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Abstract—Despite recent advances, Automatic Speech Recog-
nition (ASR) systems are still far from perfect. Typical errors
include acronyms, named entities, and domain-specific special
words for which little or no labeled data is available. To address
the problem of recognizing these words, we propose a self-
supervised continual learning approach: Given the audio of a
lecture talk with the corresponding slides, we bias the model
towards decoding new words from the slides by using a memory-
enhanced ASR model from the literature. Then, we perform
inference on the talk, collecting utterances that contain detected
new words into an adaptation data set. Continual learning is then
performed by training adaptation weights added to the model on
this data set. The whole procedure is iterated for many talks. We
show that with this approach, we obtain increasing performance
on the new words when they occur more frequently (>80 %
recall) while preserving the general performance of the model.

Index Terms—automatic speech recognition, new-word learn-
ing, continual learning, self-supervised learning.

I. INTRODUCTION

In the last decade, ASR systems improved tremendously

in terms of word error rate (WER) due to more data, more

computing power, and better architectures [1], [2]. However,

these systems are still far from perfect. Although in principal

end-to-end systems are open-vocabulary systems, when using

appropriate modeling units, such as byte-pair encoded (BPE)

characters, in practice, words not seen during training are

often not reliably recognized. Typical errors are observed in

the categories of cross-lingual words (e.g. ’upgeloaded’ is

mixing German and English), numbers (e.g. 1945 vs. 19:45 vs.

$19.45), acronyms (e.g. ICASSP), named entities and domain-

specific special words (as they occur in specialized meetings

or lectures). The word error rate (WER) is only slightly

affected by these errors because they are rather infrequent.

However, these words are important for understanding the

content as they carry a lot of information that is lost when

they are misrecognized. Furthermore, proper interpretation of

these words is critical for downstream processing such as in

speech translation [3], [4]. To measure this, we must not only

evaluate WER but also recall, precision, and F1 score for these

words, i.e., how often are they recognized if they occur and

how often do they produce false positives.

In this work, we tackle the problem of learning such

acronyms, named entities, and domain-specific special words

from scarce data in a self-supervised manner. For this, we
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Fig. 1. Illustration of the continual learning: In each learning cycle the model
is biased towards the new words from the slides of the current talk, inference
is performed and pseudo-labels containing the new words are collected; then
the model is adapted.

1) show that we can adapt an ASR model to detect new

words with little given labeled data using a factorization-

based approach, and 2) use this factorization-based approach in

combination with a memory-enhanced ASR model and slides

of lecture talks to perform self-supervised continual learning

(see Figure 1 and Section III-B). We empirically show that

this approach does not lead to catastrophic forgetting even for

a large number of learning cycles (66), while improving the

recall of new words to more than 80% as new words occur

more frequently.

II. RELATED WORK

An approach to new-word learning of ASR systems is

context biasing [5]–[10]. The model is biased with a list of

words. Depending on the approach, this list is used in different

ways. The problem is that the scale of such approaches for

continual learning is limited.

Other approaches study the continual learning of ASR

systems [11]–[15]. The access to old data is restricted and

multiple regularization-based and data-based methods [16] are

used. The problem is that many hours of labeled adaptation

data are used for each learning cycle, without considering

where to get such data, and/or only a few learning cycles are

considered.

As stated, many works in continual learning study the

learning of new tasks while limiting the access to the old

data. However, access to old data is not always a problem in

production, e.g., when publicly available data sets are usedIC
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as in our case, but the amount of computation power and

particularly the availability of new (labeled) data. It is not

feasible to train a new model from scratch each time a new

word has to be learned. The same holds for collecting hundreds

of labeled utterances for each new word, because of cost and

privacy issues. Therefore, we study how we can adapt an ASR

model to detect new words with modest computation power

and little labeled data or data collected in a self-supervised

manner.

III. EXPERIMENTS

The experiments consist of two parts: First, we look at how

to learn new words from little given labeled data. For this, we

experimented with a factorization approach [17], [18]: To each

weight W ∈ R
n×m of a linear layer of the neural network, a

low-rank matrix

W =
k∑

i=1

ris
T

i

is added, where k ∈ N, ri ∈ R
n, si ∈ R

m, i ∈ {1, . . . , k}.

By changing only the weights W , one can efficiently adapt

the model. The hyperparameter k, typically k ≪ min{n,m},

controls the amount of flexibility of the model, and ri and si
are denoted as factorization weights.

