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We present the "Multi-State Time Delay Neural Network" (MS-TDNN) as an 
extension of the TDNN to robust word recognition. Unlike most other hybrid 
methods. the MS-TDNN embeds an alignment search procedure into the con­
nectionist architecture. and allows for word level supervision. The resulting 
system has the ability to manage the sequential order of subword units. while 
optimizing for the recognizer performance. In this paper we present extensive 
new evaluations of this approach over speaker-dependent and speaker-indepen­
dent connected alphabet. 

1 INTRODUCTION 

Classification based Neural Networks (NN) have been successfully applied to phoneme 
recognition tasks. Extending those classification capabilities to word recognition is an 
important research direction in speech recognition. However. connectionist architectures 
do not model time alignment properly. and they have to be combined with a Dynamic Pro­
gramming (DP) alignment procedure to be applied to word recognition. Most of these 
"hybrid" systems (Bourlard. 1989) take advantage of the powerful and well tried probabi­
listic formalism provided by Hidden Markov Models (HMM) to make use of a reliable 
alignment procedure. However. the use of this HMM formalism strongly limits one's 
choice of word models and classification procedures. 

MS-TDNNs. which do not use this HMM formalism. suggest new ways to design speech 
recognition systems in a connectionist framework. Unlike most hybrid systems where 
connectionist procedures replace some parts of a pre-existing system. MS-TDNNs are 
designed from scratch as a global Neural Network that performs word recognition. No 
bootstrapping is required from an HMM. and we can apply learning procedures that cor­
rect the recognizer's errors explicitly. These networks have been successfully tested on 
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difficult word recognition tasks. such as speaker-dependent connected alphabet recogni­
tion (Haffner et al. 1991a) and speaker-independent telephone digit recognition (Haffner 
and Waibel. 1991b). Section 2 presents an overview of hybrid Connectionist/HMM archi­
tectures and training procedures. Section 3 describes the MS-TDNN architecture. Section 
4 presents our novel training procedure. In section 5. MS-TDNNs are tested on speaker­
dependent and speaker-independent continuous alphabet recognition. 

2 HYBRID SYSTEMS 

HMMs are currently the most efficient and commonly used approach for large speech rec­
ognition tasks: their modeling capacity. however limited, fits many speech recognition 
problems fairly well (Lee. 1988). The main limit to the modelling capacity of HMMs is 
the fact that trainable parameters must be interpretable in a probabilistic framework to be 
reestimated using the Baum-Welch algorithm with the Maximal Likelihood Estimation 
training criterion (MLE). 

Connectionist learning techniques used in NNs (generally error back-propagation) allow 
for a much wider variety of architectures and parameterization possibilities. Unlike 
HMMs. NNs model discrimination surfaces between classes rather than the complete 
input/output distributions (as in HMMs) : their parameters are only trained to minimize 
some error criterion. This gain in data modeling capacity, associated with a more discrim­
inant training procedure, has permitted improved performance on a number of speech 
tasks. especially those in which modeling sequential information is not necessary. For 
instance. Time Delay Neural Networks have been applied, with high performance, to pho­
neme classification (Waibel et al. 1989). To extend this performance to word recognition, 
one has to combine a front-end NN with a procedure performing time alignment, usually 
based on DP. A variety of alignment procedures and training methods have been proposed 
for those "hybrid" systems. 

2.1 TIME ALIGNMENT 

To take into account the time distortions that may appear within its boundaries, a word is 
generally modeled by a sequence of states (l •...• s .... ,N) that can have variable durations. 
The score of a word in the vocabulary accumulates frame-level scores which are a func­
tion of the output Y(t) = (Y1(t), ...• Y.,(t» of the front end NN 

(1) 

The DP algorithm finds the optimal alignment {T I' ... , TN + I} which maximizes this word 
score. A variety of Score functions have been proposed for Eq.(l). They are most often 
treated as likelihoods, to apply the probabilistic Viterbi alignment algorithm. 

2.1.1 NN outputs probabilities 

Outputs of classification based NNs have been shown to approximate Bayes probabilities, 
provided that they are trained with a proper objective function (Bourlard, 1989). For 
instance, we can train our front-end NN to output, at each time frame, state probabilities 
that can be used by a Viterbi alignment procedure (to each state s there corresponds a NN 
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output irs)~. Eq.(I) gives the resulting word log (likelihood) as a sum of frame-levellog(­
likelihoods) which are written1: 

~ 

Scores (Y(t» = log (Yi(s)(t» (2) 

2.1.2 Comparing NN output to a reference vector 

The front end NN can be interpreted as a system remapping the input to a single density 
continuous HMM (Bengio. 1991). In the case of identity covariance matrices, Eq.(l) gives 
the log(likelihood) for the k-th word (after Viterbi alignment) as a sum of distances 
between the NN frame-level output and a reference vector associated with the current 
state2. 

