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Abstract

Channel selection is important for automatic speech
recognition as the signal quality of one channel might
be significantly better than those of the other channels
and therefore, microphone array or blind source sepa-
ration techniques might not lead to improvements over
the best single microphone. The mayor challenge, how-
ever, is to find this particular channel who is leading to
the most accurate classification. In this paper we present
a novel channel selection method, based on class sepa-
rability, to improve multi-source far distance speech-to-
text transcriptions. Class separability measures have the
advantage, compared to other methods such as the sig-
nal to noise ratio (SNR), that they are able to evaluate the
channel quality on the actual features of the recognition
system.

We have evaluated on NISTs RT-07 development set
and observe significant improvements in word accuracy
over SNR based channel selection methods. We have also
used this technique in NISTs RT-07 evaluation.

1. Introduction

Ideally, automatic speech recognition (ASR) systems
working on data recorded from distant microphones, free-
ing users from wearing body-mounted microphones. If
applied wisely, the combination of channels from far-
distance multi-channel recordings into a single channel
can improve the channel quality and consequently recog-
nition accuracy over a single channel. However, this
problem is surpassingly difficult, given that the speech
signals collected by a varying number and types of micro-
phones are severely degraded by both, background noise
and reverberation and that their locations and speaker po-
sition are unknown. In those cases, e.g. if microphones
are mounted on different sides of the room, the combina-
tion of channels by microphone array processing or blind
source separation might not lead to an improvement in
channel quality and consequently recognition accuracy
over the single best microphone. In addition Anguera et
al. found that the quality of microphone array processing
is dependent on the reference channel [1].
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To find the channel which is leading to the highest ac-
curacy, however, is a challenging task. Note that a chan-
nel can indicate one channel or a signal combination of
more channels. To address this challenge, in the context
of ASR, a variety of solutions have been proposed from
which we briefly want to review two widely used methods
and introduce class separability as a measure for channel
quality:

e Signal to noise ratio is possibly the most widely
used and is indeed a good indication for signal
quality and proven to be useful in a broad variety of
applications including channel selection for ASR
[2]. It is handy and fast, but the quality of the re-
sult is strongly dependent on the estimate of speech
and silence regions and in addition this measure is
not considering any knowledge of the recognition
system.

e Decoder based methods such as

— Maximum likelihood chooses the channel
with the highest likelihood [3].

— Difference in feature compensation compares
the ASR hypothesis of uncompensated and
compensated feature vectors for each channel
and chooses the one with the smallest differ-
ence [4].

The advantages of decoder based methods are the
close coupling between the channel selection cri-
teria and the recognition system, leading to more
reliable estimations. The disadvantages are that
for each individual channel, to not suffer from
mismatch between the different channels, at least
one (in the difference in feature compensation ap-
proach even two), recognition run is required —
leading to a drastic increases in computation time.

e Class separability can be applied on different fea-
tures and therefore allows to consider all possible
information available in the recognition front-end.
Furthermore, class separability can be applied ei-
ther as a stand alone or decoder based approach.
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The remainder of this paper is organized as follows.
Section 2 introduces class separability in the context of
channel selection. Section 3 describes the baseline sys-
tem setup. Section 4 presents and discusses a variety of
speech recognition experiments and Section 5 concludes
our findings.

2. Class Separability for Channnel
Selection

We would like to consider feature vectors such that all
vectors belonging to the same class (e.g. phoneme)
are close together in feature space and well separated
from the feature vectors of other classes (e.g. compet-
ing phonemes). One way to measure this separation is to
use a classical concept in pattern recognition, namely the
class separability. We can define three different scatter
matrices (however, only two are necessary):

e within-class scatter matrix

Sw = Z Z(Xij — ) (xij — )"
T J

e between-class scatter matrix
C
Sp =Y nilps — ) (s — )"
i

e rotal scatter matrix

St =8Su + Sy = Z Z(ij — (i — )"
i J

where n; denotes the number of samples in class i. The
mean vector for the ¢-th class is defined by p;, while p
defines the mean vector over all classes c.

