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Modularity and Scaling in Large Phonemic Neural 
Networks 

Abstract-Scaling connectionist models to larger connectionist sys- 
tems is difficult because larger networks require increasing amounts of 
training time and data, and the complexity of the optimization task 
quickly reaches computationally unmanageable proportions. In this 
paper, we train several small Time-Delay Neural Networks aimed at 
all phonemic subcategories (nasals, fricatives, etc.) and report excel- 
lent fine phonemic discrimination performance for all cases. Exploiting 
the hidden structure of these smaller phonemic subcategory networks, 
we then propose several techniques that allow us to “grow” larger nets 
in an incremental and modular fashion without loss in recognition per- 
formance and without the need for excessive training time or addi- 
tional data. These techniques include class discriminatoory learning, con- 
nectionist glue, selective/partial learning, and all-net $ne tuning. A set 
of experiments shows that stop consonant networks (BDGPTK) con- 
structed from subcomponent BDG- and PTK-nets achieved up to 98.6 
percent correct recognition compared to 98.3 and 98.7 percent correct 
for the component BDG- and PTK-nets. Similarly, an incrementally 
trained network aimed at all consonants achieved recognition scores of 
about 96 percent correct. These results were found to be comparable 
to the performance of the subcomponent networks and significantly 
better than several alternative speech recognition methods. 

I. INTRODUCTION 
number of studies have recently demonstrated [ 11- A [3] that connectionist architectures capable of cap- 

turing some critical aspects of the dynamic nature of 
speech can achieve superior recognition performance for 
small but difficult phonemic discrimination tasks. En- 
couraged by these results, we would like to explore the 
question: how might we expand on these models to make 
them useful for the design of speech recognition systems. 
A problem that emerges as we attempt to apply neural 
network models to the full speech recognition problem is 
the problem of scaling. Simply extending our networks to 
ever larger structures and retraining them soon exceeds 
the capabilities of even the fastest and largest of today’s 
supercomputers. The complexity of searching a huge 
space of possible network configurations for good solu- 
tions also quickly assumes unmanageable proportions. 
Even when faster learning algorithms and faster hardware 
emerge to stretch the size of our networks to handle ever 
larger tasks, having to retrain these networks completely 
on all the relevant training data, and whenever new 
knowledge, new categories, or classes arise, is impracti- 
cal to say the least. 
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In an effort to extend our models from small recognition 
tasks to large scale speech recognition systems, we must 
therefore explore modularity and incremental learning as 
design strategies to break up a large learning task into 
smaller subtasks. Breaking up large tasks into subtasks to 
be tackled by individual black boxes interconnected in ad 
hoc arrangements, on the other hand, would mean aban- 
doning one of the most attractive aspects of connection- 
ism: the ability to perform complex constraint satisfaction 
tasks in a massively parallel and interconnected fashion, 
in view of an overall optimal performance goal. In this 
paper we demonstrate, based on a set of experiments 
aimed at phoneme recognition, that it is indeed possible 
to construct large neural networks by exploiting the hid- 
den structure of smaller trained subcomponent networks. 
A set of successful techniques is developed that bring the 
design of practical large scale connectionist recognition 
systems within the reach of today’s technology. 

The present paper has five parts. In the next section we 
review Time-Delay Neural Networks as a technique to 
achieve accurate, reliable classification of phonemes in 
small but confusable phonemic subcategories (e.g., BDG, 
PTK, etc.). Excellent performance results are reported for 
all phonemic coarse classes found in a Japanese large vo- 
cabulary word database. In Section 111, we then explore 
techniques for the modular extension of small networks 
to larger “connectionist systems. ” In Section IV,  we then 
apply these techniques and present a large network that 
was designed to recognize all the consonants in our da- 
tabase. We summarize our results in the last section of 
this paper. 

