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Abstract 
Speech recognition research activities in ATR Interpreting Telephony Research 

Laboratories are briefly described. The activities are summarized as follows: 

(1) Hidden Markov phoneme models have been improved and successfully applied to 
Japanese phrase utterance recognition combining with the LR predictive parser. 
(2) A phoneme segmentation expert based on spectrogram reading knowledge has been 

developed. 

(8) Time-Delay Neural Networks (TDNN) have been applied to phoneme recognition in 

word utterances. 

(4) Speaker adaptation algorithms have been improved using separate vector 
quantization and fuzzy vector quantization. 

ei. Intrdduction 
An automatic telephone interpretation system is a facility which enables a person 

speaking in one language to communicate readily by a telephone with someone 

speaking another language. At least three constituent technologies are necessary for 

_ such a system: speech recognition, machine translation and speech synthesis. 
_ Moreover, integration research of these technologies are also very important. We 

' Propose an interpreting telephony model shown in Figure 1-1. In this model, the 

language processing is split into a language source model stage and a language 

nalysis stage. Main targets of our research laboratories are fundamental research of 

‘Speech and language processing and integrations of speech and language processing 

_ technologies to show the feasibility of an automatic telephone interpretation system. 
___ In this paper, we describe speech recognition research efforts in ATR Interpreting 

ephony Research Laboratories. Efforts aimed at speaker-dependent phoneme 
ecognition and speaker-independent phoneme segmentation have resulted in 
rama tically improved phoneme recognition performances. We are now pursuing three 
ipproaches. They are (1) Hidden Markov Model approach for continuous speech 

Ognition, (2) Feature-Based approach especially for accurate phoneme 
mentation, and (3) Neural Network approach for accurate phoneme recognition. 
ese research progresses are summarized in Section 2, 3, and 4, respectively. For 
aker-independent speech recognition, a speaker adaptation approach has been 
dertaken using a concept of Vector Quantization and Spectrum Mapping, whose 
earch progress is summarized in Section 5. These researches have been carried out 
ng ATR developed Japanese large scale speech database with phoneme 
Scription, 

Continuous Speech Recognition by Hidden Markov Modeling 
HIMM phoneme models have been improved and successfully combined with the LR 

Predictive parser to recognize Japanese phrase utterances. 
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queure 1-1. Proposed Interpreting Telephony Experimental System. 
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2.1. Improvement of HMM Phoneme Models [4,11] 

The following techniques are introduced and evaluated for discrete HMM phoneme 
recognition [5]. 

(a) Duration control techniques [3], 

(b) Separate vector quantization techniques [1], 
(c) Fuzzy VQ techniques [2]. 

These techniques are evaluated on phoneme recognition in word utterances using lores 

(2,620 words) and small (216 words) size training data sets. 
Effective duration control is realized by combining two duration control techniqu 

One is a phoneme duration control for each HMM phoneme model and the other i 

state duration control for each HMM state. The phoneme duration control is carried o 
by weighting HMM output probabilities with phoneme duration histograms obtain 
from training sample statistics. State duration control is realized by state durati 
penalties calculated by modified forward-backward probabilities of training samples. 

The separate vector quantization techniques for HMM phoneme recognition 

useful for reducing VQ distortion. In our case, spectral features, spectral dyna 

features [6] and energy are quantized separately. In the training stage, output vec! 
probabilities of these three codebooks are estimated simultaneously @ 
independently, and in the recognition stage the whole output probabilities 4 

calculated as a product of output vector probabilities in these codebooks. 
HMM training procedures are performed using the large training data (2,6 

words) set uttered by one male speaker. Recognition experiments for male speakers af@ 
carried out using another 2,620 word set, which is composed of different words and is 
uttered by the same speaker. Phoneme boundaries are specified accurately by vi 

examination of spectrogram outputs. The phoneme boundary information is used 
training procedures and recognition experiments to use the boundary informaut 
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Improvements of the recognition rates using the large training data set are shown in 

Table 2-1, where (a) uses a single codebook for spectral features and energy, (b) uses 

duration control techniques with a single codebook, (c) uses three separate codebooks 

for spectral features, spectral dynamic features, and energy, and (d) uses duration 

control techniques with three separate codebooks for spectral features, spectral 

dynamic features, and energy. Duration control and separate codebook techniques are 

effective for HMM phoneme recognition. These recognition experiments result in 7.5% 

improved phoneme recognition rate from 86.5% to 94.0% on the average of three 

speakers using the separate codebook techniques and duration control techniques. 
The fuzzy VQ technique is effective for parameter smoothing when the number of 

training samples is insufficient, so this technique is evaluated using the small training 

data (216 words) set from a male speaker. The phoneme recognition rate is improved 

by about 7% as shown in Table 2-2. 