Given the class scatter matrices, several separability
measures are conceivable, probably the most widely used
is

d = trace (S;lsb) . (D)

To not rely on the singularity of S,, we have also investi-
gated
d = trace (Sp) /trace (S) (2)

2.1. Classes to be used

In the case of class separability and consequently in linear
discriminant analysis it seams not to be clear which are
the best class units to be used for the calculation of the
different matrices, e.g. phone, sub-phone, allophone or
prototype level classes [5]. However, in large continuous
speech recognition systems, where a lot of training data is
available, it seams common nowadays to use sub-phone
units.
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In our opinion the ideal class unit might depend on
the amount of available data to reliably estimate the scat-
ter matrices. Due to very short utterances in our test set,
some containing only one or two words which consist of
no more than 60 frames (600 milliseconds of speech),
we have limited our investigations to phone units (de-
coder based) and data driven units up to 32 classes (stand
alone). To find the classes in the stand alone approach we
have first separated between speech and silence frames
by a simple voice activity detection. The speech frames
have been further separated by classes derived by merge
and split training (each Gaussian representing one class),
either on the fly (on the utterance under investigation)
or on the training data. As a good classification is de-
pendent on the separability between different phoneme
classes only, as the silence class is commonly not leading
to confusion with a phoneme class, we have also consid-
ered cases where the silence class has been neglected in
the calculation of the scatter matrices.

2.2. Feature Space

To determine reliable class separability measures one
should aim to integrate as much knowledge about the hu-
man auditory system and to be as close as possible to the
features as observed by the acoustic model of the ASR
system. Therefore, we have used the 42 dimensional sub-
space

d(ch) = trace { (WTshw) ™ (wnghw)} 3)

identical to the features (more details in section 3.1) as
observed by the acoustic model of the ASR system. Here
ch represents the investigated channel and W represents
either the linear discriminant analysis matrix or the opti-
mal feature space matrix. The trace is defined as the sum
or the first n eigenvalues \; of a matrix (an n-dimensional
subspace) and hence the sum of the variances in the prin-
cipal directions.

2.3. Selection Criterion

The channel which maximizes the class separability

ch = argmax d(ch)
ch

is chosen to be used for classification.

3. Data Description and Baseline System

The evaluated NISTs RT-07 lecture meeting data [6],
selected under the European Commission integrated
project CHIL [7], Computers in the Human Interaction
Loop, contain multiple distant microphone recordings
and therefore enable the realistic evaluation of multi-
source far-distant speech recognition technologies. The
corpora presents significant challenges to both model-
ing components used in ASR, namely the language and



acoustic models. Large portions of the data contain non-
native, spontaneous, disfluent, and interrupted speech,
due to the interactive nature of seminars and the varying
degree of the speakers’ comfort with their topics. In addi-
tion the far-field data captured by table-top microphones
are exacerbated, in comparison to close talk recordings,
by the much poorer acoustic signal quality caused by re-
verberation, background noise and overlapping speech.

3.1. Acoustic Pre-Processing

To extract robust speech features, every 10 ms, we
have replaced the traditional Fourier transformation by
a warped minimum variance distortionless response
(MVDR) spectral envelope [8] of model order 30. In con-
trast to traditional approaches no filterbank was used, as
the warped MVDR envelope already provides those prop-
erties, namely smoothing and frequency warping. Vo-
cal track length normalization (VTLN) was applied in
the warped frequency domain. The 129 spectral features
have been truncated to 20 cepstral coefficients after cosi-
nus transformation. After mean and variance normaliza-
tion the cepstral features were stacked (7 adjacent left and
right frames) and truncated to the final feature dimension
42 by multiplying with the optimal feature space matrix
(the linear discriminant analysis matrix multiplied with
the global semi-tight covariance transformation matrix).

3.2. Acoustic and Language Model

The acoustic model contains 16,000 distributions over
4,000 models, with a maximum of 64 Gaussians per
model trained on close talking meeting data. The dic-
tionary contains 58,695 pronunciation variants over a vo-
cabulary of 51,731 words. The used 4-gram language
model has a perplexity of 130. More details about the
ASR models can be found in the system description [9].

4. Speech Recognition Experiments

The speech recognition experiments described below
were conducted with the Janus Recognition Toolkit
(JRTk), which was developed and is maintained jointly
by the Interactive Systems Laboratories at the Universitét
Karlsruhe (TH), Germany and at the Carnegie Mellon
University in Pittsburgh, USA.

On preliminary experiments, on the same data set, we
have made four observations:

e Direct comparisons between (1) and (2) have
showed a small difference in accuracy, where (1)
has always been ahead. Therefore, our further in-
vestigations are limited to (1).

e (Classes which have been determined on the in-
vestigated utterance (on the fly) have always led
to slightly higher recognition errors as compared
to classes which have been predetermined on the
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Channel Selection WER %

Pass 1 2 3
Signal to Noise Ratio 73.0 623 595
CSM - stand alone’*? 68.6 59.1 56.7
CSM - stand alone?:? 68.1 584 559
CSM - stand alone?®+# 674 578 55.1
CSM - decoder based? % 585 57.1

Table 1: Influence of different channel selection tech-
niques, signal to noise and a variety of class separability
measures (CSM)s, on the Word error rates (WER)s.

