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Abstract 

In this paper we discuss recent research aimed at extending connectionist models to large vocabulary 

word recognition. We describe the problem and the properties a successful large vocabulary system 

must satisfy. While a number of different methods and ideas have recently been proposed and are under 

investigation we will limit the discussion here to only one particular hybrid approach, i.e., the combination 

of TDNN-based phoneme recognition/spotting nets with classical techniques for sequence management 

(such as DP-maiching and HMMs). We implement a baseline system using the best recent TDNN 

phoneme spotting nets and evaluate its performance over a 500 and a 2620 word vocabulary, not used 

during training. In both of these vocabulary independent evaluations high word recognition rates were 

measured despite the large vocabulary size and perplexity in this otherwise unconstrained task. We then 

describe, exploratory experiments that illustrate the importance and effectiveness of integral training, i.e., 

the integration of sequential management or alignment with phoneme network optimization. Significant 

performance improvements were found with this technique over a system using decoupled training and 

alignement. Finally, we offer a critical discussion and observations for further research.
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1 Introduction 

Connectionist models have recently attracted considerable attention as approach for the design of 

large vocabulary speech recognition. Underlying this interest is the perception that connectionist models 

or "neural networks" are not only attractive for efficient hardware implementations, but that they also 

deliver very high recognition performance, frequently exceeding the performance of traditional speech 

recognition techniques [Waibel 87, Waibel 88a, McDermott 89, Waibel 88b]. These performance results 

were achieved by the ability of these networks to optimally adjust the interconnections between massively 

parallel and distributed simple processing elements, thus mimicking some of the processing properties of 

neural processing. Although earlier work [Elman 87] had already highlighted interesting abstractions that 

such networks learned in order to perform their tasks, further advances were required to deal with the 

temporal nature of speech: the dynamic properties of the speech signal and the need for segmentation 

free processing. A variety of techniques were reported [Tank 87, Waibel 87, Watrous 87]. The Time- 

Delay Neural Network proposed solutions to these requirements by introducing time-delayed connections 

and shift-invariant learning and recognition [Waibel 87, Waibel 89a]. Excellent performance was achieved 

with these networks even at the absence of segmentation, i.e., even when such networks were applied to 

phoneme spotting in running speech [Sawai 88, Sawai 89]. Most recent results indicate that phoneme 

spotting rates of up to 98% can be achieved for 23 Japanese phonemes over a Japanese 5240 word 

large vocabulary database [Sawai 90]. Similarly, it has been shown [Bottou 88, Bottou 89] that 

segmentation free word recognition at high recognition performance can be achieved with similarly 

structured time-delay neural networks. These networks however, posess output units corresponding to 

each word in the recognition vocabulary and required training examples for each of the vocabulary words. 

Clearly, for large vocabulary recognition, word models based on subword units must be developed. This 

is one of the topics addressed in this report. The second emerging question discussed in the following is 

the question of robustness: It is desirable for networks to both recognize speech at high recognition rates 

as well as having them degrade gracefully, under potential changes ‘in recording conditions, noise, 

acoustic transducer, speaking rate and style, speaker and task requirements.



2 Models for Large Vocabulary Word Recognition 

The recognition of words in large vocabularies is complicated by two distinct problems: First, large 

vocabularies tend to become more confusable as more and more words crowd the acoustic space and 

become acoustically increasingly similar. Second, it is impractical to train large vocabulary systems, one 

word at a time, due to the enormous amount of training data and computation that such an approach 

would require, not to mention the difficulty of adding new vocabulary items. Clearly, successful practical 

systems must be based on subword units, such as phonemes, diphones or syllables. These constraints 

have motivated a large body of research aimed at high performance phoneme recognition. Statistical 

solutions (HMMs) have been proposed, that have the advantage of being easily combined into words and 

sentences, but have been limited in their ability to handle fine acoustic discriminatory detail. Neural 

networks solutions on the other hand have produced excellent recognition performance at the acoustic 

phonetic level, but only preliminary attempts have been made so far in integrating these phoneme models 

into words and sentences. This is due in part to the still exploratory nature of models aimed at 

connectionist sequential processing in general (see for example [Wong 86, Elman 88, Servan-Schreiber 

88]) that are only beginning to mature into large performance system implementations. Most current 

activity in connectionist speech recognition is therefore aimed either at combining connectionist and 

classical methods, or at the development of novel connectionist extensions towards integrated pattern 

sequence processing. In the following we describe some of these techniques and report in detail on 

results from initial large vocabulary isolated word recognition experiments. 

