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Abstract 
Scaling connectionist models to larger connectionist systems is difficult, because larger networks 

require increasing amounts of training time and data and the complexity of the optimization task 

quickly reaches computationally unmanageable proportions. In this paper, we train several small Time- 

Delay Neural Networks aimed at all phonemic subcategories (nasals, fricatives, vowels, etc.) and report 
excellent fine phonemic subcategory networks, we then propose several techniques that allow us to 
“grow larger nets in an incremental and modular fashion without loss in recognition performance and 
without the need for excessive training time or additional data. These techniques include class ~ 
discriminatory learning, connectionist glue, selective / partial learning and all-net fine tuning. A set of 
experiments show that an incrementally trained network aimed at all consonants achieved recognition 

scores of 96.0% correct. Similarly, a combined network aimed at all phonemes (all consonants and 
vowels) achieved recognition scores of 94.7% correct. These results were found to be comparable to the 

performance of the subcomponent networks and significantly better than several alternative speech 
recognition methods. 

6 Introduction 

A number of studies have recently 
demonstrated [1,2,3] that connectionist 
architectures capable of capturing some critical 

aspects of the dynamic nature of speech, can 
achieve superior recognition performance for small 
but difficult phonemic discrimination tasks. 
Encouraged by these results we would like to 
explore the question, how we might expand on 

these models to make them useful for the design of 
speech recognition systems. A problem that 

emerges, however, as we attempt to apply neural 
network models to the full speech recognition 
problem is the problem of scaling. Simply 

extending our networks to ever larger structures 
and retraining them soon exceeds the capabilities 

of even the fastest and largest of today's 
supercomputers. Moreover, the search complexity 

ショ ニス トシ ステ ム を スケ ー ル アッ プ す る こと は 困難 を 伴う 。 なぜなら 大 き な ネ ットワーク タ は 
多く の 学習 時 間 と デー タ 是 を 必要 と し 、 最 適 化 問題 の 複雑 き は 計算 論 的 に 取扱 い 困難 と た な る か ら で あ 
る 。 本 論文 で は 、 全 て の 音韻 サ プ カ テ ゴリ ー( 鼻 昔 、 摩 振 音 、 母 音 等 ) を 対象 と し た 時 間 遅 れ 相 経 回 路 網 を 

性 能 を 劣化 させ る こと な く 、 ま た 余分 な 学習 時 間 
や 追加 データ を 必要 と せ ず に 、 モ ジュ ー ル 構成 し た ネッ トワ ー ク を 積み 上 げ て ネ 
長 」 さ せる 幾つ か の 技術 を 提案 する 。 これ ら の 技術 は 、 ク ラス 間 識 別 学習 、 
選択 的 / 部 分 的 学習 と 全 ネ ットワーク の 微 調整 を 含む 。 実 験 の 結果 、 全 子音 の た め に 人 造 加 学習 し た ネッ ド ト 
ワー ク は 96.0% の 認 蔽 率 を 得 た 。 同様 に 、 全 て の 音 人 韻 を 譜 別 する た め に 統合 きれ た ネッ トワ ー ク は 
94.7% の 認識 性 能 を 達成 し た 。 これら の 結果 は サ プ ネ ットワーク の 認識 性 能 に 匹 散 する 結果 で あり 、 他 
の 半 つ か の 音声 認識 手法 より も 明らか に 良い 性 能 を 示し て いる 。 
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of finding an optimal solution in a huge space 0 人 
possible network configurations quickly assumes 
unmanageable proportions. In an effort to extend — 

our models from small recognition tasks to large 
scale speech recognition systems, we must 
therefore explore modularity and incremental 
learning as design strategies to break up a large 
learning task into smaller subtasks. Breaking up 

large tasks into subtasks to be tackled by 
individual black boxes interconnected in ad hoe 
arrangements, on the other hand, would mean to 
abandon one of the most attractive aspects of 
connectionism: the ability to perform complex 

constraint satisfaction tasks in a massively 
parallel and interconnected fashion, in view of an 
overall optimal performance goal. In this paper We 
demonstrate based on a set of experiments aimed 
at phoneme recognition that it is indeed possible to 請 3 

construct large neural networks by exploiting the 



hidden structure of smaller trained subcomponent 
networks. A set of successful techniques is 
developed that bring the design of practical large 

scale connectionist recognition systems within the 

reach of today's technology. 

