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あら まし neural network を 使っ た 波形 入出 力 に よる 雑音 抑圧 に つい て 述べ る 。 

4 層 の feed forward neural network を 使っ て 雑音 が 加わ っ た 信号 の 空間 か ら 雑 音 の な い 信 
号 の 空間 へ の 写像 を 実現 する 。neural network の 学習 アル ゴリ ズム は パッ ク ブ ロバ ゲー 

ショ ン テ アル ゴリ ズム を 用 いる 。 サ ンプ リン グレ ー ト が 12kHz の 日 本 語 の 日語 音声 と 定常 、 

非 定常 雑音 を 用 いて コン ピュ ー タ 実験 を 行い 、 本 手法 の 有効 性 、 有 望 性 を 確認 し た 。 

Abstract In this paper, we describe a method for noise reduction using neural 

networks. With the back propagation network learning algorithm, a four-layered feed- 
forward network is trained on learning samples to realize a mapping from the set of 
noisy signals to the set of noise-free signals. Computer experiments were carried out on 
12kHz-sampled Japanese speech data and using stationary and non-stationary noise. 
Our experiments showed that the network can indeed learn to perform noise reduction. 
Even for noisy speech signals that had not been part of the training data, the network 
successfully produced noise-supressed output signals. 

language. 1. INTRODUCTION 
recognition, machine translation, 

To construct such a system, 

and speech 
speech 

Especially from the invention of James Watt's 

steam engine, machines have greatly enlarged 
human beings’ abilities. In the mid of 20th 
century, this tendency that machines enlarge our 
abilities got accellated owing to the exciting 
invention of electric digital computers. Using 

digital computers, we could even go to the 

And today, ourlabs, ATR Interpreting Telephony 
Research Laboratories are aiming at the realization 
of an automatic telephone interpretation system 
using digital computers. This will enable a person 
speaking in one language to communicate readily by 
telephone with someone speaking in a different 

synthesis are the three major technologies required. 
Being Done our daily communication by telephone 
in noisy environments, reduction of additivenoise, 
or noise reduction is one of the key technologies for 
such a system, especially for the speech recognition 
part. 

Most noise reduction methods to-date fall into two 
major categories. One of them is based on 
mathematical models. Such an approach uses a priori 

mathematical knowledge of speech and noise in the 
form of a mathematical model. So in practice, 
detailed information is required for successful 
application. For example, a typical approach of this 
category is to model speech production dynamics 
using an all pole time-invariant filter (1). First, the 
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parameters of the filter are estimated based on the 
short time segment of noisy speech data. Then that 
part of noisy speech is filtered using the speech 
production mode] with the estimated parameters, 
This approach therefore relies heavily on parameter 
estimates, that are difficult to obtain in practice, 
given noisy speech. It is also based on linear speech 
production models, or all pole models and they are 
only first order approximations of speech production 
dynamics. 
The second approach uses examples [2.3.4.5]of speech 
and noise and performs noise reduction using rather 
intuitional methods. Power Spectrum Subtraction is 
a typical example[2]. This method is based on the 

assumption that the phase of short time speech 
spectra is less important than the magnitude and 
that peaks in the power spectrum are more important 
than valleys. The short time power spectrum of 
speech is estimated by subtracting the estimated 
short time power spectrum of noise from noisy 
speech. Then the estimated short time power 
spectrum is combined with the short time phase of 
the noisy speech and the spectrum is transformed 
into the time domain signal. Even though the short 
time phase information is less important than the 
short time magnitude information, it would be 
preferable to exploit phase information for better 
noise reduction. Spectral subtraction also makes 
simplifying assumption about the shape of the noise 
and it’s combination with the original speech signal. 
More complex interactions between noise and speech 
signal, as well as non-stationary noises can not be 
captured easily. 
As an approach that might overcome some of these 
limitations, we propose a new noise reduction method 
using neural networks. Noise reduction can be 
viewed as a mapping from the set of noisy signals to 
the set of noise-free signals. Let fbe such a mapping. 
The problem is how to find f. Neural networks are 
attractive as mapping definition for the following 
reasons, 

(1) An arbitrary decision surface can be formed 
in a multi-layered neural network[6]. So any 
complex mapping from the set of noisy speech 

signals to the set of noise-free speech signals 
can in principle be realized . 

(2) Simple learning algorithms exist to 
construct a suitable mapping function using 
training samples.[7]). 

(3) Neural networks have attractive 
generalizing properties [7]. 

In the following, we first describe a neural network 
for mapping noisy to noise-free speech signals and 
then show the effectiveness of this approach by 
computer experiments. 
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2. NEURAL NETWORKS FOR MAPPING 

As a framework for representing an arbitrary 
mapping function, a network of interconnected 
simple computing elements is considered. 

2.1 Network Architecture 

A four-layer feed-forward network was chosen as an 
architecture for it can realize in principle any 
mapping function[6]. Each layer has 60 units and is 
fully interconnected with its next higher layer (Fig. 1 
). 
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Fig 1 Network for noise reduction 

The network's state, or the units’ outputs are 

updated synchronously on each layer and signals flow 
upwards from the input layer to the output layer. For 
the network to use as much information on speech 
and noise as possible, the input and output of the 
network is given by the waveform itself, the units on 
the output and input layers are all linear units, ice, 
are not passed through a non-linear output function. 