11. SMALL PHONEMIC CLASSES BY TIME-DELAY NEURAL 
NETWORKS 

To be useful for the proper classification of speech sig- 
nals, a neural network should have a number of proper- 
ties. First, it should have multiple layers and sufficient 
interconnections between units in each of these layers. 
This is to ensure that the network will have the ability to 
learn complex nonlinear decision surfaces [4]. Second, 
the network should have the ability to represent relation- 
ships between events in time. These events could be spec- 
tral coefficients, but might also be the output of higher 
level feature detectors. Third, the actual features or ab- 
stractions learned by the network should be invariant un- 
der translation in time. This is desirable, so that accurate 
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recognition can be accomplished despite inaccurate seg- 
mentation or labeling. Fourth, the learning procedure 
should not require precise temporal alignment of the la- 
bels that are to be learned. Fifth, the number of weights 
in the network should be small compared to the amount 
of training data so that the network is forced to encode 
the training data by extracting regularity. In the follow- 
ing, we review a Time-Delay Neural Network (TDNN) 
architecture that was designed to satisfy these criteria spe- 
cifically for the classification of phonemes within small 
phonemic classes such as the voiced stops, “B,” “D,” 
“G,” the voiceless stops “P,” “T,”  “K,” etc. It is im- 
portant to note that we have limited the following discus- 
sion to discriminatory nets that are trained and evaluated 
on excised phoneme tokens only. While the nets de- 
scribed here tolerate misalignments in the input by virtue 
of shift-invariance, they are here not trained to spot pho- 
nemes, syllables, or other subword units from continuous 
speech. Such networks are described elsewhere [5]-[9]. 

A .  Review of a Time-Delay Neural Network’s 
Architecture 

The basic unit used in many neural networks computes 
the weighted sum of its inputs and then passes this sum 
through a nonlinear function, most commonly a thresh- 
old or sigmoid function [4], [ 101. In our TDNN, this basic 
unit is modified by introducing delays DI through DN as 
shown in Fig. 1. The J inputs of such a unit now will be 
multiplied by several weights: one for each delay and one 
for the undelayed input. For N = 2, and J = 16, for ex- 
ample, 48 weights will be needed to compute the weighted 
sum of the 16 inputs, with each input now measured at 
three different points in time. In this way, a TDNN unit 
has the ability to relate and compare current input with 
the past history of events. The sigmoid function was cho- 
sen as the nonlinear output function F due to its conve- 
nient mathematical properties [ 101, [ 1 11. 

For the recognition of phonemes, a three layer net is 
constructed. Its overall architecture and a typical set of 
activities in the units are shown in Fig. 2 based on one of 
the phonemic subcategory tasks (BDG). 

At the lowest level, 16 melscale spectral coefficients 
serve as input to the network. Input speech, sampled at 
12 kHz, was Hamming windowed and a 256-point FFT 
was computed every 5 ms. Melscale coefficients were 
computed from the power spectrum [ l ] ,  [2] and adjacent 
coefficients in time collapsed (averaged) resulting in an 
overall 10 ms frame rate. The coefficients of an input to- 
ken (in this case, 15 frames of speech centered around the 
hand labeled vowel onset) were then normalized to lie be- 
tween - l .O and + l .O with the average at 0.0. Fig. 2 
shows the resulting coefficients for the speech token 
“BA” as input to the network, where positive values are 
shown as black and negative values as gray squares. 

This input layer is then fully interconnected to a layer 
of 8 time delay hidden units, where J = 16 and N = 2 
(i.e., 16 coefficients over three frames with time delay 0, 

t wi 
Fig. 1. A time-delay neural network (TDNN) unit 
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Flg 2. The TDNN architecture (input. “BA”) 

in Fig. 2. It shows the inputs to these time delay units 
expanded out spatially into a 3 frame window, which is 
passed over the input spectrogram. Each unit in the first 
hidden layer now receives input (via 48 weighted connec- 
tions) from the coefficients in the 3 frame window. The 
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particular delay choices were motivated by earlier studies 
[ 121-[ 161. 

In the second hidden layer, each of 3 TDNN units looks 
at a 5 frame window of activity levels in hidden layer 1 
(i.e.,  J = 8,  N = 4 ) .  The choice of a larger 5 frame 
window in this layer was motivated by the intuition that 
higher level units should learn to make decisions over a 
wider range in time based on more local abstractions at 
lower levels. 

Finally, the output is obtained by integrating (sum- 
ming) the evidence from each of the 3 units in hidden 
layer 2 over time and connecting it to its pertinent output 
unit (shown in Fig. 2 over 9 frames for the “B” output 
unit). In practice, this summation is implemented simply 
as another TDNN unit which has fixed equal weights to a 
row of unit firings over time in hidden layer 2. While the 
network shown in Fig. 2 was designed for a 3 class prob- 
lem (e.g., BDG or PTK), variations to accommodate 2, 
4, or 5 classes are easily implemented by allowing for 2, 
4 ,  or 5 units in hidden layer 2 and in the output layer. 