o Small Phonemic Classes 
by Time-Delay Neural Networks 

To be useful for the proper classification of 

speech signals, a neural network must have a 
number of properties. First, it should have 
multiple layers and sufficient interconnections 

between units in each of these layers, This is to 

ensure that the network will have the ability to 
learn complex non-linear decision surfaces[4]. 
Second, the network should have the ability to 
represent relationships between events in time. 
These events could be spectral coefficients, but 
might also be the output of higher level feature 

detectors. Third, the actual features or 

abstractions learned by the network should be 
invariant under translation in time.Fourth, the 
learning procedure should not require precise 

temporal alignment of the labels that are to be 
learned. Fifth, the number of weights in the 
network should be small compared to the amount 
of training data so that the network is forced to 

encode the training data by extracting regularity. 
In the following, we review Time-Delay Neural 

Networks (TDNNs) as an architecture that 
satisfies all of these criteria and was designed 
explicitly for the classification of phonemes within 
small phonemic classes such as the voiced stops, 
By , "G", the voiceless stops "P", "I", "K", etc. 

2.1 Review of a Time-Delay 

Neural Network's Architecture 
For the recognition of phonemes, a four layer 

net is constructed. Its overall architecture and a 
typical set of activities in the units are shown in 
Fig.l based on one of the phonemic subcategory 
tasks (BDG), 

At the lowest level, 16 melscale spectral 
coefficients serve as input to the network. Input 
speech, sampled at 12 kHz, was hamming 
windowed and a 256-point FFT computed every 5 

msec. Melscale coefficients were computed from 
the power spectrum[1,2] and adjacent coefficients 
in time collapsed resulting in an overall 10 msec 
frame rate. The coefficients of an input token (in 

this case 15 frames of speech centered around the 
hand labeled vowel onset) were then normalized to 
lie between -1.0 and +1.0 with the average at 0.0. 

Fig.1 shows the resulting coefficients for the 

Speech token "BA" as input to the network, where 

positive values are shown as black and negative 
values as grey squares. 

This input layer is then fully interconnected to 

a layer of 8 time delay hidden units. Fig.1 shows 
the inputs to these time delay units expanded out 

spatially into a 3 frame window, which is passed 

over the input spectrogram. Each unit in the first 
hidden layer now receives input (via 48 weighted 
connections) from the coefficients in the 3 frame 
window. 

Ourput Layer 
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Fig. 1.The TDNN architecture(input:“Ba“) 

In the second hidden layer, each of 3 TDNN 
units looks at a 5 frame window of activity levels in 
hidden layer 1. The choice of a larger 5 frame 
window in this layer was motivated by the 
intuition that higher level units should learn to 
make decisions over a wider range in time based on 
more local abstractions at lower levels. 

Finally, the output is obtained by integrating 
(summing) the evidence from each of the 3 units in 
hidden layer 2 over time and connecting it to its 
pertinent output unit . While the network shown in 
Fig.1 was designed for a 3 class problem (e.g., BDG 

or PTK), variations to accommodate 2, 4 or 5 

classes are easily implemented by allowing for 2, 4 
or 5 units in hidden layer 2 and in the output layer. 

The network described is trained using the 
Back-propagation Learning Procedure [5,6]. This 

procedure iteratively adjusts all the weights in the 
network so as to decrease the error obtained at its 
output units. 

Experimental Conditions, Database 

For performance evaluation, we have used a 
large vocabulary database of 5240 common 

Japanese words[1.2]. The data used in this paper 
was uttered in isolation by one male native



Japanese speaker (MAU). All utterances were 
recorded in a sound proof booth and digitized at a 
12kHz sampling rate. The database was then split 
into a training set and a testing set of 2620 
utterances each, from which the actual phonetic 
tokens were extracted. The training tokens (up to 

600 tokens per phoneme were randomized within 
each phoneme class. For performance evaluation, 

we have run all experiments on the testing tokens 
only, i.e., on tokens not included during training. 