Second, we perform a continual learning experiment (see

Figure 1 and the second part of Section III-B). We use

the factorization approach mentioned above together with a

memory-enhanced ASR model similar to [5] to first extract

pseudo-labels of utterances containing new words and then

adapt the model with this new data. The memory-enhanced

ASR model consists of a memory

Z = (Z1, . . . , ZL), L ∈ N,

where each memory entry Zl, l ∈ {1, . . . , L}, is (the tokenized

representation of) a word or a short phrase. The model

extracts information from Z through attention mechanisms,

and therefore the prediction of the next token is biased towards

the words/phrases in the memory Z.

A. Data

For the experiments we created two data sets. First, we

created a new-words data set for the factorization approach

experiments based on [19]. We extracted words from the

categories named entity (of persons), acronym (abbreviations),

and domain-specific special word (products, events, laws,

locations, and organizations) from the annotations. Then, we

manually filtered those that occurred two or more times. From

that, we created a development split (15 % of the data, for

hyperparameter optimization) and an evaluation split. Both

contain a training set (for model adaptation) and a test set

(for model evaluation). For each new word, one occurrence is

used for the test set and the remaining ones for the training

set. For most new words, we have only one training example,

for a few examples more.
Second, we downloaded videos of computer science lectures

with corresponding slides for the continual learning experi-

ment from YouTube. The data set collected consists of of 66

lecture talks. From the slides (given as PDF file) we extracted

words that were not in our training data and manually went

over the output to filter for obvious errors, e.g., some words

next to each other were merged by the text extraction process,

but we did not modify the extracted words by content. This

resulted in 3891 extracted words (2199 unique words) that

were denoted new words.

To evaluate the overall performance of our models, we

report the WER on the Tedlium testset (1155 utterances, 2.6

hours).

B. Models and Approaches

We use the framework NMTGMinor which is based on

PyTorch and uses the Fairseq [20] pre-trained models. For the

baseline model, similar to recent work, for example [21], we

start with a transformer model [1], [2], where the encoder is

initialized with the pretrained Wav2Vec 2.0 model [22] and the

decoder is initialized with the decoder part of the pretrained

mBART 50 model [23] (using the mBART 50 tokenizer).

We trained the baseline model on ASR data from Common

voice, Europarl, Fisher, HOW2, Hub4, Librispeech, Switch-

board, Tedlium, and Voxforge (5433 hours in total), denoted

baseline data. For some of the mentioned corpora, only low-

ercase labels without punctuation were available. Therefore,

we trained an encoder-decoder model on Wikipedia text to

map lowercase text without punctuation to cased text with

punctuation and applied that model to the data.

When training the factorization approach, we freeze all

weights of the baseline model and only train the added

factorization weights until the validation perplexity on the

development split does not decrease anymore. To avoid catas-

trophic forgetting [24], we train the model with a mixture

of baseline data and new-words data. To emphasize that the

model should learn the new words, we massively upsample

utterances containing them [25]. Only training the factorization

weights significantly decreases training time compared to

training a model from scratch or from a pre-trained model.

The model is trained within a few hundred updates (compared

to the baseline model which is trained for 60k updates). Each

factorization approach was trained in less than four hours

on one A6000 GPU. On the other hand, the baseline model

needed 60k updates to finish training.

The memory-enhanced ASR model [5] consists of the audio

encoder and decoder of the baseline model and additionally

has a memory encoder and a memory decoder (both with six

layers and initialized with parts of the pre-trained mBART

50 model). Each memory entry is encoded independently by

the memory encoder. Each memory decoder layer consists of

the standard mBART decoder layer followed by a memory-

attention layer and a memory-entry-attention layer extracting

information from the encoded memory entries (see [5] for

more details). During training of the memory-enhanced ASR

model, only the memory encoder and memory decoder are

trained, the rest of the model is frozen.

In the continual learning experiment (see Figure 1), we

start with an empty data set of new-words adaptation data.
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We iterate over the given talks and do for each talk the

following four steps: 1) We use the new words extracted from

the corresponding slides as memory to bias the model toward

the new words, 2) We perform inference on the talk using the

model from the last iteration step (using the baseline model

in the first iteration step), 3) We extract all utterances from

the talk containing a word from the current memory or any

past memory and add them together with the pseudo-labels

created to the new words adaptation data. Using utterances

containing a word from a past memory is critical for continual

learning, since we want to use the collected data to increase

the performance of new words even when they are no longer

present in the memory. All utterances in which a new word

occurs the second time are used for the new words validation

data, and 4) We use the factorization approach applied to the

new-words adaptation data as well as the baseline data to

adapt the model. Especially, we train new factorization weights

initialized randomly. After the training, we use the best model

according to perplexity on the new words validation data.

