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1) Problem: 

Optimize speech tasks in Neural Networks within a reasonable 

amount of computation time. 

2) Back-Propagation Learning Procedure: 

Iterative search for a global minimum of the Error function with a 

gradient descent algorithm. 

3) Improving learning speed: 

- Avoid flat spots on the Error surface : Model a sigmoid 

function which prevents zero learning rate. 

= Increase learning step: Dynamically scale the gradient step size 

to its maximum value, with respect to overshooting. 

- Reduce learning grain: Update connections as often as possible. 

Algorithms have been selected on the basis of 

- learning speed. 

- good generalization on test data. 

- few parameters to tunt. 

4) Experiments: 

Training time for the recognition of the phonemes /b/, /d/ and /g/ 

has been reduced to less than 5 minutes (Several days with 

standard Back-Propagation).
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V) One unit in a Neural Network 

A unit in our neural network computes a weighted sum of the states of its 
input units, and applies a sigmoid function to this sum. 

How does this unit learn? 

Back-Propagation learning procedure is local: 

--> the modifying parameters for the weight Wij only depend on unit j 
and oninput yj 

dE/OW4j (t) = Lsamples JE/2x; yi 

AW4j (t) = aj AWjj (t-1) - 2) A/a Wij (t) 

Wij (t) = Wij (t-1) + AWy (t) 

aB/dx; is the back-propagated signal: 

aBlaxy = P (xj) (Zk Wyk AB/Axx ) 

If we write Wj the vector (Wij, W9j,....... Wyj); 

Learning = trajectory of Wj in the weight space, determined by unitj. 

aj and ej will be scaled to: 

- Make this trajectory as straight as possible. 

- Minimize oscillations. 

- Havea fast but controlled learning speed.



VI) The step size €: how to scale it. 

1) Initial values. 

- Optimize e witha small training set. 

- Scale it to a larger training set using the relation: 

e = Constant / (size of training set) 

- Generally set the step size of the output units to 1/10 of the others. 

2) Dynamical scaling. 

- As a gauge of the variations of in time, we take the cosine of 
the angle between the error gradient at epoch t and the weight 
variation at epoch t-1: 

6 = Angle(AW(t-1),-VE(t) ). 

- Ifwe compute the cosine over the set of input connections to unit u, 
the algorithm becomes local to this unit: 

€u(t) = ey(t-1).e(p.cos(8)), 

3) Overshooting Control. 

A control , at each updating iteration, 

vector ¢u.VE to a fixed value o= 1.0. 
limits the norm of the 

| Initial Fixed e Scaled ¢ Initial Fixede Scaled e 
€ (epochs) (epochs) & (epochs) (epochs) 

0.5 1010 70 0.01 560 100 

[esto 30 35 0.02 360 80 

XOR task BDG task.(250 samples) 



VII) The momentum a: how to scale it. 

1) Problems met with a fixed momentum. 

When the weights are updated at each epoch, it is generally 
assumed that a good value for the momentum is 0.9. 

This value is not optimal when we are updating the weights 
more often. 

- When the momentum is too small (0.9), we have oscillations. 

| - When itis too large, we have uncontrolled overshooting. 

2) A scaling algorithm. 

For a given unit j, the quantity we want to control is: 

Aj= Dy (W3j(t))2 - Di (Wij(t-1))2 = 2 Dj Wij AWij 

We have AWij(t) = aj AWjj(t-1) - ej dE/dWij 

As our e scaling algorithm limits the ej term, it is possible to 
limit the value of A by scaling aj with the relation: 

Gj = max / (1 + d |Z; Wij AWijl) | 

Omax = 0.99 and d=1.0 give good performance. 

| Epochs 10 20 30 40 50 
i Da NE SSS SS 

a=0.9 3.3/20 | 2.6/50 | 2.7/60 | 2.5/60 | 2.4/60 

a=0.95 2.8/10 | 1.8/20 | 1.7/30 | 1.8/40 | 2.0/50 

a: dynamic 2.5/50 | 1.9/70 |} 1.7/100 } 1.7/100 | 1.6/100 

BDG task with 780 training samples. 

Error rate /% converging trials 

(10 trials, Error averaged on converging trials) 

(10 trials)



VIID) The sigmoid function. 

i= 
y= Me) 

0.8 -|- 

-10 5 nO 5 10 

Back-Propagation Learning 
rate is proportional to the 

of the sigmoid 
function f and its derivative 
f. But these functions flatten 
out at infinity. 

values 

Fig 1: sigmoid function f(x) = 1/(1 + e-x) 

Possible improvements: 

1) Use a symmetric sigmoid whose value is never zero at infinity. 

2) add a linear function to the sigmoid function: f](x) =f(x) + 1.x . 

3) only add a small constant | to the sigmoid derivative . 

Models 2 and 3 guarantee fast convergence to zero Error, but 
overlearn the training set and may yield poor generalization on test 
samples. 

Epochs 10 20 30 40 50 

Standard Sigmoid | 2.5/50 | 1.9/70 | 1.7/100 | 1.7/100 } 1.6/100 

Sigmoid 1 2.4/50 | 2.1/90 | 2.1/90 | 2.1/100 | 1.8/100 

Sigmoid 2 1=0.01 | 2.4/90 | 1.9/100 | 1.9/100 } 1.9/100 | 1.9/100 

Sigmoid 31=0.01 | 2.1/100 | 2.0/100 | 1.8/100 } 2.0/100 | 2.0/100 

BDG task with 780 training samples. 

