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Abstract 
This paper describes evaluation results and a new structure 
of Time-Delay Neural Networks (TDNN) for speaker- 
independent and context-independent phoneme recognition. 
The proposed new structure is based on the integration of 
TDNNSs which have several TDNNs separated according to 
the duration of phonemes, so that it deals with phonemes 
of varying duration more effectively. In the experimental 
evaluation of the proposed new structure, 16-English vowel 
recognition was performed using 5268 vowel tokens picked 
from 480 sentences spoken by 140 speakers (98 males and 
42 females) on the TIMIT (TI-MIT) database. A 60.5% 
recognition rate, which was improved from 56% in the 
single TDNN structure, and stability improvement of 
recognition rate showed the effectiveness of the proposed 
integrated TDNNs. 

1, INTRODUCTION 

Recently, quite a few efforts have been made to develop 
speech recognition systems using promising connectionist 
models (Lippmann et al.[1], Waibel er al.[2], [3], Leung et 
al.[4}, Bourlard et al.[5], Franzini et al.[6]). This is due to 
the fact that Neural Networks may have the ability to 
overcome limitations of conventional techniques in speech 
recognition. Speech recognition is one of the excellent 
abilities of human beings. So, new approaches, which are 
based on human cognitive mechanisms, should be explored 
to further advance this field. Neural Networks (NNs), whose 
basic idea is motivated by processing mechanisms of the 
nervous system, may be a good scheme for pattern 
recognition, including speech recognition. 

However, current structures of NNs must be improved 
to better cope with the temporal nature of speech. 
Especially, usual NNs show poor performance in the case 
of speech features which are quite similar, and where the 
duration information might be the only cue in distinguish- 
ing this speech, such as single vowels and diphthongs. To 
overcome these problems, variable duration input patterns 
should be used in order to minimize training and improve 
generalization in the case of short phonemes (single vowels 
etc.) and to provide enough input information in the case of 
long phonemes (diphthongs etc.). 
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In this paper, firstly we evaluate TDNN ability for 
speaker-independent and context-independent phoneme 
recognition from the view points of speech parameters, 
TDNN input window length, and the number of hidden 
units. Finally, we propose an integrated TDNNs structure 
which has several TDNNs separated according to the 
duration of phonemes. As a result, the proposed structure 
has the advantage of. dealing with varying duration 
information more effectively. Experimental evaluation of 
the proposed new structure was performed using 16 English 
vowels picked from continuously uttered sentences in the 
TIMIT (Lee et al.[7}) database. 

2. SPEAKER-INDEPENDENT PHONEME 
RECOGNITION USING TDNN 

2.1 A Brief View of the System 
First, sentence length speech, which has been labelled at 
the phoneme level, is analysed and transferred to speech 
feature coefficients. We are using an FFT analysis method. 
(At the parameter evaluation stage, a cepstral analysis 
method for NNs has been evaluated to compare with an 
FFT method.) Subsequently, speech intervals, which have 
vowel parts of a sentence, are picked up using labelling 
information. In the training mode of NNs, training patterns 
are used to obtain weighted values of the connections 
between units in the TDNN. And in the testing mode, other 
test patterns are used for evaluation of the NNs which have 
these weighted values. These training and testing modes are 
carried out by a speaker-independent and context-independent 
recognition method. This means the patterns, which are 
used in each mode, are picked from completely different 
speakers and sentence contents. 

The training and testing modes are executed by “DyNet" 
(Haffner [8}), a software package for the fast training of 
Neural Nets. The learning algorithm of DyNet is based on 
the Error Back-Propagation (Backprop, Rumelhart et al.(9}), 
though DyNet is using an optimised search strategy and is 
controlling the “step size" and the "momentum" of NNs' 
parameters dynamically. As a result, DyNet can get very 
fast convergence. 