2.2 UnitElement 

A unit element is one of many simple processors that 
make up the network. It first computes the weighted 
sum of all its inputs (including a bias input) and then 
deforms this sum by passing it through a nonlinear 
function, in our case the sigmoid function [7]( Fig. 2). 

2.3 Learning by Error Back-Propagation 

Using the training input and output data, the back- 
propagation learning procedure adjusts the network s 
link weights to realize the noise reduc 
mapping[7].The back-propagation algorithm define: 
a square error measure between a desired targel 
output and the actual network's output gi ts 
current input and network connection strength: 

every presentation of learning samples, each 
weight is updated in an attempt to decrease h 
output measure[7).



J-th uniUsoutput ニ (SpO.Do0 +60)), 

where 
fix)=1/1 + exp(-x)) is the sigmoid function, 

60), thet ias value of j-th unit and 
w(j,i), the link weight from the i-th unit to 
the j-th unit 

Fig2 Aunitelement 

3. EXPERIMENT 

In the following, we present experimental results 
from using our model for noise reduction. 

3.1 Data 

The speech database used in our experiments 
consists of 5000 common Japanese words uttered in 
isolation by several male speakers (professional 
announcers). The data was digitized (16 bits) at a 
20kHz rate and then down-sampled to 12 kHz. A 
subset of 216 phoneme balanced words from this 
database was used for our experiments. 
Computer room noise was chosen as non-stationary 
noise. This noise was first recorded using an analog 

tape recorder and then digitized to 16bit data at a 
12kHz-sampling rate. Noisy speech data was 
generated artificially by adding the computer room 
noise to the speech data. The resulting S/N ratio was 

about -20db. 

3.2 Learning 

Using the waveforms of the 216 phoneme-balanced 

words as target output and their noise added versions 
as the training input, the network scans each 
training utterance from beginning to end at a rate of 
60 data points per input frame. When the network 
reaches the end of the training data, it returns to the 
beginning for additional learning passes. This 

procedure is repeated until the network's squared 
error rate converges to a sufficiently small value. 
During this phase, the back-propagation learning 
procedure repeatedly adjusts the network's internal 
link weights in an attempt to find an optimal 

mapping between noisy and noise-free signals ( Fig. 3 
). 

noise-free speech 

ーー ーーーーーーーーーーーーーーーーーーーー 

| | 

A see eee eee 

noisy speech 

Fig. 3 Network learning 

3.3 Results 

Fig. 4 shows the squared error of the network during 
learning. It illustrates that learning was done 
successfully and demonstrates the convergence of the 
network's output to the desired target output. 
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Fig. 4 Square error vs. Scans 

The tests reported in the following were performed on 
networks that were trained on about 200 scans 
through the traininig utterances. Learning the noise 
suppression mapping for this data took about three 
weeks on an Alliant super computer. Fig. 5 shows the 
result of training after about 200 scans, The input to 
the network is the noisy Japanese word "ikioi" from 
the training data. As can be seen, the noise has been 
reduced significantly, while the speech spectrum is 
preserved, 
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Fig. 5 Spectrograms of the training data 

Fig. 6 and 7 show the result testing of the network's 
ability to find a generalized noise reduction mapping 
based on the observations in the training data. In 
Fig.6, we show as input to the network the Japanese 
word "kakuritsu" corrupted by noise. This utterance 
has not been part of the training data. Again, we 

observe that the network’s mapping suppresses the 
input noise successfully. 

In Fig. 7, we show the result of a more difficult 
problem. Here, the same word, "kakuri has beer 
corrupted by computer-generated white noise. 
Despite the fact, that the network was trained on a 

different kind of noise (non-stationary computer 
room noise), it produces = substantially cleaner 

output signal, without adversely affecting the speech 
signal. 

Fig. 8 is the result of an auditory comparison with 
the conventional power spectrum subtraction 

method. In this method, the short-time spectral 
magnitude of speech is estimated by 

{¥(@)/2-EIN(@)|2 for |Y(@)|2 > E|N(@)j2 
0 otherwise, 

where 
Y( o ) is the short-time spectrum of noisy speech, N( 
@ ) is the short-time spectrum of ncise, end E is the 
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Fig. 6 Spectrograms of non training data 

Method Score 

Power spectrum subtraction | 43.4% 

| 
i Neural Network 56.6% 
1 

Fig. 8 Result of auditory preference test 

mean. The frame length is 
and the shift is also 64 points long. 

sed speech was presented to listeners in 
ubjects were asked to mark the prefered 

Subjects’ responses indicate that our 
tion method yields 2 noise free speech 
is comperable to or better than the 

sl power spectrum subtraction method. 
: cur connectionist model produced a cleaner 

2 power spectrum subtraction, it does, 
not appear to yield greater intelligibility. 
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ate 7 Spectrograms of non training data and 
different noise 

We believe that more focused learning of acoustic- 
phonetically important parts of the speech signal 
might lead to further improvements in intelligibility. 

4. CONCLUSION 

In this paper, we have described a noise reduction 
method using neural networks. In a series of 
computer experiments we have shown that 
connectionist models can learn the mapping between 
the set of noisy signals and the set of noise-free 
signals correctly. We have shown that the network 
produces noise-suppressed signals even for signals 
that differed from the training data in both the 
original speech input as well as the type of 
environmental noise. ; 
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