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1) Introduction 

Several improvements to the back-propagation 
learning algorithm are proposed to achieve fast 
optimization of speech tasks. A suitable sigmoid 
function is chosen, the learning step is 
dynamically adjusted and the weights are 
updated more frequently. Speedups up to several 
order of magnitude are obtained. Training for 
the speaker-dependent recognition of the 
phonemes ”B”, "D” and "G” takes only a few 
minutes on an Alliant parallel computer, as 
opposed to the 4 days reported earlier[2], and 
yields a recognition rate of more than 98.6% 
correct. 

2) Improving learning speed. 

The problem is: given sample data, we define an 
energy function as the mean square difference 
between network output and desired output and 
we try to reduce this energy to zero within the 
smallest learning time. As a function of the 
synaptic weights, this energy function defines a 
complex surface and learning may be seen as a 
trajectory on this surface, moving down along 
the steepest slope, preferably toward a global 
minimum. There are several ways to easy 
convergence: model an Energy surface without 
flat spots with an appropriate choice on the 
sigmoid function; choose the maximum learning 
step size while controlling overshooting; 
increase the weight updating frequency. 

Fig 1 : Sigmoid function {(x)= 1/(1 + e-*) and its 
derivative. 

2.1) The sigmoid function. 

Back-Propagation Learning rate is proportional 
to the values of the sigmoid function f and its 
derivative f. As seen in Fig.1, these functions 
flatten out at infinity, leading to very slow 
learning rate. A simple way to prevent this is to 
add some constants to for /. 

2.2) Scaling the step size. 

The optimal value of the step size may vary 
widely with time, which is consistent with the 
large variations of slope and curvature on the 
energy surface. As gauge of these variations, 
Franzini [3] has proposed the cosine of the angle 
between the error gradient at epoch t and that at 
epoch t-1: @=Angle(VE(t-1),VE(t)). When 
learning with a momentum, 0=Angle(Aw(t-1), 
—VE(t)) prevents much oscillations, even 
though Epsilon adaptation may be slower (Aw is 
the vector representing weight variation). 

If we compute the angle over the set of input 
connections to unit u, the algorithm becomes 
local to this unit, updating the local step size cy 
according to e,y(t) = ey(t-1)e(p.cos(®)), In our task 
where units may have very different roles, we 
have found a large increase in learning speed 
using this method. e may vary by a factor of 100 
from one unit to another, depending mostly on 
the layer. This is probably due to the fact that 
learning dynamics vary widely from one layer to 
another. 

While this algorithm does lead to significant 
improvements in speed, it is very sensitive to 
overshooting. During learning, very abrupt 
changes in learning strategy may be observed, 
We have added a control that, at each updating 
iteration, limits the norm of the vector e,VE toa 
fixed valueo=1.0. 

2.3) Increase weight updating frequency, 

Splitting a large and often highly redundant. 
training set into smaller subsets for the purpose 
of weight updating may be very advantageous, 
assuming that these subsets are representative 
of the problem. 

- At the beginning of the learning phase, one 
subset is enough data for a network which is 
only acting as a rough classifier. As a 
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consequence, updating weights over 
any subset 

may be as effective as updating weigh
ts over the 

whole training set. 

- At the end of the learning phase, det
ailed 

learning and a large training set are.need
ed. 

However, the difference between two learni
ng 

subsets may introduce noise and help avoid local 

minima. 

3) Experiments 

An "epoch" corresponds to one presentation of 

the whole training set. As the size of our 

training set is fixed and as the algorithms we 

present do not modify substantially the 

computing time per epoch, we will use epoch to 
rate performance. 

We have first dealt with mere learning speed 
of a training set, in which weights are updated 
at each epoch and the momentum is set to 0.9. 

Three tasks are evaluated: XOR: learning 
exclusive or in a neural network; 838: the 
network has to learn to encode 8 inputs within 
the 3 hidden units; BDG: learning the three stop 
consonants ‘B‘;‘D‘ and ‘G‘ in a TDNN ( Time 
Delay Neural Network) from 250 training 
samples. 

Results are shown in Table 1: 

- With overshooting control, our Epsilon scaling 
algorithm improves the learning speed of all the 
tasks, particularly if the initial value of c is set 
too small. 

~ Subtracting 0.5 to the sigmoid makes it 
symmetric and generally improves convergence. 

- Adding a small positive value to the sigmoid 
derivative is useful to speed up slow convergence 
[4]. 

We ran these learning algorithms on larger 
training sets and found that generalization 
capacity on test data (different from training 
date) was a decreasing function of learning 
speed, particularly if we are using the 
heightened sigmoid derivative. This is closely 
related to the fact that both weights and weight 
variations become too large. We made these 

variations smaller by updating weights more 

frequently (here each 12 or 24 pattern 

presentation), Our network learned BDG task 

from 783 training samples and achieved a 98,64, 
recognition rate on test data whithin 20 epochs 

(less than 5 minutes on an Alliant computer, as 
opposed to the 4 days reported earlier for the 
same task(2]). 

4) Conclusion 

We have shown that learning time could ’be 
short for tasks like phoneme recognition ‘in 
Neural Networks. These results are encouraging 

for the scope of tasks that can be handled by 

back-propagation in speech recognition: We 
have proposed some procedures for tuning 

learning parameters as the step size, the weight 

updating frequency and the shape of the sigmoid 

function to optimize the trade-off between 

learning speed and generalization capacity. 
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Table 1. Recognition Performance ( rated in epochs ) 

XOR Task 838 Task BDG Task 

Sigmoid_ | Denya- Initial | Standard | escal, J Initie) | Minimal | Standard | cscal. Initial | Standard | cacal, 

obit Live add e Algorith ‘Alporith c e Algorith Algorith & Algorith Algorith 

0 | 0 | o5 | 1010] 70 | 0.1 | 0.01 | 1830 | never] 0.01 | 560 | 100 
o.| o |.a0.| 30 | 35 J o1 | 01 | 1830] 130 | 002 | aco | 60 

705 | 0 | 10 | 25°] 25 | o1 | o1 | 1525 | 130 | 0.02 | sis |” 80 
05 |For] 10 | 215 | 35 | 01-| 01 | 640 | 80 | o02 | 190 | 60 
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