* The author was a visiting researcher at CMU from Central Research Laboratory, Hitachi, Ltd., Japan. This work has been done on 
a collaborative research project between the Centre for Machine Translation of CMU and Hitachi, Lid. 
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1 TIMIT Database 
We use the TIMIT speech database in this research. This is 
because the TIMIT database has so many and various 
speakers and sentences that this database is most suitable in 
evaluating speaker-independent speech recognition 
performance. Moreover, comparison with other speaker- 
independent speech recognition systems, which are using 

the same TIMIT database! (e.g. SPHINX system (Lee et 
al.[7}) and NN systenr (Leung et at.{4]})), will be possible 
and effective for the evaluation of our proposed system. We 
selected a task of 16-English vowel recognition. 

These 16 English vowels are /ae/(bat), /eh/(bet), 

Jih/(bit), /iy/(beat), /ub/(bgak), /ah/(butt), /ax/(the), 
/ix/(rosgs), /aa/(cot), /ao/(about), /aw/(boat), /aw/(bough), 
/ay/(bite), ey (bait), /ow/(boat), and /oy/(boy). 

2. Training and Test Samples 
We carried out the experiments according to the following 
two phases which are separated from the amount of sample 
size used. These samples were selected at random from the 
speech data in the TIMIT database. 

(1) Preliminary Experiments (Small Samples) 
This data was used for the comparison of speech analysis 
methods (FFT and cepstral analysis) and the length of input 
data to decide which would be better for the main 
experiments. The data size was as follows: 
50 speakers, 135 sentences 
~ Training Samples: 1139 vowel patterns from 35 speakers 
- Test Samples: 430 vowel patterns from 15 speakers 

(2) Main Experiments (Large Samples) 

Main experiments are carried out by the 
following data: 

3, EXPERIMENTS USING SINGLE TDNN 

3.1 TDNN Architecture 
The TDNN structure has been created to cope with many 
problems, which are substantial in the speech recognition 
field. And the TDNN has been shown to be powerful, 
especially for Japanese phonemes, such as /b/, /d/, /g/ in 
speaker-dependent speech recognition tasks. The TDNN 
consists of four layers, including input and output layers. 

The connections between each layer used in this research 
are completely the same as in the previous report [2]. The 
differences are an addition of a power coefficient to 16 FFT 
coefficients and 16 outputs in the output layer. 

First, we evaluate the performance of speech coefficients 
(FFT vs. cepstral) and the duration length of input sample 
(150 msec vs. 200 msec). 

3.2 Experimental Results 

(1) Parameters: FFT vs, Cepstral Coefficients? 
Fig. 1 shows recognition rates for training samples and test 
samples according to learning times (epochs). The 
maximum rates for test data are found within 100 epochs 
and the rates over 100 epochs did not increase. This is 
because of overlearning and/or generalisation problem. 
Table 1 shows comparison results (maximum rates). 

From these results, we found that FFT coefficients 
showed a slightly improved performance, especially in view 
of overlearning and generalisation problems. In this 
tesearch, we have decided to use the FFT coefficients from 
this preliminary comparison. However, this comparisonwas 
done on small samples, so we need further evaluation 
before reaching a final conclusion. 

140 speakers, 480 sentences 
- Training Samples: 4326 vowels from 

100 speakers (69 males, 31 females) 
- Test Samples: 942 vowel patterns from 

40 speakers (28 males, 12 females) 

3, Speech Processing 
The speech input, which was sampled at 16 kHz 
and pre-emphasized with a filter (transfer function 
1-0.97z71), was hamming windowed and 256- 
point FFT coefficients were computed every 5 
msec. And then, the 16 melscaled coefficients of 39 | — 
the power spectrum were obtained by the 
melscaled transformation from these 256-point 
FFT coefficients. Finally, 16 coefficients of 10 
msec frame rate were obtained by the average of 
two adjacent coefficients in time. The coefficients 
of an input token were then normalized to have 
the values between -1.0 to +1.0 with the average 
of 0.0. 