When the TDNN has learned its internal representation, 
it performs recognition by passing input speech over the 
TDNN units. In terms of the illustration of Fig. 2, this is 
equivalent to passing the time delay windows over the 
lower level units’ firing patterns. At the lowest level, these 
firing patterns simply consist of the sensory input, i.e., 
the spectral coefficients. 

Each TDNN unit outlined in this section has the ability 
to encode temporal relationships within the range of the 
N delays. Higher layers can attend to larger time spans, 
so local short duration features will be formed at the lower 
layer and more complex longer duration features at the 
higher layer. The learning procedure ensures that each of 
the units in each layer has its weights adjusted in a way 
that improves the network’s overall performance. 

The network described is trained using the Back-prop- 
agation Learning Procedure [lo], [ 1 I]. This procedure it- 
eratively adjusts all the weights in the network so as to 
decrease the error obtained at its output units. For trans- 
lation invariance, we need to ensure during learning that 
the network is exposed to sequences of patterns and that 
it is allowed (or encouraged) to learn about the most pow- 
erful cues and sequences of cues among them. Concep- 
tually, the back-propagation procedure is applied to 
speech patterns that are stepped through in time. An 
equivalent way of achieving this result is to use a spatially 
expanded input pattern, i.e., a spectrogram plus some 
constraints on the weights. Each collection of TDNN- 
units described above is duplicated or each one frame shift 
in time. In this way, the whole history of activities is 
available at once. Since the shifted copies of the TDNN- 
units are mere duplicates and are to look to the same 
acoustic event, the weights of the corresponding connec- 
tions in the time-shifted copies must be constrained to be 
the same. To realize this, we first apply the regular back- 
propagation forward and backward pass to all time-shifted 
copies as if they were separate events. This yields differ- 
ent error derivatives for corresponding (time-shifted) con- 

nections. Rather than changing the weights on time-shifted 
connections separately, however, we actually update each 
weight on corresponding connections by the same value, 
namely, by the average of all corresponding time-delayed 
weight changes.’ Fig. 2 illustrates this by showing in each 
layer only two connections that are linked to (constrained 
to have the same value as) their time shifted neighbors. 
Of course, this applies to all connections and all time 
shifts. In this way, the network is forced to discover use- 
ful acoustic-phonetic features in the input, regardless of 
when in time they actually occurred. This is an important 
property, as it makes the network independent of error- 
prone preprocessing algorithms that otherwise would be 
needed for time alignment and/or segmentation. 

1 )  Experimental Conditions, Database: For perfor- 
mance evaluation, we have used a large vocabulary da- 
tabase of 5240 common Japanese words [ 11, [2]. The data 
used in this paper were uttered in isolation by one male 
native Japanese speaker (MAU). All utterances were rec- 
orded in a soundproof booth and digitized at a 12 kHz 
sampling rate. The database was then split into a training 
set and a testing set of 2620 utterances each, from which 
the actual phonetic tokens were extracted. The training 
tokens (up to 600 tokens per phoneme2) were randomized 
within each phoneme class. For a given training run, they 
were then presented, alternating between each class to be 
learned. If a phoneme class was represented by an insuf- 
ficient number of available training tokens, random to- 
kens from its set were repeated, in order to preserve the 
alternating sequence of presentations among all training 
tokens. For performance evaluation, we have run all ex- 
periments on the testing tokens only, i.e., on tokens not 
included during taining . 

The entire database was phonetically hand labeled [ 171. 
These labels were used in the experiments reported below 
to center a given phoneme in the input range used for 
learning and evaluation. No attempt was made to correct 
for improper hand labels. Since all networks described 
here were trained in a translation invariant fashion, pos- 
sible misalignments at the input are of no serious concern 
as long as all the critical features needed for discrimina- 
tion are present somewhere in the input range. For con- 
sistency among our networks and efficiency of learning, 
we continued to employ a 150 ms input range. Note, how- 
ever, that longer input ranges are possible and might in 
fact be preferable to extract all useful features of a given 
phoneme. All tokens in the database were included in the 
test set or the training set, respectively, and no preselec- 
tion was done. The resulting data included a considerable 
amount of variability (see [l]  and [2] for examples) due 
to its position within an utterance or phonetic context. 