2.2 Discrimination Performance 

in Phonemic Subclasses 
To evaluate our TDNNs on all phoneme classes 

(see [1,2] for in depth discussion for voiced stops), 
recognition experiments have been carried out for 
seven phonemic subclasses found in the database. 
For each of these classes, TDNNs with an 
architecture similar to the one shown in Fig.1 were 

trained. A total of seven nets aimed at the major 
coarse phonetic classes in Japanese were trained, 
including voiced stops B, D, G, voiceless stops 
P,T,K, the nasals M, N and syllabic nasals, 
fricatives S, SH, H and Z, affricates CH, TS, liquids 

and glides R, W, Y and finally the set of vowels A, 
I, U, E and 0. Each of these nets was given 

between two and five phoneme classes to 
distinguish and the pertinent input data was 

presented for learning. Table 1 shows the 
recognition results for each of these major coarse 
classes. 

3 Scaling TDNNs 
to Larger Phonemic Classes 

We have seen in the previous section that 
TDNNs achieve superior recognition performance 
on difficult but small recognition tasks. To train 

these networks, however, substantial 
computational resources were needed. This raises 
the question of how our good but admittedly 
limited networks could be extended to encompass 
all phonemes or handle speech recognition in 
general, To shed light on this question of scaling, 
we consider first the problem of extending our 
networks from the task of voiced stop consonant 

recognition (hence the BDG-task) to the task of 

distinguishing among all stop consonants (the 
BDGPTK-task), 

3.1 The Problem of Training Time 
For a network aimed at the discrimination of 

the voiced stops (a BDG-net), approximately 6000 
connections had to be trained over about 800 

training tokens. An identical net can achieve 
discrimination among the voiceless stops ("P", "T" 

and "K"), To extend our networks to the 
recognition of all stops, i.e., the voiced and the 

‘Table 1: Recognition Results for 7 Phoneme Classes 

r 
TDNN 

phoneme #errors/ 2404 % correct| total % 

b 5/227 97.8 
d 2179 98.9 98.6 
g 2/252 99.2 
p 6/15 60.0 
t 6/440 98.6 98.7 
k 0/500 100.0 
m 14/481 97.1 
n 16/265 94.0 96.6 
N 12/488 97.5 

日 6/538 98.9 
sh 0/316 100.0 

h 1/207 99.5 Be 
W116 99.1 

ch 0/123 100.0 

ts 0177 100.0 ” 
r 07722 100.0 
w 078 100.0 99.9 
¥ 1774 99.4 
a 0/600 100.0 
i 1/600 99.8 
u 25/600 95.8 98.6 
e 8/600 98.7 
回 7/600 98.8 

unvoiced stops (B,D,G,P,T,K), a larger net is 

required. We have trained such a network for 
experimental purposes. To allow for the necessary 
number of features to develop we have given th 

hidden layer 2 and 6 output units. Fig.2shows this 
net in actual operation with a "G" presented at its 
input. Eventually a high performance network was 
obtained that achieves 98.3% correct recognition © 

over a 1613-token BDGPTK-test database, but it 

took inordinate amounts of learning to arrive al 
the trained net (several weeks on a 4 processor 
Alliant!). Although going from voiced stops to all 
stops is only 2 modest increase in task size, about 
18,000 connections had to be trained. To make 
matters worse, not only the number of connections — 
has to be increased with task size, but in general 

the amount of training data required for good 
generalization of a larger net has to be increased 0S 
well. Naturally, there are practical limits to the 
size of a training database and more training data 
translates into even more learning time. Learni 
is further complicated by the increased complexity 
of the higher dimensional weightspace in lar 
nets as well as the limited precision of oUF” 
simulators. Despite progress towards faster 
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Fig.2.TDNN activation patterns for a 
BDGPTK-net 

learning algorithms [7,8], it is clear that we cannot 
hope for one single monolithic network to be 

_ trainedwithin reasonable time as we increase task 
size and eventually aim for continuous, speaker- 
independent speech recognition. Moreover, 
requiring that all classes be considered and 

_ samples of each class be presented during training, 

is undesirable for practical reasons as we 

contemplate the design of large neural systems. 
Alternative ways to modularly construct and 
incremental train such large neural systems must 
therefore be explored. 

3.2 Experiments with Modularity 
Four experiments were performed to explore 

methodologies for constructing phonetic neural 
nets from smaller component subnets. As a task 
we used again stop consonant recognition although 
other tasks have recently been explored with 
Similar success (BDG and MNsN). As in the 
previous section we used a large database of 5240 

common Japanese words spoken in isolation. Half 
of these utterances were used as training database, 

and the other half for testing. The two component 
phoneme classes that make up the set of stops are 

given by the voiced stops B,D and G (the BDG-set) 
and the voiceless stops P,T and K (the PTK-set). 

