
LOW LATENCY ASR FOR SIMULTANEOUS SPEECH TRANSLATION

Thai Son Nguyen, Jan Niehues, Eunah Cho, Thanh-Le Ha
Kevin Kilgour, Markus Müller, Matthias Sperber, Sebastian Stüker, Alex Waibel

Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology
firstname.lastname@kit.edu

ABSTRACT

User studies have shown that reducing the latency of our si-
multaneous lecture translation system should be the most im-
portant goal. We therefore have worked on several techniques
for reducing the latency for both components, the automatic
speech recognition and the speech translation module. Since
the commonly used commitment latency is not appropriate in
our case of continuous stream decoding, we focused on word
latency. We used it to analyze the performance of our cur-
rent system and to identify opportunities for improvements.
In order to minimize the latency we combined run-on decod-
ing with a technique for identifying stable partial hypotheses
when stream decoding and a protocol for dynamic output up-
date that allows to revise the most recent parts of the tran-
scription. This combination reduces the latency at word level,
where the words are final and will never be updated again in
the future, from 18.1s to 1.1s without sacrificing performance
in terms of word error rate.

Index Terms— ASR, Low Latency, Decoding

1. INTRODUCTION

In order for students to be able to follow a lecture by using
our system’s automatic lecture transcription and translation,
the system’s output needs to be as much in sync with the lec-
turer’s speech and presentation as possible. Thus, the speech
and translation components of the systems do not only need
to run in real-time, but must produce output with as low a
latency as possible. The high importance of a low latency
is also the result of a user study and test that we conducted
during real-world operation [1]. This paper addresses the
problems of latency measurement and latency reduction for
our speech transcription component.

For applications that are turn based and operate on shorter
queries, such as Google Voice and Apple Siri, the latency can
be measured at utterance level, i.e. the response time after an
utterances is finished. In these traditional applications users
usually stop and wait for the results. But for our system,
that is acting as an interpreter of a continuous, unsegmented
stream of speech, the situation is different. In our scenario
there is no clear notion of utterance breaks in the speech, and

thus measuring the latency becomes more difficult. The tradi-
tional approach for latency measurements in real-time speech
recognition systems found in literature uses either real-time
factor or delay between the ending time of a segment, e.g. an
utterance, and when the recognition result is available. Such
measurements might capture the overall speed of the under-
lying recognition system but not the real latency as perceived
by the users. To better capture the user experience, latency
measures need to measure the delay as the word sequence
is incrementally constructed—thus our focus on the word la-
tency. Further, it is not sufficient to look at an average of the
overall latency of a whole test set. Instead we need to look at
the variability of the latency and especially at the peak values
in the per-word latency that are caused by problematic pas-
sages in the input audio. These peaks can lead to occasionally
very high local latencies and need to be either avoided or dealt
with appropriately.

In this paper we present two approaches to improve the
latency of our lecture translator’s speech recognition systems
while maintaining its accuracy. The first approach uses a real-
time recognition system, utilising an incremental decoding
framework to decode continuous audio streams, in combina-
tion with a trace back of stable partial hypotheses. This ap-
proach is used to output whole portions, i.e. several words in
sequence, of the final hypothesis as soon as possible.

The second approach enhances the first one in combina-
tion with the display components by allowing to output par-
tial hypotheses not only when they are stable, i.e., when it can
be guaranteed that they will not change anymore in the fu-
ture, but at any time as soon as they are available. In unison
with the display and translation components the recognition
system is then allowed to correct itself later on, i.e. to re-
vise the most recent history of its output, when a different
word sequence has become more probable. Since very often
the system will not need to correct itself, but the early output
turns out to be the stable one, even though this could not have
been guaranteed at the time it was passed on to the translation
and display components, the latency of the system is reduced
further this way.

Both approaches are shown to reduce the latency of the
speech transcription component significantly from 18.1s to
1.1s without trade-off between latency and accuracy.

ar
X

iv
:2

00
3.

09
89

1v
1

 [
ee

ss
.A

S]
 2

2
M

ar
 2

02
0

2. RELATED WORK

On-line speech recognition differs from off-line recognition
in that latency is a crucial issue. Although latency in gen-
eral refers to the response time of the recognition system, it
has been defined in different ways in the past. For instance,
in dialogue systems such as Google Voice [2], latency is the
time from when the user finishes speaking until the search
results appear. In other related work on speech recognition
for broadcast news [3], latency measurement has included the
time for the input to be completed. Note that carefully defin-
ing latency is important because only then we can optimize
our recognition system in a systematic fashion.