3 Hybrids: Neural Networks and Classical Techniques 

Most popular at present perhaps are so-called hybrid models, that seek to combine the perceived 

strengths of connectionist models with those of more classical recognition techniques such as Dynamic 

Programming or Hidden Markov Models. Under this approach, connectionist models are viewed as high 

Performance non-linear classifiers that could replace more rudimentary distance metrics, or vector 

quantization steps commonly found at the front end of most typical recognizers. Dynamic Programming 

algorithms and Hidden Markov Models are then viewed as mechanisms to provide sequence 

management, i.e., impose the additional constraints that phonemes must occur in the right order to be 

producing a legal word. This paper explores some models of this kind and we describe initial results in



the following. 

In the approach explored here, a TDNN is chosen to classify input speech into one of several possible 

phoneme output categories. The experiments reported here are based on a Japanese large vocabulary 

isolated word database described elsewhere [Sagisaka 87, Waibel 87, Waibel 89a]. As before phonemes 

from this database were used to train TDNNs to produce one of 24 phoneme output categories (5 vowels, 

18 consonants and silence) as speech flows by. Due to the shift-invariance property of TDNNs these 

networks have also been demonstrated to produce high performance for phoneme spotting [Waibel 89b], 

tecently 98% in speaker-dependent open test phoneme spotting experiments [Sawai 90]. 

3.1 From Phonemes to Words 

The most straight forward approach to integrating such connectionist networks into large vocabulary 

recognition systems is depicted in Fig.1. Here the output of a set of 24 TDNNs is used in form of a vector 
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Figure 1: DP-Based Sequential Management 

sequence of phoneme hypotheses every 20 msec. In the experiments reported here, these vectors are



obtained by averaging two consecutive TONN output activations sampled every 10 msecs. 

DP-matching [Sakoe 78, Itakura 75] is then applied to align these phoneme outputs with a target vector 

representing one of the candidate words’ dictionary phoneme sequence. A Euclidean distance is 

computed along the best alignment path and the sum of all local distances on this path constitutes the 

word score for the word candidate. Naturally, this simple approach is limited in a number of ways: First, 

Dynamic Programming matching ultimately may not be the optimal method one might like to choose for 

sequence management. It assumes that different phonemes are independent states and do not interact 

with each other’. Second, there is no guarantee that a Euclidean distance is the most useful measure 

here given that output activations really simulate binary classification decisions. Perhaps the most 

important limitation is that word alignment, word score computation and training of the underlying TDNNs 

had been performed independently. Hence there is no guarantee, that what was a priori defined as a 

speech frame for phoneme X, is indeed the best assignment in view of optimal word recognition. Before 

addressing some of these limitations in the section below, however, we first report results from 

benchmarking experiments as a baseline for further work. It should be noted, however, that the simplicity 

of this approach does have two advantages: First, it is phoneme based, and hence extendable to large 

vocabulary recognition. Second, phonemes are trained over a large training database and the trained 

TDNNs incorporate a large amount of typical acoustical variations. This is advantageous in view of 

vocabulary indepdendent recognition, i.e., recognition of words that have not been considered during the 

training phase, a problem that remains largely unsolved in speech recognition technology to date. 

3.2 Vocabulary Independent Recognition Experiments 

A testing vocabulary different from the training data and training vocabulary was used for these 

experiments. A set of rules converted the romaji spelling of -initially- 500 and then 2620 test words into 

Pseudo-phonemic transcriptions. Test speech utterances for each of these test words were then run 

through our phoneme spotting TDNNs. The outputs of these nets were then aligned with the phoneme 

sequence of each test word and the best matching word selected as recognition result. Table 1 shows 

the results from the 500 word and 2620 word recognition experiments, respectively. 