1 class selection on combined channel

2 class selection on individual channels

3 classes on all frames

4 classes only on speech frames

training data (identical to the acoustic training data
for the acoustic models of the ASR system). In
addition, on the fly classes take longer to process.
Therefore, our further investigations are limited to
predetermined classes.

e The knowledge of the vocal track length, deter-
mined by the ASR system, can also be consid-
ered [10] in the calculation of the scatter matrices
and is leading to slightly different scores, which,
in some cases, might lead to the selection of a dif-
ferent channel. However, we found that it has a
minor effect on the classification result and there-
fore is not treated in the experiments separately -
on first pass experiments no information about the
vocal track length is available, on second and third
pass experiments the vocal track length has always
been considered.

e Experiments with different number of classes in the
scatter matrix have led to slightly different accu-
racy. On our data set we found that eight classes
are leading to the best classification results.

The first decoding, pass 1, has used no adaptation
while the following passes were adapted on the hypothe-
sis of the former pass by maximum likelihood linear re-
gression (MLLR), VTLN and constrained MLLR.

To evaluate decoder based class separability mea-
sures (CSM)s we have to generate phone classes by
a forced alignment on hypothesis of a previous pass.
Therefore, no evaluation of this technique is available for
pass 1, pass 2 has to rely on hypothesis by a different
channel selection approach, in our experiment we have
used the approach which had the best performance, CSM
- stand alone #*# (indices are explained in Table 1). Fi-
nally, on pass 3, the classes have been derived on decoder
based CSM hypothesis of pass 2.

Comparing the Word error rates (WER)s of distant
recording in Table 1 we observe that any of the investi-



gated CSMs are superior to SNR. On pass 3, we have an
absolute difference of 4.4% which is a relative improve-
ment of 7.4%. Taken the close talking performance as
a lower bound, 31.3% percent on pass 3, we gain back
15.6% of the accuracy lost by using multi-channel distant
microphones by replacing SNR channel selection with
the proposed CSM channel selection. Note that even
though CSM based methods take a little bit longer to
compute as SNR based methods, the reported improve-
ments are established with an overall decrease in com-
putation time, as decodings (which eat up most of the
computation) run faster on channels with a better quality.

Comparing stand alone and decoder based CSM ap-
proaches we observe that the decoder based approach is
not improving over the stand alone approach. This might
be a bit surprising, possible reasons could be the high
number of classes, 46, as determined by the number of
phonemes and that the decoding has only be performed
on one channel, resulting in a mismatch if evaluated on
other channels. For an improved performance one could
run decodings for each channel, as recommended in de-
coder based methods, and/or cluster the phonemes to re-
duce the number of classes.

Comparing between the different stand alone CSM
approaches we can conclude that each channel should be
treated separately and that the performance has improved
by ignoring the silence class.

A direct comparison between delay-and-sum chan-
nel combination and the proposed channel selection tech-
nique on the final pass of the RT07 evaluation system [11]
with two front-ends (the described and a warped-twice
MVDR front-end [12]) shows a relative improvement of
3.6%, from 52.4% to 50.5% WER.

5. Conclusions and Future Work

The paper has presented our progress in multi-source
far distance speech recognition by adapting class sepa-
rability measures to the channel selection problem. We
have shown significant improvements with the proposed
method over the widely used signal to noise ratio. In ad-
dition the improved accuracy could be established with a
reduced overall computation time.

Additional improvements, which we will investigate
in the future, might be possible by

e a better selection of classes
In the current approach the classes are *blindly’ de-
termined by merge and split training. One could
use phone alignments to derive supervised classes.

e class representation by Gaussian mixture model
In the current approach each class is represented by
a single Gaussian. Improvements might be possi-
ble by a better representation of the distribution by
a mixture of Gaussians.
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e a dynamic number of classes
In the current approach a fixed number of classes
is used, as the frame length might vary from 50 up
to 3000 frames, improvements might be possible
by a varying number of classes depending of the
available number of frames.

o channel weighting
In the current framework only the best channel is
chosen. A weighted combination of different chan-
nels might lead to improvements over the single
best channel.
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