‘Note that weight changes were carried out after presentation of all 
training samples [ 1 I ] .  

*Note that for some phoneme categories, an unnecessarily large number 
of tokens was found in the database (e.g., vowels) while for some others 
(e.g., “P”) only a few tokens were extracted. While excessive tokens are 
simply discarded at random to reduce the dataset size, a lack of tokens leads 
to poor generation. The low recognition scores for “P” are therefore a 
result of the limited training data. 
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B. Discrimination Performance in Phonemic Subclasses 
To evaluate our TDNN’s on all phoneme classes (see 

[ l ]  and [2] for in depth discussion for voiced stops), rec- 
ognition experiments have been carried out for seven pho- 
nemic subclasses found in the database. For each of these 
classes, TDNN’s with an architecture similar to the one 
shown in Fig. 2 were trained. A total of seven nets aimed 
at the major coarse phonetic classes in Japanese was 
trained, including voiced stops B, D, G, voiceless stops 
P, T,  K, the nasals M, N and syllabic nasals (in the fol- 
lowing denoted as “sN”), fricatives S,  SH, H,  and Z, 
affricates CH, TS, liquids and glides R,  W, Y, and finally 
the set of vowels A, I, U ,  E, and 0. Each of these nets 
was given between two and five phonemes to distinguish, 
and the pertinent input data were presented for learning. 
Note that each net was trained only within each respective 
coarse class and has no notion of phonemes from other 
classes yet. Table I shows the recognition results for each 
of these major coarse classes. 

111. SCALING TDNN’s TO LARGER PHONEMIC CLASSES 
We have seen in the previous section that TDNN’s 

achieve superior recognition performance on difficult but 
small recognition tasks. To train these networks, how- 
ever, substantial computational resources were needed. 
This raises the question of how our good, but admittedly 
limited, networks could be extended to encompass all 
phonemes or handle speech recognition in general. To 

shed light on this question of scaling, we consider first 
the problem of extending our networks from the task of 
voiced stop consonant recognition (hence the BDG-task) 
to the task of distinguishing among all stop consonants 
(the BDGPTK - t ask ) . 

A .  The Probleni of Trriiriing Time 
For a network aimed at the discrimination of the voiced 

stops (a BDG-net), approximately 6000 connections had 
to be trained over about 800 training tokens. An identical 
net (also with approximately 6000 connections to be 
trained3 ) can achieve discrimination among the voiceless 
tops (“P,” “T,”  and “IC”). To extend our networks to 
the recognition of all stops, i.e., the voiced and the un- 
voiced stops (B, D, G ,  P, T,  K ) ,  a larger net is required. 
We have trained such a network for experimental pur- 
poses. To allow for the necessary number of features to 
develop, we have given this net 20 units in the first hidden 
layer, 6 units in hidden layer 2, and 6 output units. Fig. 
3 shows this net in actual operation with a “G” presented 
at its input. Eventually a high performance network was 
obtained that achieves 98.3 percent correct recognition 
over a 1613-token BDGPTK-test database, but it took in- 
ordinate amounts of learning to arrive at the trained net 
(several weeks on a 4 processor Alliant!). Although going 
from voiced stops to all stops is only a modest increase in 
task size, about 18 000 connections had to be trained. To 
make matters worse, not only the number of connections 
has to be increased with task size, but in general the 
amount of training data required for good generalization 
of a larger net has to he increased as well [ 181, 191, [ 191 .4 
Naturally there are practical limits to the size of a training 
database and more training data translates into even more 
learning time. L,earning is further complicated by the in- 
creased complexity of the higher dimensional weight- 
space in large nets as well as the limited precision of our 
simulators. Despite progress toward faster learning algo- 
rithms [20], 1211, it is clear that we cannot hope for one 
single monolithic network to be trained within reasonable 
time as we increase task size and eventually aim for con- 
tinuous, speaker-independent speech recognition. More- 
over, requiring that all classes he considered and samples 
of each class be presented during training is undesirable 
for practical reasons as we contemplate the design of large 
neural systems. Alternative ways to modularly construct 
and incrementally train such large neural systems must 
therefore be explored. 