Table 2-1. Phoneme Recognition Rates Table 2-2. Phoneme Recognition 
for Separate Codebooks and Duration Performances for Fuzzy VQ. 
Control. (2620 word training set) (216 word training set, 

male speaker MAU) 
(a) (b) (ec) (d) Pace 

PWLR | PWLR| WLR& | WLR& VQ vq. 

DUR | DCEP& | DCEP& 

% Pow | POW (a) 
ot DUR PWLR 64.6% 12.1% 

MAU | 84.8% | 89.8% | 93.2% | 94.1% (c) WLR& 

mar |90.1%|92.4%| 95.2% | 95.3% || DCEP&POW | 70.0% ieee 
(d) WLR& “e con MNM | 84.5% | 88.7% | 91.9% | 92.7% DCEeeoon 2 80.9% 

average | 86.5% | 90.3% | 93.4% | 94.0% DUR 

2.2. HMM Continuous Speech Recognition Using the LR Parser [7] 

The HMM phoneme models are integrated with the generalized LR predictive 

parser as shown in Figure 2-1. The LR parser originally developed for compiler and 
extended to handle arbitrary context-free grammar [8]. An LR parser is guided by an 
LR table automatically created from context-free grammar rules, and proceeds left-to- 

right without backtracking. In the LR parsing mechanism, the next parser action 

(accept, error, shift, or reduce) is determined by looking up in the LR table with the 

“current state of the parser and next input symbol. This parsing mechanism is valid 
only for symbolic data and cannot simply apply to continuous data such as speech. 

In our approach, the LR table is used to predict the next phoneme in the speech 
Input. For the phoneme prediction, the grammar terminal symbols are phonemes 
Instead of the grammatical category names generally used in natural language 
Processing. That is, a lexicon for the task is embedded in the grammar. The following 

Mescribes the system operation. First, the parser picks up all phonemes which the 
itial state of the LR table is expecting, and invokes the HMM phoneme models to 

Verify the existence of these expected phonemes. During this time, all possible parsing 

wees are constructed in parallel. The phoneme verifier (HMM phoneme model) 
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receives a probability array, which includes end point candidates and their 

probabilities, and updates it using an HMM phoneme probability calculation process 

(trellis algorithm). This probability array is attached to each node of the partial 

parsing tree. When the highest probability in the array is below a threshold level, the 

parsing tree is pruned, and also pruned by a beam searching algorithm, The parsing 

process stops if the parser detects an accept action in the LR table and an end of an 

utterance, 

This integration algorithm is applied to Japanese phrase recognition, whose task is 

the secretary service of the international conference. Utterances are uttered phrase by 

phrase. The syntax of phrases includes a general Japanese syntax structure of phrases, 
whose perplexity a phoneme is about five. Supposing that the average phoneme length 
of words is four, the perplexity of words is more than six hundreds. 

The HMM phoneme models are trained using 5240 words. The duration control 
parameters are modified according to the ratio of utterance speed between word 

utterances and phrase utterances. The phrase recognition rate is 83% for 276 phrase 
inputs, as shown in Table 2-3. 4 

The integration of the HMM and the LR parser is further developed to deal with 
continuous speech using a word spotting algorithm|[21). 
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Figure 2-1. HMM-LR Continuous Speech Recognition System. 

Table 2-3. Phrase Recognition Experiment Results 

Phrase Recognition Rate (%) 

Phrase Recognition Rate 83.2 % 

within Top TWO choices 94.3 % 

within Top THREE choices 97.1% 

3. Phoneme Segmentation Using Spectrogram Reading Knowledge [9] 
The phoneme segmentation approach by an expert system utilizing spectrogram 

reading strategy and knowledge used by human experts to read spectrograms is 
described. The expert system, into which the strategy and knowledge are incorporated, 
detects phonemes in continuous speech and determines their boundaries as well as 

their coarse categories. The system configuration is shown in Figure 8-1. 
Since Zue and his colleagues [10] showed that a trained spectrogram reader is able te 

identify phonetic segments in an unknown speech spectrogram with high accuracy, 

several speech recognition systems based on spectrogram reading knowledge have 
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been developed. The previous research proved the effectiveness of the experts’ 

knowledge for phoneme identification rather than phoneme segmentation. However, 

human experts perform phoneme segmentation and identification simultaneously and, 

as the result, are able to determine the phoneme boundaries with high accuracy, as 

well as their categories. The method proposed here utilizes this experts’ strategy and 
knowledge for phoneme segmentation in continuous speech. Phoneme boundaries 
obtained by this system are so accurate that the phonemes can be identified using a 
stochastic or neural network phoneme recognition method [4,12]. 

