
Fast Back-Propagation Learning Methods For
Neural Networks in Speech.

P.Haffner, A.Waibel and K.Shikano

(ATR Interpreting Telephony Research Laboratories)

1) Problem:

Optimize speech tasks in Neural Networks within a reasonable

amount of computation time.

2) Back-Propagation Learning Procedure:

Iterative search for a global minimum of the Error function with a

gradient descent algorithm.

3) Improving learning speed:

- Avoid flat spots on the Error surface : Model a sigmoid

function which prevents zero learning rate.

= Increase learning step: Dynamically scale the gradient step size

to its maximum value, with respect to overshooting.

- Reduce learning grain: Update connections as often as possible.

Algorithms have been selected on the basis of

- learning speed.

- good generalization on test data.

- few parameters to tunt.

4) Experiments:

Training time for the recognition of the phonemes /b/, /d/ and /g/

has been reduced to less than 5 minutes (Several days with

standard Back-Propagation).

2
-
P
-
1

F
a
s
t
 B
a
c
k
-
P
r
o
p
a
g
a
t
i
o
n
 L
e
a
r
n
i
n
g
 M
e
t
h
o
d
s

f
o
r
 N
e
u
r
a
l
 N
e
t
w
o
r
k
s
 i
n
 S
p
e
e
c
h
.

P
.
H
a
f
f
n
e
r
,
 A
.
W
a
i
b
e
l
 a
n
d
 K
.
S
h
i
k
a
n
o

(
A
T
R
 I
n
t
e
r
p
r
e
t
i
n
g
 T
e
l
e
p
h
o
n
y
 R
e
s
e
a
r
c
h
 L
a
b
o
r
a
t
o
r
i
e
s
)

F
a
s
t
 B
a
c
k
-
P
r
o
p
a
g
a
t
i
o
n
 L
e
a
r
n
i
n
g
 M
e
t
h
o
d
s

M
e
t
h
o
d
s
 w
e

s
t
u
d
y
 h
e
r
e

O
p
t
i
m
i
z
e

C
a
n
e

:
L
e
a
r
n
i
n
g

C
o
m
p
u
t
e
r

I
m
p
l
e
m
e
n
t
a
t
i
o
n

A
l
g
o
r
i
t
h
m

of t
h
e
 l
e
a
r
n
i
n
g
 a
l
g
o
r
i
t
h
m

R
e
d
u
c
e

|
Increase

steepen
A
v
o
i
d

l
e
a
r
n
i
n
g
 g
r
a
i
n

L
e
a
r
n
i
n
g

R
a
t
e

E
r
r
o
r
 s
u
r
f
a
c
e

oscillations

u
p
d
a
t
e

N
e
w
t
o
n

Line
step

size
Optimized

Symetric
Height

|
m
o
m
e
n
t
u
m

p
a
r
e
n
t
s

m
e
t
h
o
d
s

search
s
c
a
l
i
n
g

output Error
Giamied

S
e
m
a

s
c
a
l
i
n
g

O
M
S
2

algorithm
Derivative

a
l
g
o
r
i
t
h
m

Y
C
o
m
b
i
n
a
t
i
o
n
 o
f
 t
h
e
s
e
 m
e
t
h
o
d
s
:

L
e
a
r
n
i
n
g
 s
p
e
e
d

=
 4 d

a
y
s
-
-
>
 5 m

i
n
u
t
e
s

L
e
a
r
n
i
n
g
 in N

e
u
r
a
l
 N
e
t
w
o
r
k
s

D
e
s
i
r
e
d
 o
u
t
p
u
t

{

E
r
r
o
r

A
c
t
u
a
l
 o
u
t
p
u
t

:
u
p
d
a
t
e

e
s

w
e
i
g
h
t
s

E
r
r
o
r

F
o
r
w
a
r
d

B
a
c
k
p
r
o
p

P
a
s
s

I
n
p
u
t
 L
a
y
e
r

(speech data)

<
_
—
_
>

1 t
r
a
i
n
i
n
g
 s
a
m
p
l
e
 =

1 learning

i
t
e
r
a
r
t
i
o
n

~

o
a

S
u
b
s
e
t
 of s

a
m
p
l
e
s
 presented before u

p
d
a
t
i
n
g
 w
e
i
g
h
t
s

~

T
r
a
i
n
i
n
g
 set =

1 learning epoch. T

h
i
s
 is u

s
e
d
 to rate p

e
r
f
o
r
m
a
n
c
e

R
e
l
a
t
i
o
n
s
 b
e
t
w
e
e
n
 t
h
e
 s
t
e
p
 size a

n
d
 o
t
h
e
r
 p
a
r
a
m
e
t
e
r
s

e
e

a
e

H
o
w
 d
o
 w
e
 r
a
t
e
 p
e
r
f
o
r
m
a
n
c
e
 ?

