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Abstract

In this paper, we report on communication ex-
periments conducted in the summer of 2022
during a deep dive to the wreck of the Titanic.
Radio transmission is not possible in deep sea
water, and communication links rely on sonar
signals. Due to the low bandwidth of sonar sig-
nals and the need to communicate readable data,
text messaging is used in deep-sea missions. In
this paper, we report results and experiences
from a messaging system that converts speech
to text in a submarine, sends text messages to
the surface, and reconstructs those messages as
synthetic lip-synchronous videos of the speak-
ers. The resulting system was tested during an
actual dive to Titanic in the summer of 2022.
We achieved an acceptable latency for a system
of such complexity as well as good quality. The
system demonstration video can be found at the
following link: https://youtu.be/C4lyM86-5Ig.

1 Introduction

For several years, video conferencing tools have
found applications across different domains and
have been utilized for a variety of purposes. The
pandemic in 2020 resulted in a substantial increase
in their usage, particularly in the realms of business
and education, as the employees have been working
from home and students have been participating in
the lectures online. Yet the application scope of
the video communication systems could be beyond
these scenarios. Such systems prove invaluable in
facilitating natural communication under challeng-
ing conditions where conventional communication
is restricted, such as deep-sea expeditions or lack-
ing a stable broadband internet connection. By
enabling the generation of audio and video, users
can engage in seamless communication.

The first system proposed in an early work,
known as the face translator (Ritter et al., 1999),

*The authors contributed equally and are listed in alpha-
betical order.

faced several challenges, such as a lack of smooth-
ness and a deficient speaker adaptation. Subse-
quently, the technologies within the submodules
have been sufficiently enhanced to build an ef-
ficient system. One recent work (Waibel et al.,
2023) benefited from this progress in the litera-
ture and presented a system that contains auto-
matic speech recognition (ASR), machine transla-
tion (MT), text-to-speech (TTS), voice conversion,
and audio-driven talking face generation. In our
work, however, the system is more complex as it
adds speaker segmentation & filtering as well as
text segmentation (see Figure 1). Moreover, we
have a more convenient TTS module that considers
the speaker embedding instead of using separate
voice conversion modules that tend to cause per-
formance degradation. Last but not least, we also
accommodate the extreme conditions that our sys-
tem faces and the corresponding communication
via the sonar system, providing a system with real-
time performance.

In this paper, we investigate the aforementioned
scenario by developing a comprehensive system
comprising speaker filtering and segmentation,
ASR, text segmentation, multi-speaker TTS, and
audio-driven talking face generation modules. The
use-case scenario of this system is as follows: as-
suming the existence of multiple speakers and their
pre-recorded videos, the system, upon the initia-
tion of speakers’ speech, distinguishes between
speakers and their respective utterances. Following
this phase, the ASR transcribes the text, and each
segmented text derived from a text segmentation
component, undergoes processing by the TTS mod-
ule to generate synthesized speech. As transmitting
text proves to be the most straightforward and cost-
effective method in extreme conditions, our system
facilitates communication solely through textual
data. In this way, the system allows to speakers and
listeners engage in conversation and watch videos
independently on their respective ends. In the last
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Figure 1: Illustration of the proposed system: While the submersible side has the ASR, speech segmentation and
filtering systems along with the text segmenter, we have TTS and talking face generation modules on the ship.
Communication between the submersible and the ship was done by transmitting the text via sonar communication.

step, the generated audio is fed into the talking face
generation module. This step aims to synthesize
a video wherein the lip movements are precisely
synchronized with the given audio input.

We conducted tests of our system in an excep-
tionally challenging real-world scenario. While
one part of the system (ASR, speaker filtering and
segmentation) operated within a submersible that
had dived to the Titanic wreck, the rest of the sys-
tem was running on the mother ship. Since radio
signals are weakened in saltwater, straightforward
communication with audio and video is not possi-
ble. The only way of communication is through the
sonar system by transmitting text data. Therefore,
our system in the submersible captures audio from
the speakers, obtains transcriptions after speaker
filtering and segmentation, and transmits the tex-
tual output to the ship via sonar communication.
The system on the ship then processes this text
data to generate audio with the same character-
istics as the speakers, along with a video of the
speaker featuring adapted lip movements. In this
way, although the only communication between
the mother ship and the submersible is text-based,
individuals on the ship and in the submersible can
experience almost real-time video communication.
This enhances the user experience and provides a
more efficient mode of communication compared
to conventional text-based communication. We

conducted experiments on our test set to measure
the latency as well as evaluate the performance.
According to the experimental results, our system
achieves acceptable latency and good audio & vi-
sual quality.

