
an Gai Fast Back-Propagation Learning Methods
for Neural Networks in Speech*

P.Haffner , A.Waibel and K.Shikano

(ATR Interpreting Telephony Research Laboratories)

1) Introduction

Several improvements to the back-propagation
learning algorithm are proposed to achieve fast
optimization of speech tasks. A suitable sigmoid
function is chosen, the learning step is
dynamically adjusted and the weights are
updated more frequently. Speedups up to several
order of magnitude are obtained. Training for
the speaker-dependent recognition of the
phonemes ”B”, "D” and "G” takes only a few
minutes on an Alliant parallel computer, as
opposed to the 4 days reported earlier[2], and
yields a recognition rate of more than 98.6%
correct.

2) Improving learning speed.

The problem is: given sample data, we define an
energy function as the mean square difference
between network output and desired output and
we try to reduce this energy to zero within the
smallest learning time. As a function of the
synaptic weights, this energy function defines a
complex surface and learning may be seen as a
trajectory on this surface, moving down along
the steepest slope, preferably toward a global
minimum. There are several ways to easy
convergence: model an Energy surface without
flat spots with an appropriate choice on the
sigmoid function; choose the maximum learning
step size while controlling overshooting;
increase the weight updating frequency.

Fig 1 : Sigmoid function {(x)= 1/(1 + e-*) and its
derivative.

2.1) The sigmoid function.

Back-Propagation Learning rate is proportional
to the values of the sigmoid function f and its
derivative f. As seen in Fig.1, these functions
flatten out at infinity, leading to very slow
learning rate. A simple way to prevent this is to
add some constants to for /.

2.2) Scaling the step size.

The optimal value of the step size may vary
widely with time, which is consistent with the
large variations of slope and curvature on the
energy surface. As gauge of these variations,
Franzini [3] has proposed the cosine of the angle
between the error gradient at epoch t and that at
epoch t-1: @=Angle(VE(t-1),VE(t)). When
learning with a momentum, 0=Angle(Aw(t-1),
—VE(t)) prevents much oscillations, even
though Epsilon adaptation may be slower (Aw is
the vector representing weight variation).

If we compute the angle over the set of input
connections to unit u, the algorithm becomes
local to this unit, updating the local step size cy
according to e,y(t) = ey(t-1)e(p.cos(®)), In our task
where units may have very different roles, we
have found a large increase in learning speed
using this method. e may vary by a factor of 100
from one unit to another, depending mostly on
the layer. This is probably due to the fact that
learning dynamics vary widely from one layer to
another.

While this algorithm does lead to significant
improvements in speed, it is very sensitive to
overshooting. During learning, very abrupt
changes in learning strategy may be observed,
We have added a control that, at each updating
iteration, limits the norm of the vector e,VE toa
fixed valueo=1.0.

2.3) Increase weight updating frequency,

Splitting a large and often highly redundant.
training set into smaller subsets for the purpose
of weight updating may be very advantageous,
assuming that these subsets are representative
of the problem.

- At the beginning of the learning phase, one
subset is enough data for a network which is
only acting as a rough classifier. As a

*TDNN EBS 7 FT ORY — Yar TTY ALO BRE,

Be INTE. Ta 7A 74 Sle

BAG WS S Rim ZK {=

BESTIN (ATRA Sh BH aR 5A PH)

[hes 108

consequence, updating weights over
any subset

may be as effective as updating weigh
ts over the

whole training set.

- At the end of the learning phase, det
ailed

learning and a large training set are.need
ed.

However, the difference between two learni
ng

subsets may introduce noise and help avoid local

minima.

3) Experiments

An "epoch" corresponds to one presentation of

the whole training set. As the size of our

training set is fixed and as the algorithms we

present do not modify substantially the

computing time per epoch, we will use epoch to
rate performance.

We have first dealt with mere learning speed
of a training set, in which weights are updated
at each epoch and the momentum is set to 0.9.

Three tasks are evaluated: XOR: learning
exclusive or in a neural network; 838: the
network has to learn to encode 8 inputs within
the 3 hidden units; BDG: learning the three stop
consonants ‘B‘;‘D‘ and ‘G‘ in a TDNN (Time
Delay Neural Network) from 250 training
samples.

Results are shown in Table 1:

- With overshooting control, our Epsilon scaling
algorithm improves the learning speed of all the
tasks, particularly if the initial value of c is set
too small.

~ Subtracting 0.5 to the sigmoid makes it
symmetric and generally improves convergence.

- Adding a small positive value to the sigmoid
derivative is useful to speed up slow convergence
[4].

We ran these learning algorithms on larger
training sets and found that generalization
capacity on test data (different from training
date) was a decreasing function of learning
speed, particularly if we are using the
heightened sigmoid derivative. This is closely
related to the fact that both weights and weight
variations become too large. We made these

variations smaller by updating weights more

frequently (here each 12 or 24 pattern

presentation), Our network learned BDG task

from 783 training samples and achieved a 98,64,
recognition rate on test data whithin 20 epochs

(less than 5 minutes on an Alliant computer, as
opposed to the 4 days reported earlier for the
same task(2]).

4) Conclusion

We have shown that learning time could ’be
short for tasks like phoneme recognition ‘in
Neural Networks. These results are encouraging

for the scope of tasks that can be handled by

back-propagation in speech recognition: We
have proposed some procedures for tuning

learning parameters as the step size, the weight

updating frequency and the shape of the sigmoid

function to optimize the trade-off between

learning speed and generalization capacity.

Acknowledgement s
Authors would like to express their gratitude to
Dr. Akira Kurematsu, president: of ATR
Interpreting Telephony Research Laboratories,
for his encouragement and support. We are also
indebted to the members of the Speech
Processing Department.

References.
U1) D.E. Rumelbart and J.L. McClelland. Parallel distributed
Processing; Explorations in the Microstructures of Cognition.
Volume! and II, MIT press, Cambridge, MA, 1986.

(2] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K.

Lang. Phoneme Recognition Using Time-Delay Neural
Networks. Technical Report TR-1-0006, ATR Interpreting
Telephony Research Laboratories, October 1987.

[3] M.A. Franzini: Speech recognition’ with Back
Propagation. In Proceedings, Ninth Annual Conference of
IEEE Engineering in Medecine and Biology Society. 1987.

[4) SE. Fahlman. An Empirical Study of Learning Speed in
Back-Propagation Networks. Technical report CMU-CS-88-
162, Carnegie Melion University, June 1988.

Table 1. Recognition Performance (rated in epochs)

XOR Task 838 Task BDG Task

Sigmoid_ | Denya- Initial | Standard | escal, J Initie) | Minimal | Standard | cscal. Initial | Standard | cacal,

obit Live add e Algorith ‘Alporith c e Algorith Algorith & Algorith Algorith

0 | 0 | o5 | 1010] 70 | 0.1 | 0.01 | 1830 | never] 0.01 | 560 | 100
o.| o |.a0.| 30 | 35 J o1 | 01 | 1830] 130 | 002 | aco | 60

705 | 0 | 10 | 25°] 25 | o1 | o1 | 1525 | 130 | 0.02 | sis |” 80
05 |For] 10 | 215 | 35 | 01-| 01 | 640 | 80 | o02 | 190 | 60

BATUPS BML Ie =204— Sa HIS3 5 104