Scores (Y{t» = II yet) - yS l1 2 (3) 

Here. the reference vectors (ft. ... , r, ... , yN) correspond to the means of gaussian PDFs, 
and can be estimated with the Baum-Welch algorithm. 

2.2 TRAINING 

The first hybrid models that were proposed (Bourlard. 1989; Franzini, 1991) optimized the 
state-level NN (with gradient descent) and the word-level HMM (with Baum-Welch) sep­
arately. Even though each level of the system may have reached a local optimum of its 
cost function, training is potentially suboptimal for the given complete system. Global 
optimization of hybrid connectionist/HMM systems requires a unified training algorithm, 
which makes use of global gradient descent (Bridle. 1990). 

3 THE MS-TDNN ARCHITECTURE 

MS-TDNNs have been designed to extend TDNNs classification performance to the word 
level. within the simplest possible connectionist framework. Unlike the hybrid methods 
presented in the previous section, the HMM formalism is not taken as the underlying 
framework here. but many of the models developed within this formalism are applicable 
to MS-TDNNs. 

3.1 FRAME·LEVEL TDNN ARCHITECTURE 

All the MS-TDNNs architectures described in this paper use the front-end TDNN archi­
tecture (Waibel et al. 1989), shown in Fig.l. at the state level. Each unit of the first hidden 
layer receives input from a 3-frame window of input coefficients. Similarly, each unit in 
the second hidden layer receives input from a 5-frame window of outputs of the first hid­
den layer. At this level of the system (2nd hidden layer). the network produces, at each 
time frame. the scores for the desired phonetic features. Phoneme recognition TDNNs are 
trained in a time-shift invariant way by integrating over time the output of a single state. 

3.2 BASELINE MS· TDNN 

With MS-TDNNs, we have extended the formalism of TDNNs to incorporate time align­
ment. The front-end TDNN architecture has I output units, whose activations (ranging 

1. State prior probabilities would add a constant tenn to Eq.(2) 

2. State transition probabilities add an offset to Eq.(3) 
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from 0 to 1) represent the trame-level scores. To each state s corresponds a TDNN output 
i(s). Different states may share the same output (for instance with phone models). The DP 
procedure, as described in Eq.(1), determines the sequence of states producing the maxi­
mum sum of activations3: 

Scores(Y(t» = Yj(s) (4) 

The frame-level score used in the MS-TDNN combines the advantages of being simple 
with that of having a formal description as an extension of the TDNN accumulation pro­
cess to multiple states. It becomes possible to model the accumulation process as a con­
nectionist word unit that sums the activations from the best sequence of incoming state 
units, as shown in Fig.2. This is mostly useful during the back-propagation phase: at each 
time frame, we imagine a virtual connection between the active state unit and the word 
unit, which is used to backpropagate the error at the word level down to the state level. 4 

3.3 EXTENDING MS· TDNNs 

In the previous section, we presented the baseline MS-TDNN architecture. We now 
present extensions to the word-level architecture, which provide additional trainable 
parameters. Eq.(4) is extended as: 

Scores(Y(t» = Weight;· Y;(s) +Bias j (5) 

3. This equation is not very different from Eq.(2) presented in the previous section, however, all 
attempts to use log(Y,{t)) instead of Y,{t) have resulted in unstable learning runs, that have never con· 
verged properly. During the test phase, the two approaches may be functionally not very different. 
Outputs that affect the error rate in a critical way are mostly those of the correct word and the best 
incorrect word, especially when they are close. We have observed that frame level scores which play 
a key role in discrimination are close to 1.0: the two scores become asymptotically equivalent (less 
1): log(Y,(t» - Y,{t) - 1. 

4. The alignment path found by the DP routine during the forward phase is "frozen", so that it can 
be represented as a connectionist accumulation unit during the backward phase. The problem is that, 
after modification of the weights, this alignment path may no longer be the optimal one. Practical 
consequences of this seem minimal. 
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Weight; allows to weight differently the importance of each state belonging to the same 
word. We do not have to assume that each part of a speech pattern contains an equal 
amount of infonnation. 

Bias; is analog to a transition log(probability) in a HMM. 