2 System and Architecture

Our system’s pipeline consists of five different parts
(see Figure 1). First, a speaker filtering and segmen-
tation is calculated, i.e., which person is speaking
at which time. Second, an ASR model is run, tran-
scribing the given audio. After that, a text segmen-
tation model that segments the output of the ASR
model follows. Then, the TTS system converts the
text into speech (with the correct voice), and af-
terward, the face-dubbing component converts the
speech to a corresponding video. All components
run in online low-latency mode.

2.1 Speaker Filtering and Segmentation
Module

Enabling a meeting-like communication between
persons participating in a submersible expedition
scenario has its unique challenges. Given the close
proximity of participants in a submersible setup,
where overlapping speech occurs due to the con-
fined space and smooth interior, such conditions
make it essential to train a model to classify the
current speech by the person wearing the head-



set. Accurately distinguishing between the multiple
speakers is crucial for reconstructing the intended
dialogue on the surface. To curate appropriate data
to train such a model, we recorded monologues
and multi-speaker dialogues involving up to five
participants. At least three participants would wear
a microphone. Afterwards, we used a speaker di-
arization tool (Bredin and Laurent, 2021; Bredin
et al., 2020) to get a segmentation and speaker an-
notation (speaker1, ..., speakern).

Despite using close-speaking microphones,
background speech was occasionally picked up,
causing the tool to misidentify new speakers. To
address this, we manually reviewed each micro-
phone recording, aligning identified speaker IDs
with the actual speakers. We explored two filtering
options: training a model to distinguish between
the microphone wearer and nearby speakers and
training a model to identify the speaker wearing
the microphone.

We use the CNN respectively TDNN (Waibel
et al., 1989) layers of wav2vec 2.0 (Baevski et al.,
2020) and fine-tuned them to predict the speaker
for each frame. Based on this information, we gen-
erate speech segments by a windowing approach:
If the number of frames of one window classified as
one speaker exceeds a certain threshold, a speech
segment of this speaker is started. This speech seg-
ment ends if the number of frames classified as this
speaker falls short of another threshold. The speech
segments are then given to the ASR.

2.2 ASR Module

For the ASR component, we use an end-to-end
encoder-decoder model with memory component
(Huber et al., 2021) to transcribe the audio. With
the memory component, it is possible to instantly
add new words during deployment without retrain-
ing the system. This is important since we have to
deal with a special vocabulary.

Since we run our model in online low latency
mode, the model has to be able to detect when some
output is stable and does not change anymore. For
this stability detection, we use a method based on
local agreement (Polák et al., 2022): The idea is
for a certain chunk size C to decode the first chunk,
then re-decode the first two chunks, and the com-
mon prefix of both transcripts is then considered as
stable. In the next step, the first three chunks are
decoded, where the stable prefix is forced, and the
next common prefix is considered stable.

2.3 Text Segmentation Module

The text segmentation component is the interme-
diate layer between the ASR system and the TTS
component. The overarching goal is to balance the
two different objectives: low latency and quality.
The ASR component continuously outputs incom-
plete chunks of text (e.g., one or a few words),
while the TTS component produces the best re-
sults when it is given whole sentences. We use a
number of heuristics to achieve controllability and
balance. For once, incoming chunks are merged in
a buffer while being scanned and split for punctu-
ation marks. In the case of terminal punctuation
marks (.!?), the text can be directly mediated to
the TTS. Non-terminal punctuation marks such as
a comma are also used to allow more reasonable
splits, such as half sentences. In the absence of
a terminal punctuation mark, we use a number of
hard and soft limits in terms of text length in the
buffer and latency such that the system never waits
for too much text or for a longer period of time be-
fore mediating the ASR output to the TTS system.

Separately, we use an efficient and low-latency
sentence transformer (Reimers and Gurevych,
2019) based on MiniLM (Wang et al., 2020) to
cluster sentences into different categories, such as
small talk, system logs, top side communication,
and observations. Due to a lack of data, we initially
refrained from training a separate classifier and
instead manually assigned a number of sentences
from the available transcript of a dive to each clus-
ter. We embed these sentences using the aforemen-
tioned sentence transformer and index them using
FAISS (Johnson et al., 2019). With this setup in
place, incoming sentences can now efficiently be
assigned to one cluster. This approach has several
use cases such as creating separate logs for small
talk, research and missions critical communication.

2.4 Multi-Speaker TTS Module

In order to produce speech for multiple voices, we
use YourTTS (Casanova et al., 2022). YourTTS is
a conditional variational autoencoder augmented
with the normalizing flow. YourTTS is an improved
version of VITS with several modifications and
enhancements for zero-shot multispeaker. It is one
of the few TTS models that are fully end-to-end,
non-autoregressive, and low-latency. The YourTTS
is trained in three languages (English, Portuguese,
and French), but our YourTTS only focuses on
English.