B.  Experiments \vi th Mod14 la rity 
Four experiments were performed to explore metho- 

dologies for constucting phonetic neural nets from smaller 
component subnets. As a task, we used stop consonant 

’Note that these are connections ovei- which a back-propagation pass is 
performed during each iteration. Since many of them share the same 
weights, only a small traction (about 500) o f  them are acttially free param- 
eters. 

‘The nurnber of available training tokens was here twice that of the 
smaller BDG- and PTK-nets, and should really have been tripled to train 
three times as inany connections. 
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Fig. 3. TDNN activation patterns for a BDGPTK.net 

recognition although other tasks have recently been ex- 
plored with similar success [e.g., B, D, G and the three 
nasals M, N, and sN (syllabic nasals)] [22]. As in the 
previous section, we used phoneme tokens extracted from 
a large database of 5240 common Japanese words spoken 
in isolation. Half of these utterances were used as training 
database, and the other half for testing. The two compo- 
nent phoneme classes that make up the set of stops are 
given by the voiced stops B, D,  and G (the BDG-set) and 
the voiceless stops P,  T, and K (the PTK-set). 

I) A First Attempt: Two separate TDNN’s have been 
trained for the two sets based on training data from their 
own set only. On testing data, the BDG-net used here per- 
formed 98.3 percent correct for the BDG-set and the PTK- 
net achieved 98.7 percent correct recognition for the PTK- 
set.5 As a first naive attempt, we have not simply run a 
speech token from either set (i.e, B, D, G,  P, T, or K) 
through both a BDG-net and a PTK-net and selected the 
class with the highest activation from either net as the 
recognition result. As might have been expected (the 

’The connection weights used in these experiments stem from a shorter 
learning run than the one reported in the previous section and elsewhere 
[ 11, hence the slightly different recognition scores, 

component nets had only been trained for their respective 
classes), poor recognition performance (60.5 percent) re- 
sulted from the 6-class experiment. This is partially due 
to the inhibitory property of the TDNN that we have ob- 
served elsewhere [ l ] ,  [2]. This property results in high 
confidence and reliability if the network was trained for 
each class and using samples representing each class. Dif- 
ferent or new categories, however, are undefined, and 
samples belonging to such new categories are then clas- 
sified (sometimes with high activation scores) in terms of 
the previously learned classes. To combine the two net- 
works more effectively, therefore, portions of the net have 
to be retrained. 

2) Exploiting the Hidden Structure of Subcomponent 
Nets: We start by assuming that the first hidden layer in 
either net already contains all the lower level acoustic- 
phonetic features we need for proper identification of the 
stops, and we freeze the connections from the input layer 
(the speech data) to the first hidden layer’s 8 units in the 
BDG-net and the 8 units in the PTK-net. Back-propaga- 
tion learning is then performed only on the connections 
between these 16 ( =  2 x 8 )  units in hidden layer 1 and 
hidden layer 2 and between hidden layer 2 and the com- 
bined BDGPTK-net’s output. This network is shown in 
Fig. 4 with a “G” token presented as input. Only about 
4400 new connections had to be retrained in this case and 
the resulting network achieved a recognition performance 
of 98.1 percent over the testing data. Combination of the 
two subnets has therefore yielded a promising combined 
net although a slight performance degradation compared 
to the subnets was observed. This degradation could be 
explained by the increased complexity of the task, but also 
by the inability of this net to develop lower level acoustic- 
phonetic features in hidden layer 1. Such features may in 
fact be needed for discrimination between the two stop 
classes, in addition to the within-class features. 

3) Class Distinctive Features: In a third experiment, 
we therefore first train a separate TDNN to perform the 
voiced/unvoiced (V/UV) distinction between the BDG- 
and the PTK-task. The network has a very similar struc- 
ture as our BDG-nets, except that only four hidden units 
were used in hidden layer 1 and two in hidden layer 2 and 
at the output. This V/UV-net achieved better than 99 per- 
cent voiced/unvoiced classification on the test data and its 
hidden units developed in the process are now used as 
additional features for the BDGPTK-task. Fig. 5 shows 
the resulting network. As can be seen, the connections 
from the input to the first hidden layer of the BDG-, the 
PTK-, and the V/UV-nets are frozen, and only the con- 
nections that combine the 20 units in hidden layer 1 to the 
higher layers are retrained. The resulting net was evalu- 
ated as before on our testing database and achieved a rec- 
ognition score of 98.4 percent correct. 