"The TDNNs alleviate this problem somewhat by the fact that adjacent output activations are obtained in part by inclusion of 
overlapping speech input information.



istchoice 2ndchoice 3rdchoice 4thchoice 5Sthchoice test vocabulary 

96.8% 99.2% 99.8% 99.8% 99.8% 500 words 

97.4% 99.2% 99.8% 99.8% 99.8% 500 words (homophones eliminated) 

90.4% 95.6% 97.1% 97.7% 98.2% 2620 words 

93.9% 96.4% 97.5% 98.0% 98.4% 2620 words (homophones eliminated) 

Table 1: Preliminary Baseline Hybrid DP-TDNN Word Recognition Results 

3.3 Error Analysis 

Error analysis of these results revealed that a large number of misrecognitions are simply caused by 

the presence of a fairly large number of homophones in the database?. These include mutiple entries for 

words such as "kizuku", "kata", “seki", with identical phonetic spelling and presumably identical 

pronounciation. They also include a large number of words that might be distinguishable by prosodic 

cues, but cannot be identified on the basis of phonetic information alone. Examples are: "ho" vs. "hoo" or 

“hoshi" vs. “hooshi" (duration) and “hashi" vs. “hashi” (different accentuation). Better duration control or 

analysis of the accent patterns might provide the means to possibly capture even these distinctions. 

Since we are limiting ourselves to phoneme based recognition here, we also report in table 1 the 

performance results that are obtained for the same task, when homophone confusions are eliminated. As 

can be seen from table 1, these homophone confusions are a most noticable cause for near miss 

confusions (first vs. Second or third choice rates). 

Duration control might indeed also eliminate a number of errors that are still part of the performance 

results reported here. Errors such as “ashi” vs. "okashii" arise presumably from excessive time warping, 

allowing the recognition procedure to skip over an entire syllable with little penalty. Recognition should be 

constrained by better models of what constitutes the reasonnable or likely duration of each phoneme. 

Further error analysis, finally, shows that many errors are also caused by phonemic misspelling of the 

?Note, that the database consists of recorded utterances from a dictionary of 5240 most common Japanese words.



target words or impropper loading of target phoneme sequences into the dp-alignment vectors. Among 

them are confusions such as “nyuuse” vs. “musuu", for example, caused by "nyuusu” being transcribed 

erroneously as “nuusu”. These and other errors should of course be eliminated by debugging the lexical 

representations. Some remaining errors might potentially also be eliminated by the introduction of 

alternate phonemic transcriptions to represent possible alternate pronounciations for some words. No 

attempt was made here to control for these errors, however, and they are still part of the errors measured 

in table 1. 

3.4 Discussion 

As the foregoing discussion shows, good performance was achieved for a large vocabulary and large 

perplexity task with even this decoupled strategy that treats alignment/sequence-management and 

Phonemic classifications as distinct and decoupled processes. Nonetheless, as research in speech 

recognition has shown time and again, such decoupling generally leads to poorer and less robust 

performance as the definition of a phoneme and the objective of a classifier trained to detecting it may not 

be optimal in view of the global goal, word recognition®. Initial experiments with integral training have 

already been reported for small (digits) vocabulary tasks [Sakoe 89] We have therefore begun to extend 

these basic hybrid large vocabulary models towards fully integrated training, more specifically, towards 

word level optimization of subword units. 

4 Integral Training 

One of the central ideas in the TDNN is the integration of increasingly abstract sets of features into an 

output decision, independent of where in the input speech these features actually occurred (hence shift- 

invariance). This position independence is achieved by integrating position dependent local phoneme 

decisions over a certain input range (in the original TDNN, 150 msec) and passing the combined 

activation through a sigmoid function. This output nonlinearity deemphasizes local position dependent 

perturbations in classification performance and only focusses on salient, important features, anywhere in 

the input range. Now, if the actual input range contains not simply one phoneme to be recognized, but a 

Although no system currently exists that does this successfully, the same argument actually applies beyond the word level. 
Ultimately, optimal transmission of ideas is the goal of speech communication, not syntax, words or phonemes.
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Figure 2: TDNN-target-mask 

sequence of phonemes (i.e., a word), then integration has to be performed over varying ranges and 

compared with changing targets. Fig.2 illustrates the basic mechanism. A set of output activations 