Our TTS receives a stable text from the text seg-
mentation component and corresponding speaker id
from the speaker filtering component to synthesize
waveform audio. The output audio has the voice
characteristic of the input voice. Then, we send the
output audio to the face-dubbing component.

2.5 Talking Face Generation Module
To synthesize the face with synchronized lips with
respect to the audio, we address the task as 2D
audio-driven talking face generation (Prajwal et al.,
2020; Cheng et al., 2022; Shen et al., 2023; Wang
et al., 2023; Zhong et al., 2023; Yaman et al.,
2024b,a). We build the model based on a condi-
tional generative adversarial network (conditional
GAN — cGAN) (Goodfellow et al., 2020; Mirza
and Osindero, 2014). Our model takes an audio
segment and a set of face images as input to syn-
thesize the talking face to provide consistent lip
movements based on the audio input. In our gener-
ator G, there is an audio encoder, identity encoder,
face encoder, and face decoder to perform the gen-
eration task. While the audio encoder processes
the Mel spectrogram of the audio segment, the face
encoder takes the face image of the subject belong-
ing to the current time step. The bottom half of
this image is masked, as we aim to synthesize that
part with the proper lip movement. Because of this
masking strategy, the identity encoder takes refer-
ence face images belonging to the same subject
but from another video or another time step of the
same video to preserve identity. In the end, the
face decoder gets the concatenation of the three en-
coders’ features and generates the face image with
correct lip movements while preserving the iden-
tity with the help of the identity encoder and the
original pose through the face encoder. Please note
that we provide five consecutive frames to the iden-
tity and face encoders by concatenating them in
order to consider temporal consistency. Moreover,
our generator has residual connections between the
reciprocal layers of the face & identity encoders
and face decoder to preserve the identity and pose
information from the input images. In the discrimi-
nator, we employ a binary classifier to downscale
the input image and produce real and fake outputs
to calculate the adversarial loss.

To train our network, we utilize a large-scale
Oxford-BBC Lip Reading Sentence 2 (LRS2)
dataset (Afouras et al., 2018), and we follow the
proposed data split during the experiments. We
train our generator and discriminator with adver-

sarial loss (Goodfellow et al., 2020) and employ
perceptual loss (Johnson et al., 2016) and pixel-
level reconstruction loss for the quality. For the
audio-lip synchronization, we utilize synchroniza-
tion loss that was proposed in (Prajwal et al., 2020).
During the inference, we benefit from a face de-
tection model (Bulat and Tzimiropoulos, 2017) to
detect faces from a video and then feed our talking
face generation model with the detected faces.

3 Setup

3.1 Submersible Side

We used an Asus Zephyrus Laptop inside the sub-
mersible with NVIDIA GeForce RTX 3060 GPU.
For battery saving, our initial idea was to run our
ASR system with a CPU only. However, our aim
of running the whole pipeline as much as possible
in real-time, the accumulating delay in generat-
ing transcriptions utilizing CPU was unsatisfactory.
Thus, we decided to use a GPU instead. Using GPU
had the consequence that the battery would run out
quite fast. We adjusted some system settings to
reduce the general battery usage. Due to security
concerns, we could not use the submersible bat-
tery or any external additional batteries, and our
system only ran for 3 to 4 hours, during which
the scientists were around the wreck doing their
research. As our models are written with PyTorch
we used Python 3 to enable TCP communication
with the submersible communication system. We
equipped both participants with a close-speaking
microphone and selected them to be recorded in
our application. A local WiFi network inside the
submersible enables communication between dif-
ferent hardware components. The sonar system
was also connected to the WiFi environment and
was listening on a TCP port, sending everything
it received to the top-side ship. Thus, we used
WiFi and sent the resulting transcripts with other
information like speaker, start time, and end time
to the appropriate IP address and port, and thus,
we were able to move information of the conver-
sation happening in the submersible to the ship
above. Due to the above-mentioned battery issues,
we also developed an Android application using
the Flutter framework. Users could select their re-
spective user name and write the text they wish to
be synthesized into the application. This way, we
skipped the speech recognition part and simulated
the video conference using direct text message in-
puts from respective users. The sample image from
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Figure 2: Sample images during the usage of the system. (a) Speakers are inside the submersible under the ocean
near the Titanic wreck to perform exploration. (b) Audience on the mother ship is communicating via our interface.
Our system can provide realistic communication, although the only real communication between the submersible
and the ship is just text transmission.

the submersible can be found in Figure 2-(a).

3.2 Top Side (Mother Ship)
On the top side, there was another local WiFi setup
connecting all devices with each other. We con-
nected a laptop to the main computer via serial
cable and read the sonar signal from a specific port.
Afterward, the data was sent to the Python script
filtering our data, which is part of the conversation
from other data. This conversational data was then
queued into a Redis queue, and the TTS, voice
conversion and lip synchronization were done. In
contrast to conventional systems that rely on secure
external connections such as (Huber et al., 2023;
Ugan et al., 2023), we adopt a simplified approach
due to the unique nature of this system, which is
entirely isolated from the internet and operates ex-
clusively within an internal network.