A First Attempt 
As a first naive attempt we have now simply 

Tun a speech token from either set (i.e., B,D,G,P,T 
or K) through both a BDG-net and a PTK-net and 
selected the class with the highest activation from 

either net as the recognition result. As might have 

been expected (the component nets had only been 
trained for their respective classes), poor 
recognition performance (60.5%) resulted from the 
6 class experiment. To combine the two networks 
more effectively portions of the net have to be 

retrained. 

Exploiting the Hidden Structure 

of Subcomponent Nets 

We start by assuming that the first hidden 
layer in either net already contains all the lower 
level acoustic phonetic features we need for proper 

identification of the stops and freeze the 

connections from the input layer (the speech data) 
to the first hidden layer's 8 units in the BDG-net 
and the 8 units in the PTK-net. Back-propagation 

learning is then performed only on the connections 
between these 16 (= 2 X 8) units in hidden layer 1 
and hidden layer 2 and between hidden layer 2 and 
the combined BDGPTK-net's output. This network 
is shown in Fig.3 with a "G" token presented as 
input. Only about 4,400 new connections had to be 
trained in this case and the resulting network 

achieved a recognition performance of 98.1% over 
the testing data, Combination of the two subnets 
has therefore yielded a promising combined net 

although a slight performance degradation 
compared to the subnets was observed. This 
degradation could be explained by the increased 
complexity of the task, but also by the inability of 
this net to develop lower level acoustic-phonetic 
features in hidden layer 1. Such features may in 

fact be needed for discrimination between the two 
stop classes, in addition to the within-class 

features. 

CT 

Fig.3. BDGPTK net trained from hidden units 
of a BDG- and a PTK- net. 



Class Distinctive teatures 
In a third experiment, we therefore first train a 

separate TDNN to perform the voiced/unvoiced 
(V/UY) distinction between the BDG- and the 
PTK-task. The network has a very similar 
structure as our BDG-nets, except that only four 
hidden units were used in hidden layer 1 and two 

in hidden layer 2 and at the output. This V/UV-net 
achieved better than 99% voiced/unvoiced 

classification on the test data and its hidden units 
developed in the process are now used as additional 

features for the BDGPTK-task. Fig.4 shows the 
resulting network. As can be seen the connections 
from the input to the first hidden layer of the 

BDG-, the PTK- and the V/UV nets are frozen and 
only the connections that combine the 20 units in 

hidden layer 1 to the higher layers are retrained. 
The resulting net was evaluated as before on our 

Guta ave 

testing database and achieved a recognition score Fig.4. Combination ofa BDG-net, a PTK net 

of 98.4% correct. and a class distinctive net. 

Incremental Learning All-Net Tuning : : a 
by Way of "Connectionist Glue” In addition to the techniques described so far, it 

In the previous experiment, good results could ™ay be useful to free all connections in a large 
be obtained by adding units that we believed to be | ™odularly constructed network for an additional 

the useful @lass distinctive features that were mall amount of fine tuning. This has been done 7 
missing in dur second experiment. for the BDGPTK-net shown in Fig.5 yielding some 

Ina fourth experiment, we have now examined 29ditional performance improvements. The 
an approach that allows for the network to be free Tesulting network finally achieved (over testing 
to discover any additional features that might be data) a recognition score of 98.6%. 
useful to merge the two component networks. In 
stead of previously training a class distinctive 

network, we now add four units to hidden layer 1, 
whose connections to the input are free to learn 

any missing discriminatory features to supplement 
the 16 frozen BDG and PTK features. We call 

these units the "connectionist glue" that we apply 

to merge two distinct networks into a new 
combined net, This network is shown in Fig.5, The 
hidden units of hidden layer 1 from the BDG-net soc 
are shown on the left and those from the PTK-net 
on the right. The connections from the moving 
input window to these units have been trained 
individually on BDG- and PTK-data, respectively 

and -as before- remain fixed during combination 
learning. In the middle on hidden layer 1 we show 

the 4 free "Glue" units. Combination learning now 
finds an optimal combination of the existing BDG- 
and PTK-features and also supplements these by 
learning additional interclass discriminatory ig.3. Combination of a BDG-net and@ 

features. In coing so we have raised the number of “net with free connectionist “Glue 

connections to be trained to 8,000, which is only a 
small increase in number of connections (and 3.3 Steps for the Design 
learning time) over the original component nets. of Large Scale Neural Nets 

Performance evaluation of this network over the Table2 summarizes the major results f 

BDGPTX test database yielded a recognition rate experiments. In the first row it shol 

of 98.4%. recognition performance of the two initial 
trained individually to perform the BDG- 
PTK-tasks, respectively. 