4) Incremental Learning by Way of “Connectionist 
Glue”: In the previous experiment, good results could 
be obtained by adding units that we believed to be the 
useful class distinctive features that were missing in our 
second experiment. In a fourth experiment, we have now 

http://BDGPTK.net
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examined an approach that allows for the network to be 
free to discover any additional features that might be use- 
ful to merge the two components networks. Instead of 
previously training a class distinctive network, we now 

add four units to hidden layer 1, whose connections to the 
input are free to learn any missing discriminatory features 
to supplement the 16 frozen BDG and PTK features. We 
call these units the “connectionist glue” that we apply to 

http://PTK.net
http://PTK.net
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merge two distinct networks into a new combined net. 
This network is shown in Fig. 6. The hidden units of hid- 
den layer 1 from the BDG-net are shown on the left and 
those from the PTK-net are on the right. The connections 
from the moving input window to these units have been 
trained individually on BDG- and PTK-data, respec- 
tively, and, as before, remain fixed during combination 
learning. In the middle of hidden layer I ,  we show the 4 
free “Glue” units. Combination learning now finds an 
optimal combination of the existing BDG- and PTK-fea- 
tures, and also supplements these by learning additional 
interclass discriminatory features. Performance evalua- 
tion of this network over the BDGPTK test database 
yielded a recognition rate of 98.4 percent. 

5) All-Net Fine Tuning: In addition to the techniques 
described so far, it may be useful to free all connections 
in a large modularly constructed network for an additional 
small amount of fine tuning. This has been done for the 
BDGPTK-net shown in Fig. 6 yielding some additional 
performance improvements. The resulting network finally 
achieved (over testing data) a recognition score of 98.6 
percent. 

C. Steps for  the Design of Large Scule Neurul Nets 
Table I1 summarizes the major results from our exper- 

iments. In the first row, it shows the recognition perfor- 
mance of the two initial TDNN’s trained individually to 
perform the BDG- and the PTK-tasks, respectively. IJsing 
our current implementation on a 4 processor Alliant super- 
minicomputer, each of these nets required about three days 
of training. The second row shows that simply adding 
separately trained TDNN’s and selecting the unit with the 
largest output activation does not lead to acceptable per- 
formance (only 60.5 percent correct). We have observed 
before that this is in part a negative consequence of inhi- 

bition in these networks. While inhibition of incorrect 
output categories leads to good, robust, and confident per- 
formance, it creates false confidence in erroneous results 
when additional networks are simply added without con- 
sideration of the interaction between them. We have then 
retained a complete UUGP‘TK-net which achieves good 
recognition performance ( 98.3 percent correct ), but found 
that it requires excessive amounts of training time (about 
I8 days!). As an alternative, we have then explored three 
methods that exploit the hidden structure of previously 
learned subcomponent networks, e.g., the BDG- and 
PTK-networks. These nets had been trained indepen- 
dently first, and their internal connection strengths from 
input to hidden layer 1 were frozen for all subsequent ex- 
periments. With small additional training at the higher 
layers (less than one day), these networks could be merged 
and achieved good recognition performance (98.1 per- 
cent). When additional hidden units from a class distinc- 
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tive voicedhnvoiced TDNN were added, recognition re- 
sults improve to 98.4 percent. Training of these class 
distinctive units within a voicedhnvoiced classification 
net and subsequent combination training required one to 
two days in addition to the training of the original BDG- 
and PTK-nets. Similarly, through the application of 
“connectionist glue, ” a 98.4 percent performance score 
is achieved. Combination training in this case took 2 days 
on our 4-processor Alliant. Finally, when the connections 
in the latter network are freed to perform small additional 
adjustments over a few additional training iterations, rec- 
ognition results improve further to 98.6 percent. While 
each of these fine tuning learning iterations is indeed very 
slow, convergence is achieved after only a few such it- 
erations. Fine tuning could therefore be accomplished 
after a few hours of additional run time. 

