | 89°01 189 868 1e0u0d basgbag
12°81 Ge'ey L9°81 1€°8T 1941 | OIIT | L¥'S G6°6 basgbag
L0001 ¥L68 €LG0T 78°ch1 T6OLY | 62°LLY | TS‘S 67 L Ug-ouol
88°CL) 0%°001 L¥*201 69CL | 2L6 | 9%°001 80°801 Iy-OUON
91°08 08°¢8 L9°9T LTI Zv'82T | 9¢°1ET | ¥0°16 G1‘86 9(J-OUo
98BIOAY || [BIUSIULRS-IAU] | YST[SUS(| 9JTOA WWOD) v yz v | [Sm | QdL+zmoH [Ppowx

55

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Fundamentals
	Automatic Speech Recognition
	Data Preparation
	Audio Pre-Processing
	Text Preparation

	Neural Networks
	Convolutional Neural Network
	Recurrent Neural Network
	Long Short-Term Memory
	Bidirectional LSTM
	Attention
	Multi-Head-Attention
	Dropout
	Encoder-Decoder Networks

	Evaluation Metrics
	Word Error Rate
	Perplexity

	Curriculum learning
	Sequence-to-sequence Models
	Code-switching

	Related Work
	Language-agnostic multilingual seq2seq models
	Mixing training set of multiple languages
	Prediction language identifier and text output
	Using language feature vectors

	Code-switching in seq2seq models
	Predicting language switch
	Multi-task learning
	Code-switching with frame level language identifiers

	Approach
	Models
	Base model
	Different architectural additions

	Data
	Data for training and evaluation
	BPE Data
	Inter-sentential code-switching

	Experimental Setup
	General Model Parameters
	Curriculum Learning

	Evaluation
	First-curriculum
	Monolingual Baseline Models
	Multilingual Models

	Second-curriculum
	Additional Experiments

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Evaluation tables