ーー 



The results indicate, that larger TDNNs can 

indeed be trained incrementally, without requiring 

excessive amounts of training and without loss in 
performance. In fact, the resulting incrementally 
trained networks appear to perform slightly better 
than the monolithically trained BDGPTK-net. 

Moreover, they achieve performance as high as the 
subcomponent BDG- and PTK-nets alone. As a 

strategy for the efficient construction of larger 
networks we have found the following concepts to 

be extremely effective: modular,incremental 
learning, class distinctive learning,connectionist 
glue, partial and selective learning and all-net fine 
tuning. 

Table 2: From BDG to BDGPTK ; Modular Scaling Methods 

Method bdg | ptk | bdgptk 

Individual TDNNs | 93.3% | 98.7% 

TDNN: Max Activation 60.5% 

Retrain BDGPTK 98.3% 

Retrain Combined 98.1% 
Higher Layers 

Retrain with V/UV-units 98.4% 

Retrain with Glue 98.4% 

AILNet Fine Tuning 98.6% 

4 Phoneme Recognition 
by Modular TDNN Design 

The techniques described in the previous 

_ section were applied to the task of recognizing all 
“phonemes in our database. In the following we 
describe only our first attempts at building such a 

rger net and note that numerous alternative 
solutions remain to be explored.. 

4.1 Consonant Network Architecture 

Our consonant TDNN (shown in Fig.6) was 
SonStructed modularly from networks aimed at the 

nsonant subcategories described in section 2, i.e., 
a BDG-, PTK-, MNsN-, SShHZ-, TsCh- and the 

-tasks. Each of Bess nets had been trained 
a to discriminate between the consonants 
hin each class. Hidden layers 1 and 2 were then 

tracted from these nets, i.e. their weights copied 

iddition, an interclass discrimination net was 
ined that distinguishes between the consonant 
lasses and thus hopefully provides missing 

ral information for interclass discrimination 
ch like the V/UV network described in the 
ious section. The structure of this network 
Very similar to other subcategory TDNNs, 

except that we have allowed for 20 units in hidden 
layer 1 and 6 hidded units (one for each coarse 
consonant class) in hidden layer 2, The weights 
leading into hidden layers 1 and 2 were then also 

copied from this interclass discrimination net into 
the consonant network and frozen. Three 
connections were then established to each of the 18 
consonant output categories (B,D,G,P,T,K, 
M,N,sN,S,Sh,H,Z,Ch,Ts,R,W and Y): one to 
connect an output unit with the appropriate 
interclass discrimination unit in hidden layer 2, 
one with the appropriate intraclass discrimination 

unit from hidden layer 2 of the corresponding 
subcategory net and one with the always activated 

threshold unit (not shown in Fig.6). The overall 
network architecture is illustrated in oe for the 
case of an incoming test token (e.g., a For 
simplicity, Fig.6 shows only the hidden wen from 

the BDG-,PTK,SShHZ- and the interclass 
discrimination nets. At the output, only the two 
connections leading to the correctly activated "G”- 
output unit are shown. All free weights were 
initialized with small random weights and then 

trained by the back-propagation learning 
procedure [Since only the top layer was trained in 
this case, this is equivalent to perceptron 
learning). 

ae KMS BE Coe 

mi 1 
ei 

Fig.6. Modular Construction of an All 
Consonant Network 

4.2 All Phoneme Network Architecture 
Similarly, our all phoneme TDNN(shown in 

Fig.7) was constructed modularly from the all 
consonant network and the vowel network. The 
outputs with five frame windows from the hidden 
layer 2 were integrated into one frame in the 

ーー 
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hidden layer 3, and each unit in the hidden layer 3 
was integrated into the corresponding output unit. 