T
h
e
 r
e
c
o
g
n
i
t
i
o
n
 r
a
t
e

o
n
 test d

a
t
a
 is t

h
e

p
e
r
c
e
n
t
a
g
e
 o
f
 t
e
s
t
 s
a
m
p
l
e
s
 t
h
a
t
 a
r
e

c
o
r
r
e
c
t
l
y
 c
l
a
s
s
i
f
i
e
d

b
y
 t
h
e
 n
e
t
w
o
r
k
 a
f
t
e
r
 l
e
a
r
n
i
n
g

s
o
m
e
 t
r
a
i
n
i
n
g
 s
a
m
p
l
e
s
.

-
E
r
r
o
r
r
a
t
e

=

1
0
0
-
 r
e
c
o
g
n
i
t
i
o
n
 rate.

-
W
e
 s
a
y
 t
h
a
t
 l
e
a
r
n
i
n
g
 c
o
n
v
e
r
g
e
s
 w
h
e
n

t
h
e
 E
r
r
o
r
 r
a
t
e
 o
n

t
r
a
i
n
i
n
g
 d
a
t
a
 g
o
e
s

b
e
l
o
w
 2.0.

M
O
M
E
N
T
U
M
 a
:
e
¢
«

(1-a)

s
t
e
p

size

nN

1
i

iis relation b
a
s
e
d
 o
n
 theoretical c

o
n
s
i
d
e
r
a
t
i
o
n
s
 is n

o
t
 w
e
l
l
 verified.

20
fore]

0.4
0.6

m
o
m
e
m
t
u
m

8 t
a
s
k
:
 o
p
t
i
m
a
l
 s
t
e
p
 size vs. m

o
m
e
n
t
u
m
.

S
I
G
M
O
I
D
 f
u
n
c
t
i
o
n
 f :

e
«

1
/
(
f
m
a
x
f
’
m
a
x
)
2

If {(x)
=
 s/((1

+

e-x) w

e
 m
u
s
t
 h
a
v
e
e
 «
s
-
4

1
s
t
e
p

size

(log)

0
,
5

X
O
R
 t
a
s
k
 : o

p
t
i
m
a
l
 s
t
e
p
 size v.s. s

i
g
m
o
i
d
 s
l
o
p
e

M
O
M
E
N
T
U
M
 a
:
e
«
 (1-a)

T
h
i
s
 relation based o

n
 theoretical considerations is not well verified.

a
s
l
e
p

size

1
1

0
.
6

0
.
8

m
o
m
e
m
t
u
m

-
2
L

5
:

*
"
X
O
R
 t
a
s
k
:
 o
p
t
i
m
a
l
 s
t
e
p
 size v.s. s

i
g
m
o
i
d
 s
l
o
p
e

8
8
8
 t
a
s
k
 : o

p
t
i
m
a
l
 s
t
e
p
 size vs. m

o
m
e
n
t
u
m
.

V) One unit in a Neural Network

A unit in our neural network computes a weighted sum of the states of its
input units, and applies a sigmoid function to this sum.

How does this unit learn?

Back-Propagation learning procedure is local:

--> the modifying parameters for the weight Wij only depend on unit j
and oninput yj

dE/OW4j (t) = Lsamples JE/2x; yi

AW4j (t) = aj AWjj (t-1) - 2) A/a Wij (t)

Wij (t) = Wij (t-1) + AWy (t)

aB/dx; is the back-propagated signal:

aBlaxy = P (xj) (Zk Wyk AB/Axx)

If we write Wj the vector (Wij, W9j,....... Wyj);

Learning = trajectory of Wj in the weight space, determined by unitj.

aj and ej will be scaled to:

- Make this trajectory as straight as possible.

- Minimize oscillations.

- Havea fast but controlled learning speed.