The interface can be seen in Figure 3, used to
demonstrate the received messages and our sys-
tem’s output. On the left, we have shown generated
videos of two speakers, and on the right side, we
visualized received text messages. While showing
the generated videos, when no new text message
was received from a submersible, we generated

silent videos of speakers to provide persuasiveness
of realism. In Figure 2-(b), we presented an audi-
ence while watching the videos that were created
based on the data from the submersible.

4 Evaluation

4.1 Latency

We measure the latency of each component of our
system in an end-to-end manner. For this, we ran
1.5 hours of Alexander Waibel audio through our
system and recorded the outputs for each compo-
nent, including the timestamps the outputs are cre-
ated. Then, we calculated the latency similar to
(Huber et al., 2023). Note that the ASR and text
segmentation outputs can be immediately shown
on the front end. However, the chunks generated
by the video component are shown in real-time.
Therefore, we report the latency when the video
chunk is generated, starts playing, and is played.
The results can be seen in Table 1.

As expected, the latency increases as more
pipeline components are run. The latency of the
ASR system is rather high since we do not allow
revisions of the output. After that, the text segmen-



Figure 3: Illustration of the submersible communication interface of our system. The interface has been used to
display speakers’ talk and messages while the submersible dived in Titanic Wreck to 3,800 meters below.

Component Latency Acc. Latency
ASR 2.99 2.99

Text segmentation 2.66 5.65
TTS generated 0.06 5.71
Vid. generated 1.49 7.20

Vid. started playing 3.21 10.41
Vid. played 3.41 13.82

Table 1: End-to-end latency measurements of our sys-
tem: Latency for the individual components and accu-
mulated latency of the pipeline in seconds.

tation component adds some latency to segment
the output in meaningful utterances. Since the TTS
model is non-autoregressive, the inference is very
fast, resulting in only a small additional latency.
Then, latency is added when a video chunk is gen-
erated and starts playing since that last video chunk
must finish playing before the next video can start.
After that, the current video chunk plays, adding
latency until it is finished playing.

4.2 Audio and Video Quality

We conducted a user study to evaluate the quality
of the generated audio and video. For this pur-
pose, we asked five questions: (1) audio intelligi-
bility. (2) Naturalness of the audio. (3) Similarity
of the generated audio to the ground-truth audio.
(4) Audio-lip synchronization quality. (5) Realism
of the face. During this evaluation, we also showed
a real audio of the speaker and a real face image.
The evaluation metric is the mean opinion score
(MOS), ranging from 1 to 5 (5 is the best). We uti-

Category MOS
Intelligibility 4.09 ± 0.27
Naturalness 3.48 ± 0.29

Audio similarity w/ GT 3.78 ± 0.17
Audio-lip sync. 4.02 ± 0.23
Visual quality 3.52 ± 0.18

Table 2: User study results: Mean opinion score for
each category.

lized randomly selected 10 videos and audio from
the generated videos with our test data. In total, 12
different users participated in the user study. The
results are displayed in Table 2. According to the
user study, MOS for the intelligibility of the TTS
and audio-lip synchronization is over 4, indicat-
ing the accuracy of these two crucial parts of the
system. Similarly, naturalness, similarity of audio
with the ground-truth audio in terms of the speaker
characteristics, and visual quality also have high
MOS scores.

5 Conclusion

In this work, we present a video conferencing sys-
tem for several different applications, particularly
in extreme conditions wherein straightforward com-
munication is restricted. Our system integrates
state-of-the-art technologies, encompassing ASR,
speech segmentation and filtering, a TTS module
with speaker adaptation, and audio-driven talking
face generation. By exclusively transmitting text
data, our system enables users to engage in realistic
interactions. We conducted practical tests in a real-



world scenario, specifically during an exploration
of the Titanic wreck. Based on the experimental
outcomes using our test data, we attained satisfac-
tory latency for this system, coupled with sufficient
audio & visual quality.

6 Impact

We believe this system and application is novel
and necessary for expeditions and aligns with the
United Nations Sustainable Development Goals
(SDGs). In particular, with SDG3, this extremely
low bandwidth video conferencing tool can be ad-
justed and improved to show the person’s feelings
and behavioral traits in the future, thus enabling
better health care in remote areas without doctors
nearby. This project also aligns with SDG4. In
most parts of the world, students can attend lec-
tures in schools or universities locally. However,
this is not always the case, as there can be many
remote areas in the world where students can not
attend class in person all the time. Reading scripts
afterward does not provide the same immersive
education experience, but our tool enables a more
immersive experience that is equal to their peers’
education.
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