A related but different concept, the real-time factor (RTF),
is calculated as the ratio between the utterance duration and
its required decoding time. RTF is a common measure to eval-
uate the speed of a speech recognition system. Although dis-
tinct from the concept of latency, reducing the RTF can lead to
a reduced latency in recognition systems, especially when the
decoding starts after the input is completed. Recently, work to
improve the latency of Apple’s digital assistant Siri by boost-
ing the pruning behaviour of a deep neural network (DNN)
acoustic model [4] resulted in a RTF reduction of 23%. In
these systems, there is usually a trade-off between the RTF
and accuracy. Larger sizes of pruning beams, acoustic models
or language models can lead to a better recognition accuracy
at the cost of computing time.

Some recent papers on incremental speech recogni-
tion [5, 6] have addressed the latency problem in dialogue
systems. The authors conducted a study about the stabil-
ity which defines how much a word or hypothesis portion
remains unchanged over the incremental decoding. Low la-
tency is achieved by early putting out hypotheses when they
reached a certain level of stability. However, no results have
been published for latency measurements in real applications.

Unlike in dialogue systems, there are no markers for ut-
terance boundaries in continuous recognition systems. To the
best of our knowledge, there is not yet a standard approach for
latency measurement for continuous recognition system in the
literature. A study on broadcast news [3] used the delay be-
tween the ending time of a partial output and when the partial
recognition is available. While a study on speech recogni-
tion in meetings [7] measured the latency as the difference
between the end time of a spoken word and the time when the
word was output by the speech recogniser.

3. LATENCY DEFINITION

In order to more precisely discuss different types of delays
and compare them to the previous studies we define and dis-
tinguish: Word latency as the difference between the time a
spoken word and the time when its transcription is available
at the display component. Commitment latency is the differ-
ence between the end time of an audio segment (Section 4.1)

Fig. 1: An example of hypothesis update.

or portion (Section 4.2) and when its transcription is available
at the display component. Word or commitment peak la-
tency is the highest word or commitment latency measured
on a test set.

4. SPEECH RECOGNITION SYSTEM

4.1. Run-on recognition

Run-on recognition overlaps the decoding process with the
audio recording process in order to reduce the latency. Our
system used an adapted version of the run-on decoding de-
scribed in [8]. As in [8] our system uses an audio segmenter
in a separate process for pre-processing which writes the in-
coming audio stream into a shared memory with the decoder,
while at the same time filtering out stretches of silence. We
refer to everything between two stretches of silence as a seg-
ment, which are usually several seconds long but could be as
long as a lecture.

Our recognition system’s search is re-initialised before
processing a new segment and reads the segment’s audio data
from the shared memory while the audio segmenter continues
to write to it. The audio data read in chunks consisting of a
fixed number of frames is incrementally decoded. The system
therefore only has to wait until a chunk of audio is available
in contrast to batch processing which requires complete seg-
ments before decoding.

4.2. Stable hypothesis portion

The decoder tries the to find the most probable hypothesis.
Normally, only at the end of a segment the most probable hy-
pothesis is obtained. However, because waiting for an end-of-
segment detected by the segmenter leads to a high latency, we
use a partial trace-back [8] for finding stable portions of the
hypothesis early. In our design, we detect partial hypotheses
right after a chunk has been processed. Whenever a partial
hypothesis is detected, its stable portion is extracted and de-
livered. The end of the portion will be tracked for the next
detection.

4.3. Adaptive pruning

Although our recognition system runs, on average, signifi-
cantly faster than real time, we frequently encounter indi-
vidual chunks which are processed much slower than real-
time. This happens when encountering chunks that are diffi-

cult to decode, e.g. speech with background music or noises
in which case the beam might fail to prune away competing
paths effectively. This problem results in an unstable response
time and introduces latency peaks. To overcome the problem,
we use an adaptive pruning scheme. When an audio chunk is
processed slower than real-time, we will narrow the beam to
reduce the processing time of the following chunks. Once the
recognition system has caught up again with the live audio the
beam size is set back to its normal size.

4.4. Hypothesis update

Next, we introduce another method that dramatically reduces
the latency. We output probable parts of the unstable hypoth-
esis and present them to the user. Later, the recognizer can
revise its decision and overwrite the previous output if neces-
sary. In this way, the recognition component does not need to
wait until a stable portion or end-of-segment, instead it finds
the most probable hypothesis every iteration of the incremen-
tal decoding, detects and sends the update portions to the dis-
play component.

Figure 1 illustrates how this works in detail. In the ex-
ample, the incremental decoding was performed 7 times and
each time the most probable hypothesis was generated. The
updated parts (italic text) were detected each time and sent to
the display component. At T4, T6 and T7 the system detected
the stable portions (underlined text). These had however al-
ready appeared as part of the unstable hypothesis at much ear-
lier times. At T5 and T7, the hypotheses had new start times
as described in Section 4.2.