VI) The step size €: how to scale it.

1) Initial values.

- Optimize e witha small training set.

- Scale it to a larger training set using the relation:

e = Constant / (size of training set)

- Generally set the step size of the output units to 1/10 of the others.

2) Dynamical scaling.

- As a gauge of the variations of in time, we take the cosine of
the angle between the error gradient at epoch t and the weight
variation at epoch t-1:

6 = Angle(AW(t-1),-VE(t)).

- Ifwe compute the cosine over the set of input connections to unit u,
the algorithm becomes local to this unit:

€u(t) = ey(t-1).e(p.cos(8)),

3) Overshooting Control.

A control , at each updating iteration,

vector ¢u.VE to a fixed value o= 1.0.
limits the norm of the

| Initial Fixed e Scaled ¢ Initial Fixede Scaled e
€ (epochs) (epochs) & (epochs) (epochs)

0.5 1010 70 0.01 560 100

[esto 30 35 0.02 360 80

XOR task BDG task.(250 samples)

VII) The momentum a: how to scale it.

1) Problems met with a fixed momentum.

When the weights are updated at each epoch, it is generally
assumed that a good value for the momentum is 0.9.

This value is not optimal when we are updating the weights
more often.

- When the momentum is too small (0.9), we have oscillations.

| - When itis too large, we have uncontrolled overshooting.

2) A scaling algorithm.

For a given unit j, the quantity we want to control is:

Aj= Dy (W3j(t))2 - Di (Wij(t-1))2 = 2 Dj Wij AWij

We have AWij(t) = aj AWjj(t-1) - ej dE/dWij

As our e scaling algorithm limits the ej term, it is possible to
limit the value of A by scaling aj with the relation:

Gj = max / (1 + d |Z; Wij AWijl) |

Omax = 0.99 and d=1.0 give good performance.

| Epochs 10 20 30 40 50
i Da NE SSS SS

a=0.9 3.3/20 | 2.6/50 | 2.7/60 | 2.5/60 | 2.4/60

a=0.95 2.8/10 | 1.8/20 | 1.7/30 | 1.8/40 | 2.0/50

a: dynamic 2.5/50 | 1.9/70 |} 1.7/100 } 1.7/100 | 1.6/100

BDG task with 780 training samples.

Error rate /% converging trials

(10 trials, Error averaged on converging trials)

(10 trials)

VIID) The sigmoid function.

i=
y= Me)

0.8 -|-

-10 5 nO 5 10

Back-Propagation Learning
rate is proportional to the

of the sigmoid
function f and its derivative
f. But these functions flatten
out at infinity.

values

Fig 1: sigmoid function f(x) = 1/(1 + e-x)

Possible improvements:

1) Use a symmetric sigmoid whose value is never zero at infinity.

2) add a linear function to the sigmoid function: f](x) =f(x) + 1.x .

3) only add a small constant | to the sigmoid derivative .

Models 2 and 3 guarantee fast convergence to zero Error, but
overlearn the training set and may yield poor generalization on test
samples.

Epochs 10 20 30 40 50

Standard Sigmoid | 2.5/50 | 1.9/70 | 1.7/100 | 1.7/100 } 1.6/100

Sigmoid 1 2.4/50 | 2.1/90 | 2.1/90 | 2.1/100 | 1.8/100

Sigmoid 2 1=0.01 | 2.4/90 | 1.9/100 | 1.9/100 } 1.9/100 | 1.9/100

Sigmoid 31=0.01 | 2.1/100 | 2.0/100 | 1.8/100 } 2.0/100 | 2.0/100

BDG task with 780 training samples.

Error rate /% converging trials

(10 trials, Error averaged on converging trials)

IX) Influence of Initial weights:

- Different initial weights may give very different recognition
rates after learning.

- Initial weights give good performance with a learning method,

--> performance is still good with slightly different learning
methods.

Sigmoid overshooting cont et : earning method |) Standards)’ serivative'+0.01')° 10 insteadonl

3 best initial weights. 2,0,3 25.058 0%3 52

(numbered from 0 to 9)

BDG task with 780 training samples

- Itis possible to improve learning speed by choosing weights which
are adapted to the problem*.