Two observations emerge from this discussion. 1 )  The 
data indicate that TDNN could be trained in a modular 
fashion from two previously trained subcomponent nets 
in as little as one-third to one-half the training time, and 
produce slightly better recognition performance, when 
compared to monolithically trained BDGPTK-net. The 
observed difference in recognition performance suggests 
that perhaps more training data should be used to train the 
monolithic BDGPTK-net to achieve equivalent generali- 
zation.6 Additional training data, however, are difficult to 
obtain and would further increase training time. 2) We 
observe that our incrementally trained combined 
BDGPTK-net achieves on the combined task recognition 
performance as high as the smaller subcomponent nets on 
their respective subtasks (BTG and PTK). 

In summary, we conclude that larger TDNN’s can in- 
deed be trained incrementally, without requiring exces- 
sive amounts of training and without loss in performance. 
As a strategy for the efficient construction of larger net- 
works, we have found the following concepts to be ex- 
tremely effective: modular, incremental learning, class 
distinctive learning, connectionist glue, partial and se- 
lective learning, and all-net $ne tuning. 

IV. CONSONANT RECOGNITION BY MODULAR TDNN 
DESIGN 

The techniques described in the previous section were 
applied to the task of recognizing all consonants in our 
database. In the following, we describe only our first at- 
tempts at building such a larger net, and note that numer- 
ous alternative solutions remain to be explored. 

A .  Consonant Network Architecture 
Our consonant TDNN (shown in Fig. 7) was con- 

structed modularly from networks aimed at the consonant 
subcategories described in Section 11, i.e., the BDG-, 
PTK-, MNsN-, SShHZ-, TsCh-, and the RWY-tasks. 
Each of these nets had been trained before to discriminate 

‘Since the BDGPTK-net consists o f  about three times as many connec- 
tions as each o f  the smaller subcomponent nets, three times rather than two 
times as many training tokens should have been used. 

between the consonants within each class. Hidden layers 
1 and 2 were extracted from these nets, i .e.,  their weights 
copied and frozen in a new combined consonant TDNN. 
In addition, an interclass discrimination net was trained 
that distinguishes between the consonant subclasses, and 
thus hopefully provides missing featural information for 
interclass discrimination much like the V/UV network de- 
scribed in the previous section. The structure of this net- 
work was very similar to other subcategory TDNN’s, ex- 
cept that we have allowed for 20 units in hidden layer 1 
and 6 hidden units (one for each coarse consonant class) 
in hidden layer 2.  The weights leading into hidden layers 
1 and 2 were then also copied from this interclass discrim- 
ination net into the consonant network and frozen. Three 
connections were then established to each of the 18 con- 
sonant output categories (B, D, G, P, T, K, M, N, sN, 
S,  Sh, H,  Z,  Ch, Ts, R, W, and Y): one to connect an 
output unit with the appropriate interclass discrimination 
unit in hidden layer 2, one with the appropriate intraclass 
discrimination unit from hidden layer 2 of the correspond- 
ing subcategory net, and one with the always activated 
threshold unit (not shown in Fig. 7).7 The overall network 
architecture is illustrated in Fig. 7 for the case of an in- 
coming test token (e.g., a “G”). For simplicity, Fig. 7 
shows only the hidden layers from the BDG-, PTK-, 
SShHZ-, and the interclass discrimination nets. At the 
output, only the two connections leading to the correctly 
activated “G”-output unit are shown. Units and connec- 
tions pertaining to the other subcategories as well as con- 
nections leading to the 17 other output units are omitted 
for clarity in Fig. 7. All free weights were initialized with 
small random weights and then trained by the back-prop- 
agation learning procedure.’ 

B.  Results 
After completion of the learning run, the entire net was 

evaluated over 3061 consonant test tokens, and achieved 
a 95.0 percent recognition accuracy. All-net fine tuning 
was then performed by freeing up all connections in the 
network to allow all connections to make small additional 
adjustments in the interest of better overall performance. 
After completion of all-net fine tuning, the performance 
of the network then yielded 95.9 percent correct conso- 
nant recognition over the test data. Table I11 summarizes 
our results for the consonant recognition task. In the first 
6 rows, the recognition results (measured over the avail- 
able test data in their respective subclasses) are given. 
The entry “cons.class” shows the performance of the in- 
terclass discrimination net in identifying the coarse pho- 
nemic subclass of an unknown token; 96.7 percent of all 
tokens were correctly categorized into one of the six con- 

’Note that, as before. the time-shifted activations o f  the units in hidden 
layer 2 are simply integrated and do  not receive a separate weight. This 
was done in the interest o f  shift-invariance, in order to force the network 
to learn consonantal features of speech independent o f  the time alignment 
implicit in the extraction o f  the phoneme training tokens. 