Ignoring the words that are later replaced this algorithm
can be seen as inducing a partition of stable hypothesis re-
sulting in an improved latency without any accuracy loss. For
example, only at T6 the system was sure about the stable hy-
pothesis portion “wear a flickering cheap”, but the parts of it
were already sent, “wear” at T1, “a” at T2, “flickering” at T3
and “cheap” at T4. So the latency is again improved.

4.5. Limiting the length of the partial hypothesis

Since neither the segmenter nor the detection of partial hy-
pothesis provide any guarantee regarding a maximal length
of stable portions, we may still encounter situations in which
the system does not output anything for a longer period of
time. To deal with this issue, a threshold can be applied after
which we force an output. If the waiting time exceeds this
threshold, we simply output the most probable hypothesis at
this point and track the end of the hypothesis.

5. EXPERIMENTS

5.1. System description

We evaluate two baseline systems and three variants using
the techniques described above for reducing latency. The first

System Run-on AP PH Update
Baseline-1 7 7 7 7
Baseline-2 3 3 7 7

Portion 3 3 3 7
Update 3 3 3 3

Update-NA 3 7 3 3

Table 1: System summary (AP = Adaptive Pruning, PH =
Partial Hypothesis).

System WER RTF Commit. Latency Word Latency
Baseline-1 18.6 0.51 7.02 18.1
Baseline-2 18.4 0.68 0.92 10.2

Portion 18.5 0.68 1.72 2.10
Update 18.5 0.68 0.83 1.09

Update-NA 18.5 0.71 1.03 1.23

Table 2: Overall performance.

baseline which demonstrates batch processing, waits for com-
pleted segments before performing the whole decoding. The
segments are generated by our integrated energy based seg-
menter. In the second baseline, we replace the batch process-
ing with the run-on decoding described in Section 4.1. The
decoded results are still produced for whole segments. Run-
on decoding is employed in all three of the examined experi-
mental systems.

The first experimental system, labeled Portion, uses the
algorithm from Section 4.2 for finding stable hypothesis por-
tions. The second variant, called Update, applies the update
protocol explained in Section 4.4. Both of these utilise adap-
tive pruning. The third variant, named Update-NA, applies the
update protocol but without adaptive pruning. A chunk size
of 40 frames is used in all run-on systems. Table 1 shows the
summary of the applied techniques.

All systems share the same basic setup. It uses a hy-
brid DNN/HMM acoustic model with log-Mel features. The
acoustic model uses a context dependent phoneme setup with
three states per polyphone. The DNN has an input window of
+-7 frames, followed by 4 layers of 1,600 neurons and a clas-
sification output layer containing just over 8,000 neurons. We
used a 4-gram language model with more than 150 thousand
words for the decoding system.

5.2. Performance evaluation & Latency measurement

The test data used for the evaluation includes 8 TED talks
from the development set of the IWSLT 2015 evaluation cam-
paign. First we evaluate the overall performance by averag-
ing the measurements of WER, RTF, commitment latency and
word latency over all talks. RTF is measured by the ratio
between the processing time and the length of the processed
audio segment. Commitment latency and word latency are
measured as defined in Section 3. Secondly, we measure and
analyze the peaks in latency using both commitment and word
latency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

P
er

ce
nt

 o
f w

or
ds

 [%
]

Word latency [s]

Portion
Update

Fig. 2: Word latency distribution.

All audio is fed into the ASR in real-time, as if it were
being recorded by a microphone. The display component re-
ceives the sequence of uttered words and measures at when
the words arrive. The RTF is measured directly by the ASR
component, while latency is measured on the display side.

For the systems that send updated parts, we do not con-
sider the latency of the intermediate words which are later
replaced. Instead, we measure the latency to the time when
a word has been updated the last time. We can then directly
compare these measurements to the other systems.

6. RESULTS

6.1. Overall performance

Table 2 shows the performance of all systems on all test talks
in terms of overall WER as well as average RTF, commitment
latency and word latency.

All the systems have similar WER performance. This
confirms that our implemented algorithms did not change the
accuracy. The batch processing Baseline-1 achieves a lower
RTF than the other systems that employ run-on processing.
This is because it is less efficient for the DNN acoustic model
to process multiple smaller chunks than a few large chunks.