However. we have observed that a small variation in the value of those parameters may 
alter recognition perfonnance a lot. The choice of a proper training procedure is critical. 
Our gradient back-propagation algorithm has been selected for its efficient training of the 
parameters of the front-end TDNN ; as our training procedure is global. we have also 
applied it to train Weight; and Bias;. but with some difficulty. 

In section 4.1, we show that they are useful to shift the word scores so that a sigmoid func­
tion separates the correct words (output 1) properly from the incorrect ones (output 0). 

3.4 SEQUENCE MODELS 

We design very simple state sequence models by hand that may use phonetic knowledge 
(phone models) or may not (word models). 
Phone Models: The phonetic representation of a word is transcribed as a sequence of 

states. As an example shown in Fig.3, the letter 'p' combines 3 phone units. P captures 
the closure and the burst of this stop consonant. P-IY is a co-articulation unit. The phone 
IY is recognized in a context independent way. This phone is shared with all the other e­
set letters. States are duplicated to enforce minimal phone durations. 

0+g.~@.0+~ 
Figure 3 Phone Model for 'p' 

Word Models: No specific phonemic meaning is associated with the states of a word. 
Those states cannot be shared with other words. 

Transition States: One can add specialized transition units that are trained to detect this 
transition more explicitly: the resulting stabilization in segmentation yields an increase 
in performance. This method is however sensitive to a good bootstrapping of our system 
on proper phone boundaries. and has so far only been applied to speaker dependent 
alphabet recognition. 

4 TRAINING 

In many speech recognition systems. a large discrepancy is found between the training 
procedure and the testing procedure. The training criterion. generally Maximum Likeli­
hood Estimation. is very far from the word accuracy the system is expected to maximize. 
Good perfonnance depends on a large quantity of data, and on proper modeling. With MS­
TDNNs. we suggest optimization procedures which explicitly attempt to minimize the 
number of word substitutions; this approach represents a move towards systems in which 
the training objective is maximum word accuracy. The same global gradient back-propa­
gation is applied to the whole system, from the output word units down to the input units. 
Each desired word is associated with a segment of speech with known boundaries. and this 
association represents a learning sample. The DP alignment procedure is applied between 
the known word boundaries. We describe now three training procedures we have applied 
to MS-TDNNs. 
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4.1 STANDARD BACK-PROPAGATION WITH SIGMOIDAL OUTPUTS 

Word outputs Q1 = ftW 1 . 0 1 + B 1) are compared to word targets (J for the desired word, 
o for the other words), and the resulting error is back-propagated. Ok is the OP sum given 
by Eq.(1) for the k-th word in the vocabulary.jis the sigmoid function, Wk gives the slope 
of the sigmoid and B k is a bias term, as shown in Fig.4. They are trained so that the sig­
moid function separates the correct word (Output 1) form the incorrect words (Output 0) 
properly. When the network is trained with the additional parameters of Eq.(5),Weighti and 
Biasi can account for these sigmoid slope and bias. 

MS-TDNNs are applied to word recognition problems where classes are highly confus­
able. The score of the best incorrect word may be very close to the score of the correct 
word: in this case, the slope and the bias are parameters which are difficult to tune, and the 
learning procedure has problems to attain the 0 and 1 target values. To overcome those dif­
ficulties, we have developed new training techniques which do not require the use of a sig­
moid function and of fixed word targets. 

f I I I 
Other word scores 

S.l9pe 

A p==: I 
best 
incorrect bias 

correct 

Fig.4. The sigmoid Function 

4.2 ON-LINE CORRECTION OF CLASSIFICATION ERRORS 

The testing procedure recognizes the word (or the string of words) with the largest output, 
and there is an error when this is not the correct word. As the goal of the training proce­
dure is to minimize the number of errors, the "ideal" procedure would be, each time a clas­
sification error has occurred, to observe where it comes from, and to modify the 
parameters of the system so that it no longer happens. 

The MS-TDNN has to recognize the correct word CoWo. There is a training error if, for 
an incorrect word InWo, one has O/nWo > OCowo- m. No sigmoid function is needed to 
compare these outputs, m is an additional margin to ensure the robustness of the training 
procedure. Only in the event of a training error do we modify the parameters of the MS­
TONN. The word targets are moving (for instance, the target score for an incorrect word is 
OCowo- m) instead of fixed (0 or 1). 

This technique overcomes the difficulties due to the use of an output sigmoid function. 
Moreover, the number of incorrect words whose output is actually modified is greatly 
reduced: this is very helpful in training under-represented classes, as the numbers of posi­
tive and negative examples become much more balanced. 