(shown in the left of Fig.2 are compared with a target mask (shown on the right) and deviations from 

these targets are corrected by backpropagating error into the underlying TDNNs that have produced the 

corresponding outputs at that point. Of course, the target mask has to be determined before these 

assignements and error corrections can take place. Naturally, they could be determined using a 

database of handlabels, but this would not lead to global optimality and has the unattractive property that 

precise labels have to exist for all training tokens. Rather, we let DP-alignement produce a set of 

hypothesized boundaries dynamically, as training progresses. Error backpropagation is then performed 

based on these boundaries and the associated target-mask. Using the emerging new set of weights then 

DP-alignement is performed again, and the process iterates. In this fashion, alignment can seek out 

optimal transition points as training iterates over many instances of phonemes in different contexts. This 

approach has so far been partially implemented, and feasibility could be partially demonstrated as
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described in the following. 

4.1 Method 

As before a set of phoneme spotting TDNN’s was used as an initial set of phoneme models. The set of 

phoneme spotting nets used in the experiments here were unfortunately an earlier version of the nets 

described in the previous section. They had not yet been developed to the level of performance 

described above. The absolute values of the initial results reported below are therefore somewhat lower 

than before but the relative performance gains achieved based on these networks using integral word 

level training are nevertheless insightful. 

We should also note that several experimental limitations have been imposed to reduce training time 

and set-up time during this set of exploratory experiments. First, our experiments here were limited to a 

225 word vocabulary made up of words that make use of only 10 frequently occurring phonemes, namely 

the vowels /a,i,u,e,0/ and the consonants /t,k,h,r,s/. The resulting vocabulary, can then be expressed by 

different combinations of these phonemes alone. It is also likely to lead to more acoustic confusability, 

which might contribute to lower recognition results, but again, it is the relative performance that we are 

trying to asess here. To further limit the training amount in these experiments, we are also not 

considering backpropagating errors all the way to the very signal level. Rather, we are taking a modular 

approach [Waibel 89c], by keeping lower level connections fixed and only apply a higher level net which is 

dynamically adjusted during word level training and uses the output firings of phoneme spotting nets as 

input. 

4.2 Recognition Experiments 

Several experiments were carried out and are described here. Further in depth study of additional 

experiments can be found in Hirai [Hirai 89]. 

We begin by simply aligning the outputs from phoneme spotting nets with word target 

phoneme sequences. This basically is the approach described in the previous section but 

evaluated using the earlier (lower performance) nets and the limited vocabulary as described 

to provide a basis for comparison for the following. 

¢ We then apply a simple higher level network, consisting of one single layer of units without 

time-delays that connect phoneme spotting outputs to yet another layer of phoneme spotting
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units. These units are trained statically on the desired output phoneme targets. 

e Third, another simple higher level network is applied, and again trained in a static (non- 

integral) fashion to test the ability of a network to smooth the underlying phoneme spotting 

results for word recognition. In contast to the previous higher level net, here time-delays 

where used to allow the higher level net to smooth the phoneme spotting tracks of the 

underlying TDNNs over 50 msecs worth of time. 

e Finally, dynamic alignment training was introduced. Time-delay (50 msecs) higher level units 

are first trained statically, and then dynamically for an additional period of 1000 iterations. 

During these 1000 iterations alignement was done repetitively to change the boundaries of 

the target mask depicted in Fig.2 with changing weights on the incoming networks‘. Care 

was taken that the total (static and dynamic) training was performed over the same number 

of iterations as in the previous experiment to allow for a fair comparison. 

4.3 Results and Discussion 

Evaluation data DP only Highlevel Net = TDNN highlevel TDNN highlevel 
Small Phoneme Set (1 frame input) (5 frame input) (5 frame input 
Earlier Nets & dynamic traing) 

testing data (129) 81.4% 87.5% 89.1% 91.9% 

training data (96) 74.0% 80.2% 89.6% 92.7% 

testing+training (225) 78.2% 84.4% 89.3% 92.9% 

Table 2: DP-TDNN: static vs. dynamic training 

Table 2 shows the results for the four conditions outlined in the previous section. As can be seen the 

added higher level network improves results, as it smoothes and biases output firings appropriately. 

Higher level units overlooking a 50 msec (5 frames) window of phoneme spotting activations, increase 

this networks ability to appropriately smooth the output and eliminate spurious firings or drop-outs. 