The expert system is constructed based on the experts’ strategy and knowledge 
which can be expressed easily and naturally, as follows: 

(a) The system adopts assumption-based inference, which makes it easy to describe 

segmentation rules depending on phonetic context. These rules are applied under 
their own phonetic context hypotheses separately. Hypotheses which are assigned 

large certainty factors survive. 

(b) Acoustic features are extracted from the spectrogram when they are referred to by 

rules under certain hypotheses. This makes it possible to extract various kinds of 
global and local features. 

(c) Some acoustic features are assigned certainty factors, which makes it possible to 

describe human experts' fuzzy knowledge. Distinct thresholds can be avoided. 

Knowledge of Japanese phoneme segmentation is incorporated into the system and 

tested using continuously spoken Japanese words. The phoneme boundaries are 

compared to the boundaries labeled by a spectrogram reader, whose results are shown 
in Table 3-1. The result shows that the system achieves performance equal to human 

experts’. Especially, the boundary alignment error is small, that is, most of boundaries 
obtained are within 10 msec of the hand labeled boundaries. 
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Figure 3-1. Phoneme Recognition Expert System Architecture. 
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Table 3-1. Segmentation Results for Unvoiced Fricatives. 

Word Ph Number of |Number of missed boundaries 
set oneme | phonemes Left | Right 

(a) Isi 32 13%) | 1 (%) | 

216 Ishi 25 1 (4%) 1 (4%) 
words 

total 57 2 (3.5%) 2 (3.5%) 

(b) /s/ 1086 36 (3.3%) 38 (3.5%) 

5240 Ishi 783 Oi (27h 2b (8.2m) 
words | 

total 1869 57 (3.0%) 63 (3.4%) 

4. Phoneme Recognition by Neural Networks [12] 

A number of studies have recently demonstrated that connectionist architectures 
capable of capturing some critical aspects of the dynamic nature of speech can achieve 

superior recognition performance for small but difficult phoneme discrimination tasks 
(13). A problem that emerges, however, as we attempt to apply neural network models 
to the fullgspeech recognition problem is the problem of scaling. In this section we _ 
demonstrate based on a set of experiments aimed at phoneme recognition thatisindeed 
possible to construct large neural networks by exploiting the hidden structure of — 

smaller trained subcomponent networks. A set of successful techniques is developed 

that bring the design of practical large scale connectionist recognition systems within 

the reach of today's technology. : 
For the recognition of phonemes, a four layer net is constructed. The network is — 

trained using the Back-Propagation Learning Procedure. To evaluate our TDNNs ~ 

(Time-Delay Neural Networks) on all phoneme classes, recognition experiments have ~ 
been carried out for six consonant subclasses found in the Japanese database. For each 
of these classes, TDNNs with an architecture similar to the one. A total of six nets © 

aimed at the major coarse phonetic classes in Japanese were trained, including voiced — 

stops /b,d,g/, voiceless stops /p,t,k/, the nasals /m,n/ and syllabic nasals /N/, fricatives : 

/s,sh,h/ and /z/, affricates /ch,ts/, and liquids and glides /r,w,y/ . Note, that each net was — 

trained only within each respective coarse class and has no notion of phonemes from — 
other classes yet. Table 4-1 shows the recognition results for each of these major coarse ~ 

classes including a vowel class. ; 
To shed light on the question of scaling, we consider the problems of extending our 

networks from the tasks of voiced stop consonant recognition (hence the BDG task) t 
the task of distinguishing among all stop consonants (the BDGPTK-task). Several ” 

experiments were performed for resolving that problem. As a strategy for the efficient 
construction of larger networks we have found that the following concepts to be 
extremely effective: modular, incremental learning, class distinctive learning, | 

connectionist glue, partial and selective learning and all-net fine tuning. 
One of the techniques is applied to the task of recognizing all consonant 

(/o,d,g,p,t,k,m,n,N,s,sh,h,z,ch,ts,r,w,y/). After completion of the learning run the en! 
net achieves a 95.0% recognition accuracy. All net fine tuning yields 96.0% corre! 

consonant recognition over testing data. The TDNN consonant recognition rate 
96.0% is superior to the HMM rate of 93.8%. 
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IN cee Table 4-2. TDNN All Consonant 
Tabled 1) DNN Phoneme Hecoenitien Recognition Rate after All-Net 