1p the TIMIT database, 630 speakers uttered five ‘sx’, three 
si’, and two ‘sa’ sentences. The ‘sa’ is not used in this research 
because of its fixed context. 
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Fig. Rate vs. Learning Times (Epochs) 

2TDNN structures: In the case of FFT, the total number of units 
is 509 including a bias unit, i.e. 16 input coefficients without” 
power and 16 vertical units in the first hidden layer. In the case 
of cepstral coefficients, the total number of units is 759 
including a bias unit, i.e. 26 input coefficients (including 12 
differential cepstral coefficients and one differential power) and 
16 vertical units in the first hidden layer. 
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Table 1 Comparison between FFT vs. Cepstral Coall. Teble 3 Comparison of the Number of Units in the 1st Hidden Layer 

DATA FFT Coeff. Cepstral Coeff. ay the number of units in the 1st hidden layer 

training data | 63.8% (50th epoch) | 69.1% (50th) 16 20 24 28 

(1139 patterns) 93.5% (500th) 95.1% (500th) training data 58.8% 60.6% 63.9% 65.0% 

testing Data 85.6% (20th) 55.4% (50th) (4326 patterns) | (150th epoch)! (150th epoch) | (150th epoch)| (150th epoch) 

(430 pattems) 50.0% (500th) 46.6% (500th) testing data 54.1% 55.5% 57.3% 54.9% 

(942 patterns) (70th) (30th) (30th) (30th) 

(2) Input Window Length: 150msec vs, 200msec 33 i 
Table 2 shows comparison result. The input sample of 150 
msec has produced better results than that of 200 msec. We 
can imagine that the 200 msec data is including a lot of 
unnecessary neighbour vowels and consonants, especially 
in short duration vowels such as /ax/ and /ix/. As a result, 
the generalisation for these short vowels is so poor that the 
decreased performance of these short vowels is affecting the 
total performance, 

Table 2 Comparison of Input Window Length (150msec vs. 200msec) 

Consideration on Single TDNN 
The experimental results of the single TDNN show the 
following problems: 
(1) errors between single vowels and diphthongs (e.g. /ax/ 

and /ay/, /ih/ and /ey/ etc.) 
(2) necessary to use more input information for diphthongs 
(3) generalisation problems, especially for short duration 

vowels 

4. NEW STRUCTURE OF INTEGRATED TDNNs 

Fig. 2 shows the proposed structure based on the 
integration of TDNNs. The various intervals of speech are 
put into each TDNN's input layer in the first NNs. The 
outputs of first NNs are put into the second NNs' input 
layer, Each TDNN has an output for the counter category 
and the training procedure of these NNs is carried out 
separately. These Integrated TDNNs can manage the 
duration difference between cach vowel, especially bxtween 

DATA 150 msec (15 frames) | 200msec (20 frames) 4.1 Integrated TDNNs 

training data 63.8% (50th epoch) 59.5% (50th) 
(1139 pattems) 93.5% (500th) 90.8% (500th) 

testing Data 55.6% (20th) 48.8% (50th) 
(430 pattems) 50.0% (500th) 41.5% (500th) 

2. Experi Using Large Sampl 

(1) the number of units in the first hidden layer 
The number of the vertical units were evaluated using large 
samples. Table 3 shows recognition results. The 
recognition rates are maximum ones within 150 epochs. 
The case of 24 vertical units showed the best performance. 
Generalisation problem might have occurred in the case of 
28 vertical units. 

16 outputs 

single vowels and diphthongs, because the input da‘ can be 
separated by the duration difference, by putting the data into 
the different TDNN-n in a training mode. As a result, each 
TDNN-n can share recognition abilitics for specified 
phonemes. Each TDNN can be designed to cover at least 
sum of duration average and standard deviation of assigned 
vowels. 

three layers 
1 | (one hidden layer} | 

‘1st NNs 
(TDNNs) 

1 
1 TONNs separated by 

1 input window length 

cop) 
(short interval) 

input pattern 
‘copy 

(long interval) 

Fig.2 Structure of Integrated TONNs 
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4.2 Evaluation Results 
Currently, two TDNNs and three TDNNs are being used 
which are distinguished by the duration difference between 
each vowel, especially between single vowels and 
diphthongs. In two TDNNs?, the TDNNs for single vowels 
and diphthongs have 150 msec and 200 msec input 
intervals, respectively. In three TDNNs‘, three TDNNs 
have 100 msec, 150msec, and 200 msec, respectively. 