‘Since only the top layer was trained in this case,  this is equivalent to 
perceptron learning. 
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Fig. 7. Modular construction of an all consonant network 

sonant subclasses. After combination learning and all-net 
fine tuning, our consonant net then yielded consonant rec- 
ognition scores of 95.0 percent and 95.9 percent, respec- 
tively. To put these recognition results into perspective, 
we have also compared these results with several imple- 
mentations of a Hidden Markov Model (HMM) trained to 
perform the same task. Two entries are shown in Table 
111. The first (83.6 percent) shows the recognition per- 
formance of a relatively standard HMM (although the 
number of states and the arcs between them had been op- 
timized [23], [24], [l]). Recently, a set of additional tech- 
niques (shown here as "improved HMM") yielded sub- 
stantial gains in performance [25]. They include use of 
three separate codebooks based on Weighted Likelihood 
Ratio (WLR), Differential Cepstral Coefficients and 
Power [25] in order to better represent the dynamic prop- 
erties of speech events (such as transitions, bursts, etc.). 
In addition, noticeable performance improvements re- 
sulted from the use of separate models for phonemes from 
word-initial and word-medial positions. These separate 
models require additional labels in the training data (in- 
dicating position within the utterance) that were not given 
to the TDNN's. Substantial differences therefore exist be- 
tween the input representations used by the two methods. 
However, as they were both developed by separate re- 
search groups attempting to optimize each model, we be- 
lieve they still provide an insightful comparison. Our re- 
sults indicate that the TDNN yields significantly lower 
error rates [significant at p < 0.01 (chi square test)] when 
compared to this advanced HMM over an all-consonant 
recognition task. In comparing these recognition results, 

TABLE 111 
CONSONANT RECOGNITION PERFORMANCE RESULTS 

Recognition Rate (%) 

I Ptk I 98.7 I 
I mnN I 96.6 I 

sshhz 99.3 

1 chts 1 100.0 I 
99.9 

cons. class 

All consonant TDNN 

All-Net Fine Tuning 

I HMM(standard) 1 83.6 I 

we would like to caution the reader, however, that an 
HMM's particular strength may very well lie in the inte- 
gration of phonetic-level estimates into words and sen- 
tences rather than in its ability to recognize phonemes. 
Understanding the commonalities and differences be- 
tween these two methods as well as the development of 
possible hybrid solutions between them is the topic of on- 
going research [26]. 
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V .  CONCLUSION 
We summarize the major technical results from this 

work. 
We have reported further experimental results from 

the use of Time-Delay Neural Networks (TDNN’s) for 
recognition in all major phonemic categories in a large 
vocabulary speech database, and have measured excellent 
recognition performance. 

The serious problems associated with scaling smaller 
phonemic subcomponent networks to larger phonemic 
tasks are overcome by careful modular design. Modular 
design is achieved by several important strategies: selec- 
tive and incremental learning of subcomponent tasks, ex- 
ploitation of previously learned hidden structure, the ap- 
plication of connectionist glue or class distinctive features 
to allow for separate networks to “grow” together, par- 
tial training of portions of a larger net, and finally, all- 
net fine tuning for making small additional adjustment in 
a large net. 

Our techniques have been applied to the construction 
of a large TDNN aimed at the recognition of all conso- 
nants. While a number of alternate strategies remain to be 
explored, our best recognition result so far indicates that 
the consonants extracted from a large vocabulary database 
of isolated words can be recognized at a rate of 95.9 per- 
cent or better using an incrementally trained net. We have 
compared this performance result to several Hidden Mar- 
kov Models developed (and improved) in our laboratory 
and found that the TDNN compared favorably to the 
H M M ’ s . ~  The results indicate that a high performing large 
neural network could indeed be constructed without loss 
in recognition performance and with only little additional 
training from smaller networks aimed at smaller subtasks. 

Our findings suggest that judicious application of a 
number of connectionist design techniques could lead to 
successful large scale connectionist speech recognition 
systems. 
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