Fine Tuning. 
task phoneme rec. 

rate h 

Phoneme 
G, 

bide HOG Eck recognition 
p,tk 98.7 % rate 

m,n,N 96.6 % 

s,sh,h,z 99.3 % 18 consonants 96.0 % 

ch,ts 100 % 

Bway 99.9 % HMM 93.8 % 

coarse classes 96.7 % 

a,i,u,e,0(vowels) 98.6 % 

5. Speaker Adaptation by Fuzzy VQ and Spectrum Mapping [14,15,17] 

This section describes an approach to speaker adaptation which is achieved by 

spectral mapping from one speaker to another. This algorithm realizes general speaker 

. adaptation which does not depend on speech recognition systems as post-processing. 
Evaluation experiments on HMM and voice conversion [16] have already clarified the 

performance and general applicability. 
The spectrum mapping method is based on the following three idears. The first is 

accurate representation of input vectors by separate VQ and fuzzy VQ. The second is 
accurate establishment of spectral correspondence based on fuzzy relation of 

membership function obtained from supervised training procedure by DTW. The third 

is continuous spectral mapping from one speaker to another by fuzzy mapping. In this 
algorithm, the input vector represented by fuzzy membership function is mapped onto 
the target speaker’s space by fuzzy mapping theory. This fuzzy mapping allows 

continuous mapping of the input vector onto target speaker’s space. These algorithms 
are evaluated from the viewpoint of spectral distortion. The evaluation results are 
summarized in Figure 5-1. 

In the application to HMM, the input vector is represented as the weighted 

combination of fuzzy membership function Ug; and codevector. The mapping function 
calculated from the correspondence histogram hij is fuzzy relation between codevector i 
and codevector j of each speaker, therefore the output probability of HMM is calculated 
as a product of Ugi and hi. At the same time, separate vector quantization with 
Spectrum, difference spectrum and power term is adopted as the product of each output 
probability. The /b,d,g/ recognition results are shown in Table 5-1. 

Evaluation experiments are carried out and the results are as follows: 
(a) Average intra-speaker VQ distortion is reduced by about 28% using fuzzy VQ 
techniques and k-nearest neighbor rule. 
(b) Inter-speaker mapping distortion is reduced 10% using the fuzzy VQ and fuzzy 
continuous mapping technique rather than the conventional technique. 
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(c) The number of training words required for finding correspondence is reduced from 
100 to 30. 

(d) Phoneme recognition experiments on the /b,d,g/ task by HMM were carried out. The 

recognition rate for the /b,d,g/ task is 78% on average. Improvement of about 27% in 

the recognition rate is accomplished. 

Phoneme recognition experiments on the TDNN neural networks through the 
speaker adaptation algorithms are being carried out, 

Table 5-1. /b,d,g/ Recognition Rates b 
HMM Speaker Adaptation, which is the 
average of male to male and male to female, 

Inter-Speaker Distortion 
° 0.30 : 

: Recognition 
5 Method coe papers VQ jethor Rate (%) 

G without adaptation 51.7 
° 

0.26 ore Mapped Codebook (22) 66.4 

ek Fuzzy Mapping [23] 72.4 
0.24 ee _ ; 

Fuzzy Mapping + SPVQ 732 

0.22 separate VQ & Fuzzy Mapping + SPVQ + FZVQ 75.7 

2 "Fuzzy VQ 
u Fuzzy Mapping + SPVQD + FZVQ 78.1 

See 0 25 50 75 100  SpvQ: Separate vector quantization with spectrum 
Number of learning words and power term 3 

i SPVQD: Separate vector quantization with 
Lieu 5-1. Speaker Adaptation spectrum and power and difference 
Algorithm Evaluation by Spectral spectrum term 
Distortion. FZVQ: Fuzzy vector quantization 

6. Summary 

Speech recognition research activities in ATR were summarized. Besides of 
above research activities, the following research activities have been also carried out. — 
(1) Word category prediction by N-gram neural networks [18]. 

(2) English word recognition by HMM phoneme models. 

(3) Phoneme spotting by TDNN neural networks [20]. 

(4) Fast back-propagation algorithm for neural networks in speech [19]. 

(5) Continuous speech recognition using HMM word spotting and LR parser [21]. 
We are focusing our speech research on the speech recognition research itself 

the integration with language processing to show the possibility of an automa’ 

telephone interpretation system. Moreover, international research collaboration 

handle many languages is highly needed to develop automatic telephon 
interpretation technologies. 
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