Compared to the more traditional training technique (with a sigmoid) presented in the pre­
vious section, large increases in training speed and word accuracy were observed. 

4.3 FUZZY WORD BOUNDARIES 

Training procedures we have presented so far do not take into account the fact that the 
sample words may come from continuous speech. The main difficulty is that their straight­
forward extension to continuous speech would not be computationally feasible, as the set 
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of possible training classes will consist of all the possible strings of words.We have 
adopted a staged approach: we modify the training procedure, so that it matches the con­
tinuous recognition conditions more and more closely, while remaining computationally 
feasible. 

The first step deals with the problem of word boundaries. During training, known word 
boundaries give additional information that the system uses to help recognition. But this 
information is not available when testing. To overcome this problem when learning a cor­
rect word (noted CoWo). we take as the correct training token the triplet PreWo-CoWo­
NexWo (PreWo is the preceding correct word, NexWo is the next correct word in the sen­
tence). All the other triplets PreWo-InWo-NexWo are considered as incorrect. These trip­
lets are aligned between the beginning known boundary of PrevWo and the ending known 
boundary of NexWo. What is important is that no precise boundary information is given 
forCoWo. 

The word classification training criterion presented here only minimizes word substitu­
tions. In connected speech. one has to deal with deletions and insertions errors: procedures 
to describe them as classification errors are currently being developed. 

5 EXPERIMENTS ON CONNECTED ALPHABET 

Recognizing spoken letters is considered one of the most challenging small-vocabulary 
tasks in speech recognition. The vocabulary, consisting of the 26 letters of the American 
English alphabet, is highly confusable, especially among subsets like the E-set 
('B' :C' :D' :E' :G' :P' :T' :V' :Z') or ('M', 'N'). In all experiments. as input parameters, 
16 filterbank melscale spectrum coefficients are computed at a lOmsec frame rate. Phone 
models are used. 

5.1 SPEAKER DEPENDENT ALPHABET 

Our database consists of 1000 connected strings of letters, some corresponding to gram­
matical words and proper names, others simply random. There is an average of five letters 
per string. The learning procedure is described in §4.1 and applied to the extended MS­
TDNN (§3.3), with a bootstrapping phase where phone labels are used to give the align­
ment of the desired word. During testing, time alignment is performed over the whole sen­
tence. A one-stage DP algorithm (Ney, 1984) for connected words (with no grammar) is 
used in place of the isolated word DP algorithm used in the training phase. The additional 
use of minimal word durations, word entrance penalties and word boundary detectors has 
reduced the number of word insertions and deletions (in the DP algorithm) to an accept­
able level. On two speakers, the word error rates are respectively 2.4% and 10.3%. By 
comparison, SPHINX, achieved error rates of 6% and 21.7%, respectively, when context­
independent (as in our MS-TDNN) phone models were used. Using context-dependent 
models (as described in Lee, 1988), SPHINX performance achieves 4% and 16.1% error 
rates, respectively. No comparable results yet exist for the MS-TDNN for this case. 

5.2 SPEAKER INDEPENDENT ALPHABET (RMspell) 

Our database, a part of the DARPA Resource Management database (RM), consists of 
120 speakers, spelling about 15 words each. 109 speakers (about 10,000 spelled letters) 
are used for training. 11 speakers (about 1000 spelled letters) are used for testing. 57 
phone units. in the second hidden layer. account for the phonemes and the co-articulation 
units. We apply the training algorithms described in §4.2 and §4.3 to our baseline MS-
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TDNN architecture (§3.2), without any additional procedure (for instance, no phonetic 
bootstrapping). An important difference from the experimental conditions described in the 
previous section is that we have kept training and testing conditions exactly similar (for 
instance, the same knowledge of the boundaries is used during training and testing). 

Table 1: Alphabet classification errors (we do not allow for insertions or deletions errors). 
Algorithm %Error 

Known Word Boundaries (§4.2) 5.7% 
Fuzzy Word Boundaries (§4.3) 6.5% 

6 SUMMARY 
We presented in this paper MS-TDNNs, which extend TDNNs classification performance 
to the sequence level. They integrate the DP alignment procedure within a straightforward 
connectionist framework. We developed training procedures which are computationally 
reasonable and train the MS-TDNN in a global way. Their only supervision is the minimi­
zation of the recognizer's error rate. Experiments were conducted on speaker independent 
continuous alphabet recognition. The word error rates are 5.7% with known word bound­
aries and 6.5% with fuzzy word boundaries. 
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