Error rate /% converging trials 

(10 trials, Error averaged on converging trials) 



IX ) Influence of Initial weights: 

- Different initial weights may give very different recognition 
rates after learning. 

- Initial weights give good performance with a learning method, 

--> performance is still good with slightly different learning 
methods. 

Sigmoid overshooting cont et : earning method |) Standards)’ serivative'+0.01')° 10 insteadonl 

3 best initial weights. 2,0,3 25.058 0%3 52 

(numbered from 0 to 9) 

BDG task with 780 training samples 

- Itis possible to improve learning speed by choosing weights which 
are adapted to the problem*. 

Epochs 10 20 30 40 50 
[ees sen ed ee ey 

Adapted weights | 2.5/50 | 1.9/70 | 1.7/100 | 1.7/100 | 1.6/100 

Random weights | 2.8/20 | 2.5/90 | 2.0/100 | 1.9/100 | 2.0/100 

BDG task with 780 training samples. 

Error rate /% converging trials 

(10 trials, Error averaged on converging trials) 

* For instance, in a T.D.N.N., a physical unit is connected to another 
physical unit through several connections, each having a different 
delay. Even though their weights are different, learning is faster if 
they are initially set equal.



X) The Weight Updating Frequency. 

Splitting a large and often highly redundant training set into 

smaller subsets is advantageous. 

We assume that these subsets are representative of the problem . 

At the beginning of the learning phase: 

One subset is enough data for a network which is only acting as 

a rough classifier. 

At the end of the learning phase: 

The difference between two learning subsets may be considered 

as noise which prevents zero variation. 

Weight updating procedure [P] 

- Learns 780 samples representing the phonemes /b/, /d/ and /g/: 

- Training sample: randomly mixed, to avoid overspecialised 

training subsets. 

- First learning epoch, weights are updated each 3 iterations. 

- Each epoch, the size of the training subset is incremented by 3, 

until it reaches its maximum value of 48. 

Epochs 20 50 100 200 300 
eel 

Epoch updating 0/0 0/0 2.0/10 | 2.3/100 | 2.0/90 

([P] Non mixed set | 2.0/10 | 2.1/70 | 1.5/70 

[P] Mixed set 2.5/50 | 1.6/100 

BDG task with 780 training samples. 

Error rate /% converging trials 

(10 trials, Error averaged on converging trials) 



XI) A new Error. 

This New Error function has been proposed by McClelland: 

Ek =- Usamples 4 In(1 - (yj 2 dj)2) 

(yj is the actual output and djis the desired output). 

- dE/dyjis maximal when yj- dj = 1 

(it is zero with the standard Error E = - Lsamples 2j (yj- dj)2 ) 

- This prevents zero learning and has roughly the same 
effect as adding a small constant to the sigmoid derivative. 

Epochs 10 20 30 40 50 
oe 

Standard Error 2.5 /50 1.9/70 | 1.7/100 | 1.7/100 | 1.6/100 

New Error 2.4/90 | 2.4/100 | 2.1/100 | 2.1/100 | 2.1/100 

BDG task with 780 training samples. 

Error rate / % converging trials 

(10 trials, Error averaged on converging trials)



XII) Experiments. 

We have met two practical problems in our learning experiments: 

1) Initial Weights. 

Initial weights have a strong influence on final performance. Several 
methods to cope with this: 

1 After several trials, we select the weights which give the best 
recognition rate on training samples. But, this does not guarantee 
good performance on testing data.. 

Trial 0 Ht 2 3 4 5 6 7 8 9 
ooo 

Training data | 0.64 | 0.64 | 0.51 | 0.38 | 0.38 | 0.38 | 0.64 | 0.77 | 0.51 | 0.38 

Test data 1.32 | 2.50 | 1.05 | 1.32 | 1.71 | 1.45 | 1.71 | 1.98 | 1.84} 1.19 

BDG task with 780 training samples: 

Average Error rate after 50 epochs 

2 We select good initial weights with smaller training set, they 
generally still yield better than average performance with most 
learning methods. 

2) When to stop learning ? 

What? Stop learning before reaching the zero Error on the 
training samples. 

Why? The network becomes overspecialized into recognizing 
them and performance on test samples gets worse. 

When? The solution depends on the problem. Generally when the 
Error has reached a plateau.



XID Our final learning procedure: 

- eandaepsilon scaling algorithm. 

- Weights updating procedure [P]. 

- Standard sigmoid function. 

- Initial weights selected for their good performance with 

other learning methods. 

- Learning stopped when recognition rate on training data 

stable during 10 epochs. 

Epochs 10 20 30 40 50 
[RR TT, 

Time (minutes) 1:5 2.7) 3.8 49 6.0 

Training data 1.41 0.90 0.64 0.64 0.64 

Test data 2.24 1.45 heal) 1.19 1.32 

remarks plateau | stophere | overshooting 

BDG task with 780 training samples: 

Remarks: 

- Our best recognition rate on test data is 99.2 %, however the 
probability to get such a result is less than 10 %. 

- These simulations have been made on an Alliant computer with 

8 processors. 

- Our program process 1 Million connections per second (forward 

+ backward pass). 

- With the same program, we needed several days to reach a 98.8 % 

recognition rate using standard back-propagation procedure with a 

momentum of 0.9.