Table 4 shows evaluation results. Rate A is by small 
samples (50 speakers,.135 sentences) and rate B by large 
samples (140 speakers, 480 sentences). These results 
indicate the performance increase according to the increase 
of the number of TDNNs. Especially, stability of 
recognition rate within 50 epochs was improved by the 
integrated TDNNs. 

Table 4 Evaluation Results of Integrated TDNNs 

rate A rate B 
structure (small samples) | (large samples) 

‘Single TONN 56.1% ear) 

Integrated TONNs 57.8% (two TONNs) 60.5% (87.4%) 
Integrated TONNs 59.3% (three TDNNs) - (58.7%) 

maximum rates within 150 epochs 
Rates in the () are average from 10 data within 50 epochs. 

5. DISCUSSIONS AND FUTURE WORKS 

The evaluation of the Integrated TDNNs shows the 
performance increase by separated TDNNs. The reasons 
why the performance has been increased are that the 
generalisation might become better for short duration 
vowels, and that sufficient information can be supplied for: 
Jong duration vowels such as diphthongs. 

We obtained around 70% recognition rate (69.1% for 
small samples) for a collapsed 13-vowel set using the 
integrated TDNNs trained context independently. Lee and 
Hon reported context-independent recognition rate of 
53.68% and context-dependent of 65.71% for all sonorants 
which include the collapsed 13-vowel set [7]. Leung and 
Zue used artificial NNs for the same 16-vowel task, and 

3Two TDNNs: separated by the group of single vowels and 
diphthongs, TDNN-a is for the single vowel group (10 
categories; /ae/, /eh/, /ih/, fiy/, /uh/, /ah/, /ax/, fix/, /aa/, and a 
counter group) and TDNN-b is for the diphthong group (8 
categories; /ao/, /uw/, /aw/, /ay/, /ey/, Jow/, foy/, and @ counter 
group). 
4Three TDNNs: separated by duration information, TDNN-x is 
for the group of 4 categories (/ax/, /ix/, and two counter 
categories). TDNN-a is for the group of 8 categories (/eh/, /ih/, 
fiy/, fubl, /ab/, faw/, and two counter categories). TDNN-b is 
for the group of 10 categories (/ae/, /aa/, /ao/, /aw/, /ay/, fey/, 
/ow/, /oy/, and two counter categories). 
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reported 54% for context-independent recognition and 67% 
for context-dependent [4]. 

The future work will be (1) Increase the number of 
TDNNs, (2) Use of context information, (3) Models for 
sequential processing, and (4) Hierarchical and feedback type 
NNs using semantic and syntactic information. 

6. CONCLUSION 

In this paper, we evaluated the ability of Neural Networks 
in speaker-independent and context-independent speech 
recognition on an English database (TIMIT database). And 
we proposed a new NNs structure (Integrated TDNNs) 
which can cope with the duration difference problem among 
vowels and can use the duration information effectively. 

In the experimental evaluation of the proposed structure, 
16-English vowel recognition was performed using 5268 
vowel tokens picked from 480 sentences spoken by 140 
speakers (98 males and 42 females) on the TIMIT database. 
The number of training tokens and testing tokens was 4326 
from 100 speakers (69 males and 31 females) and 942 from 
40 speakers (29 males and 11 females), respectively. The 
result on testing data was around 60% recognition rate 
(around 70% for a collapsed 13-vowel case), which was 
improved from 56% in the single TDNN structure, 
showing the effectiveness of the proposed new structure in 
using temporal information. 
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