Despite its low RTF Baseline-1 has a large commitment
latency since in the batch processing this latency mostly re-
flects the processing time of the segments. Portion has a
larger commitment latency than Baseline-2 and Update since
it needs to wait until the output can be guaranteed to be sta-
ble. Baseline-2 demonstrates that we can significantly reduce
the commitment latency by following the run-on design. Note
also that commitment latency, word latency, and RTF are only
loosely correlated, indicating that commitment latency and
RTF are not sufficient for evaluating the latency of the con-
tinuous recognition systems, and justifying our introduction
of word latency.

Baseline-2 is especially interesting in this regard, because
it has a low commitment latency but a very high word latency.
This demonstrates the need for committing recognition results
as quickly as possible in order to achieve a low latency. In this
sense, Portion and Update perform better than the others.

System Max Commit. Latency Max Word Latency
Baseline-1 93.4 230
Baseline-2 2.7 145

Portion 21.8 23.0
Update 2.7 9.0

Update-NA 19.3 23.5

Table 3: Peak latency.

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20 22 24

W
E

R
 [%

]

Word latency [s]

unlimitted

5s

4s
3s

2s

1s

Fig. 3: WER vs. Peak Latency.

As a more detailed analysis, we provide the statistics in
Figure 2. It shows the latency distribution of all uttered words
in the test set. We only focus on Portion and Update. Accord-
ing to the diagram, most spoken words are recognised within
2 seconds in Update, and 3.5 seconds in Portion.

6.2. Peak latency

Looking only at the overall latency, the difference in latency
between Update and Update-NA appears small. However, in
practice we noticed that Update-NA has a much higher larger
peak latency. Table 3 shows the peak latency of all systems.
Portion required up to 23 seconds to identify a stable hypoth-
esis while the worst word for Update was displayed after only
9 seconds. Update-NA has a similar overall latency as Update,
but its peak latency is much worse. The results of Baseline-2
emphasises the need for word latency measurements.

To explore whether the peak latency can be further im-
proved, we performed an experiment by applying length
limitings techniques from Section 4.5 to Portion. Figure 3
presents the accuracy and the peak latency of the system
at different maximal threshold settings from unlimited over
5 s down to 1 s. We can see that the system imposing a 3s
threshold hardly impacts its accuracy.

7. CONCLUSION

We have presented an evaluation for exploring and analysing
different problems of latency and latency measurement in our
continuous speech recognition system. We have also pre-
sented several techniques to deal with these latency problems.
The latency improvement not only enhances the usability of
our lecture translation system, but also enables the transcrip-
tions to be in sync with the slides and gestures of the lecturer.

8. REFERENCES

[1] Markus Müller, Sarah Fünfer, Sebastian Stüker, and Alex
Waibel, “Evaluation of the kit lecture translation system,”
in Proc. of LREC, 2016.

[2] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays,
Bill Byrne, Ciprian Chelba, Mike Cohen, Maryam Garret,
and Brian Strope, “Your Word is my Command: Google
search by voice: A case study,” in Advances in Speech
Recognition, pp. 61–90. Springer, 2010.

[3] Murat Saraclar, Michael Riley, Enrico Bocchieri, and
Vincent Goffin, “Towards automatic closed captioning:
low latency real time broadcast news transcription,” in
Proc. of INTERSPEECH, 2002.

[4] Matthias Paulik, “Improvements to the pruning behavior
of dnn acoustic models,” in Proc. of INTERSPEECH,
2015.

[5] Ian McGraw and Alexander Gruenstein, “Estimating
word-stability during incremental speech recognition,”
Training, vol. 17, no. 27,327, pp. 6–4, 2011.

[6] Ethan Selfridge, Iker Arizmendi, Peter A Heeman, and
Jason D Williams, “Stability and accuracy in incremental
speech recognition,” in Proc. of SIGDIAL, 2011.

[7] Takaaki Hori, Shoko Araki, Takuya Yoshioka, Masakiyo
Fujimoto, Shinji Watanabe, Takanobu Oba, Atsunori
Ogawa, Kazuhiro Otsuka, Dan Mikami, Keisuke Ki-
noshita, et al., “Low-latency real-time meeting recog-
nition and understanding using distant microphones and
omni-directional camera,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 20, no. 2, pp.
499–513, 2012.

[8] Christian Fügen, A system for simultaneous translation of
lectures and speeches, Ph.D. thesis, Universität Karlsruhe
(TH), 2008.

	1 Introduction
	2 Related work
	3 Latency definition
	4 Speech recognition system
	4.1 Run-on recognition
	4.2 Stable hypothesis portion
	4.3 Adaptive pruning
	4.4 Hypothesis update
	4.5 Limiting the length of the partial hypothesis

	5 Experiments
	5.1 System description
	5.2 Performance evaluation & Latency measurement

	6 Results
	6.1 Overall performance
	6.2 Peak latency

	7 Conclusion
	8 References