Epochs 10 20 30 40 50
[ees sen ed ee ey

Adapted weights | 2.5/50 | 1.9/70 | 1.7/100 | 1.7/100 | 1.6/100

Random weights | 2.8/20 | 2.5/90 | 2.0/100 | 1.9/100 | 2.0/100

BDG task with 780 training samples.

Error rate /% converging trials

(10 trials, Error averaged on converging trials)

* For instance, in a T.D.N.N., a physical unit is connected to another
physical unit through several connections, each having a different
delay. Even though their weights are different, learning is faster if
they are initially set equal.

X) The Weight Updating Frequency.

Splitting a large and often highly redundant training set into

smaller subsets is advantageous.

We assume that these subsets are representative of the problem .

At the beginning of the learning phase:

One subset is enough data for a network which is only acting as

a rough classifier.

At the end of the learning phase:

The difference between two learning subsets may be considered

as noise which prevents zero variation.

Weight updating procedure [P]

- Learns 780 samples representing the phonemes /b/, /d/ and /g/:

- Training sample: randomly mixed, to avoid overspecialised

training subsets.

- First learning epoch, weights are updated each 3 iterations.

- Each epoch, the size of the training subset is incremented by 3,

until it reaches its maximum value of 48.

Epochs 20 50 100 200 300
eel

Epoch updating 0/0 0/0 2.0/10 | 2.3/100 | 2.0/90

([P] Non mixed set | 2.0/10 | 2.1/70 | 1.5/70

[P] Mixed set 2.5/50 | 1.6/100

BDG task with 780 training samples.

Error rate /% converging trials

(10 trials, Error averaged on converging trials)

XI) A new Error.

This New Error function has been proposed by McClelland:

Ek =- Usamples 4 In(1 - (yj 2 dj)2)

(yj is the actual output and djis the desired output).

- dE/dyjis maximal when yj- dj = 1

(it is zero with the standard Error E = - Lsamples 2j (yj- dj)2)

- This prevents zero learning and has roughly the same
effect as adding a small constant to the sigmoid derivative.

Epochs 10 20 30 40 50
oe

Standard Error 2.5 /50 1.9/70 | 1.7/100 | 1.7/100 | 1.6/100

New Error 2.4/90 | 2.4/100 | 2.1/100 | 2.1/100 | 2.1/100

BDG task with 780 training samples.

Error rate / % converging trials

(10 trials, Error averaged on converging trials)

XII) Experiments.

We have met two practical problems in our learning experiments:

1) Initial Weights.

Initial weights have a strong influence on final performance. Several
methods to cope with this:

1 After several trials, we select the weights which give the best
recognition rate on training samples. But, this does not guarantee
good performance on testing data..

Trial 0 Ht 2 3 4 5 6 7 8 9
ooo

Training data | 0.64 | 0.64 | 0.51 | 0.38 | 0.38 | 0.38 | 0.64 | 0.77 | 0.51 | 0.38

Test data 1.32 | 2.50 | 1.05 | 1.32 | 1.71 | 1.45 | 1.71 | 1.98 | 1.84} 1.19

BDG task with 780 training samples:

Average Error rate after 50 epochs

2 We select good initial weights with smaller training set, they
generally still yield better than average performance with most
learning methods.

2) When to stop learning ?

What? Stop learning before reaching the zero Error on the
training samples.

Why? The network becomes overspecialized into recognizing
them and performance on test samples gets worse.

When? The solution depends on the problem. Generally when the
Error has reached a plateau.

XID Our final learning procedure:

- eandaepsilon scaling algorithm.

- Weights updating procedure [P].

- Standard sigmoid function.

- Initial weights selected for their good performance with

other learning methods.

- Learning stopped when recognition rate on training data

stable during 10 epochs.

Epochs 10 20 30 40 50
[RR TT,

Time (minutes) 1:5 2.7) 3.8 49 6.0

Training data 1.41 0.90 0.64 0.64 0.64

Test data 2.24 1.45 heal) 1.19 1.32

remarks plateau | stophere | overshooting

BDG task with 780 training samples:

Remarks:

- Our best recognition rate on test data is 99.2 %, however the
probability to get such a result is less than 10 %.

- These simulations have been made on an Alliant computer with

8 processors.

- Our program process 1 Million connections per second (forward

+ backward pass).

- With the same program, we needed several days to reach a 98.8 %

recognition rate using standard back-propagation procedure with a

momentum of 0.9.