Table 3: Phoneme Recognition Performance Results, 

The training was done with small random weights 
between the hidden layers 2, 3 and the output Task Recognition Rate (%) 

layer, and with frozen weights from the input layer 5 

to the hidden layer 2. Rae nee 
ptk 987 

sshhz 99.3 

chts 100.0 

rwy 99.9 

: = cons. class 96.7 

big aiueo 98.6 

All consonant TDNN 95.0 
Te TH | \ 

br 2i1 911 hal are bt IM All-Net Fine Tuning 96.0 

——— HMM (standard) 83.6 
nm 
一 HMM (improved) 93.8 

All phoneme TDNN 94.7 
Fig.7. Integrated Modular Construction for an 
All Phoneme Network 

43 Results 
After completion of the learning run the 

consonant net was evaluated over 3061 consonant 
test tokens,and achieved a 95.0% recognition 

accuracy, All-net fine tuning was then performed 

by freeing up all connections in the network to 
allow all connections to make small additional 
adjustments in the interest of better overall 

performance. After completion of all-net fine 
tuning, the performance of the network then 
yielded 96.0% correct consonant recognition over 
the test data. Table 3 summarizes the our results 
for the all phoneme recognition task. In the first 6 
rows and the 8th row the recognition results 
(measured over the available test data in their 

respective sublasses) are given. The entry 
"cons.class" shows the performance of the 

interclass discrimination net in identifying the 

coarse phonemic subclass of an unknown token. 
96.7% of all tokens were correctly categorized into 
one of the six consonant subclasses. After 

combination learning and all-net fine tuning our 
consonant net then yielded consonant recognition 
scores of 95.0% and 96.0%, respectively. And our 
all phoneme net yielded phoneme recognition 
scores of 94.7% over the test data. To put these 
recognition results into perspective, we have also 

compared these results with several 
implementations of a Hidden Markov Model 
trained to perform the same task in the consonant 
recognition. Two entries are shown in Table 8. The 
first (83.6%) shows the recognition performance of 

a relatively standard (although optimized [9,10,1) 
HMM. Recently, a set of additional technique 
(shown here as "improved HMM") yieli 
substantial gains in performance [11]. T! 

include use of three separate codebooks based 0 
Weighted Likelihood Ratio (WLR), Different 

Cepstral Coefficients and Power[11] in order 
better represent the dynamic properties of speech 
events (such as transitions, bursts, etc.). 

addition, noticeable performance improvement 

resulted from the use of separate models for 
phonemes from word initial and word middl 
positions, These separate models require 
additional labels in the training data (indicatin, 

position with in the utterance), that were not given — 
to the TDNNs. Substantial differences therefore 
exist between the input representations used bj 
the two methods. However, as they were both 
developed in good faith by two separate reseal 
groups attempting to optimize either model, 
believe they still provide an insightful comparison, 
Our results indicate that the TDNN yields 
significantly lower error rates. 

5 Conclusion 

We have reported further experimental results 
from the use of Time Delay Neural Networks 

(TDNNs) for recognition in all major phonemi 
categories in a large vocabulary speech database 5 
and have measured excellent recognitio! 
performance. We believe, that the good 
performance results are due to the key properties 
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of TDNNs, including: shift invariance, the proper 

representation of the dynamic time-varying 

properties of speech and the automatic discovery of 
alternate, complementary internal features of 

speech. These properties have been extensively 
documented elsewhere [1,2].- 

The serious problems associated with scaling 

smaller phonemic subcomponent networks to 

| larger phonemic tasks are overcome by careful 
modular design. Modular design is achieved by 

several important strategies: selective and 
"incremental learning of subcomponent tasks, 
exploitation of previously learned hidden structure, 
the application of connectionist glue or class 
distinctive features to allow for separate networks 
to "grow" together, partial training of portions of a 
larger net and finally, all-net fine tuning for 
making small additional adjustment in a large net. 

F Our techniques have been applied to the 
_ construction of a large TDNN aimed at the 

recognition of all phonemes. While a number of 
alternate strategies remain to be explored, our best. 

_ recognition result so far indicates that the all 
consonants and phonemes extracted from a large 

vocabulary database of isolated words can be 
recognized at a rate of 96.0% and 94.7% or better, 

respectively using an incrementally trained net. 
| We have compared this consonant recognition 

performance result with several Hidden Markov 
Models developed (and improved) in our laboratory 

』 and found that the TDNN yielded significantly 
lower error rates. The results indicate that a high 
performing large neural network could indeed be 
constructed without loss in recognition 
performance and with only little additional 

training from smaller networks aimed at smaller 

subtasks. 
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