Dynamic alignment during the training process does indeed increase performance on both training as well 

as testing data. This latter improvement is evidence, that integral optimization of sequential constraints 

and local, phonemic pattern recognition is a successful strategy towards improved and robust isolated 

‘Note again, that for computational efficiency, weights on only the higher level nets were actually changed here. Lower layer 
connections in the TDNNs were kept fixed here. 
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(and continuous) large vocabulary word recognition. Ultimately, recognition should not be limited by our 

insistence on preconceived notions and definitions of a phoneme. Rather phonemes should emerge in 

constraint satisfaction networks while they are learning to recognize words represented by phoneme 

symbol sequences. 

5 Future Directions 

In this section we have seen that Time-Delay Neural Networks can successfully be combined into 

vocabulary independent large vocabulary speech recognition systems. A number of open questions, 

however, remain to be addressed. 

e We have seen that integral (dynamic) training leads to improved results over statically trained 

phoneme spotting nets. The experiments illustrating this improvement were, however, 

performed using only preliminary nets aimed at a subset of the phonemes. Integral training 

should be performed using the full set of improved phoneme spotting nets described in 

section 3. 

e Errors should be propagated further down into the underlying TDNNs. So far (for 

computational efficiency) error backpropagation was performed only one layer deep during 

integral training. 

As error signal in our experiments we have so far only used the cumulative distortion over the 

course of a word, where distortion is measured by the mean square error between the target 

mask and the output activations of underlying phoneme spotting TDNNs. Alternative error 

measures should be explored. Some important observations should be made in this regard: 

Word level error should not (as it presently does) give equal weight to each time frame during 

the word. This leads to position dependence and penalizes networks for not producing 

phoneme target outputs even in regions that are not informative with respect to phoneme 

identity. To circumvent this problem, a basic TDNN [Waibel 87] integrates phoneme 

activations over time (in the second hidden layer), before passing the accumulated activation 

through a nonlinear decision function (a sigmoid function). In doing this, unimportant regions 

are deemphasized, while the network can more heavily rely on informative regions to achieve 

output criterion. When activations are integrated over an entire word, i.e., a sequence of 

regions with different targets, such a non-linear decision function should be introduced as 

well. Another important criterion for training should be word level optimization: Rather than 

trying to produce perfect phoneme spotting tracks, TDNNs should receive their error signal 

based on their ability to properly identify the target word. This could be done by making the 
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word level error a function of word identification performance, or discrimination from other 

words. 

e Better models for duration and accent control should be applied. An initial simple model was 

introduced here, by way of a higher level net that utilizes a larger time-delay window to 

capture some duration dependent properties. Additional duration constraints could be 

introduced in the sequence manager (here the DP-matcher). Further, units could be 

introduced that use long time-delay windows that model long term trends in the energy or 

pitch contour to introduce additional prosodic constraints for word recognition. 

e Phonemic transcriptions in the lexicon and access to them have to be improve or correcied. 

« Alternate models for sequential management should be explored, in place of DP-matching. 

The assumption that adjacent states in a word are independent from each other is 

unsatisfactory for real speech. Similarly, a priori assumptions about the amount of warping 

allowable during DP-matching are unnatural and may impose artificial, rigid constraints. 

e Extensions to continuous speech and speaker-independence should be explored. In view of 

speaker-independence, good initial results have recently been obtained using the CFM 

Objective function [Hampshire 89a] and the Meta-Pie network[Hampshire 89b]. In 

continuous speech, a variety of different acoustic realizations are found for the same 

phoneme symbol. Networks have to be altered to embrace these acoustic variations. Most 

Straight forward is to add tokens extracted from continuous speech to achieve proper 

generalization. Alternatively, it might be possible to partially retrain an existing net, and/or 

apply connectionist glue, to arrive at similar results with only limited additional training data 

and effort. Lastly, more probabilistic output measures (rather than the binary outputs 

currently in use) can be derived from existing nets that not only report the classification 

decision, but also the distances or probabilities from all other classification regions. While 

performance will always degrade if a system trained on one task is applied to another (such 

as going from one speaker, microphone to another or from isolated speech to continuous, 

etc.), results might degrade gracefully in this case, rather than abruptly.
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