These four steps are iterated for all given talks. We denote this

approach by MEM-CL. Note that it is not a severe problem

if a new word is not correctly recognized by the memory-

enhanced ASR model since an important new word most likely

will occur multiple times, and therefore the memory-enhanced

ASR model can also detect it later.

For comparison, we report the approach where no factoriza-

tion weights are learned but instead the memory is always en-

riched by the new words of the current talk (denoted by MEM-

ALL). Furthermore, we vary this approach by keeping words

in memory only if they are recognized in the talk in which

they are added to the memory (denoted by MEM-FOUND).

This is similar to MEM-CL, where only utterances containing

found new words are transferred to the new-words adaptation

data.

IV. RESULTS

For the factorization experiment, we tuned the learning

rate and the upsampling factor of the new-words data on

the development split of the new-words data set. In Figure

2 the results can be seen for the learning rate 10−4 and the

upsampling factor 105 (this corresponds to approximately half

new and baseline data in each batch). We compare the addition

of factorization weights to the whole model and to only the

decoder. We report only the F1 score (evaluated only on the

new words) because the precision of all approaches is very

high (>98%) and therefore the recall strongly correlates with

the F1 score.

On the left of Figure 2, we see the amount of factorization

parameters versus the F1 score evaluated on the new words.

Until the point k = 4, the performance increases for both the

factorized decoder and the factorized encoder and decoder, and

the model is able to use the additional flexibility. Generally,

the model with factorized encoder and decoder is better than

the model with only factorized decoder. However, adapting

only the factorized decoder is faster by approximately a factor

of two to five. For comparison, the memory-enhanced ASR
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Fig. 2. Results of the factorization experiment: Left: Number of parameters
(MB, 16-bit) vs. F1-score after training with the new-words data for a
factorized decoder and a factorized encoder+decoder. The baseline model has
F1-score 0.402. Right: Number of training samples per new word vs. F1-score
for the different categories with a factorized encoder+decoder and k = 4.

model trained for the continual learning experiment scores

recall 0.721, precision 0.964 and F1-score 0.825 when using

a memory containing all new words from the eval split. On

the right of Figure 2, the number of samples per new word

versus the F1 score is shown for each category. We see a

similar behavior for all categories and that the performance

increases when adapting with more samples per new word.

For four and five samples per new word, the performance

does not increase anymore, probably since there are not many

new words for which that number of samples is available.

Furthermore, acronyms seem to work best, possibly due to

the small number of characters each part of the acronym can

be, followed by named entities and special words.

For the continual learning experiment, we use k = 4,

factorized decoder only to reduce the amount of computational

power required and the upsampling factor 105. We report the

WER on the Tedlium testset over the course of the learning

cycles (see Figure 3, left) as well as the forward transfer, that

is, if a new word occurred, how likely is it recognized in a

later talk (see Figure 3, middle and right). Since the baseline

decoder and the memory decoder independently predict the

next token (afterward the results are combined), the factoriza-

tion adaptation of the baseline decoder does not interfere with

the memory extension of the model.

We do not have a reference transcript available for the talks.

Therefore, we manually labeled all detected occurrences of

new words not present in the baseline hypothesis and all our

approaches (4315) if they are correctly recognized or false

positives. Based on these labels, we calculate the forward

transfer: For each new word w that occurs somewhere in talk

i and j, i < j, we evaluate if w is recognized in talk j using

the model produced in iteration step j − 1 (empty memory

for MEM-CL). We group according to how many training

examples have been available until iteration step j − 1 (false

positives not counted), such that each bucket contains more

than 300 samples. Then, we calculate precision and recall for
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Fig. 3. Results of the continual learning experiement: Left: General performance: Accumulated number of new words from slides versus WER (in %) on the
Tedlium testset. Middle and right: Forward transfer: Number of training samples per new word versus forward transfer recall and precision.

each bucket. In total, the forward transfer is calculated on 402

unique words.

We see that for MEM-CL, the general performance (see

Figure 3, left) is preserved, while for MEM-ALL and MEM-

FOUND, the WER increases consistently over the course

of the learning cycles (more than 12 % and 7 % relative

respectively). This is because the MEM-ALL and MEM-

FOUND models have to distinguish between more and more

words in the memory which produces false positives. MEM-

ALL and MEM-FOUND have 2199 and 692 memory entries at

the end of the last learning cycle, respectively. For comparison,

the baseline model scores 4.39 % WER.

For forward transfer recall (see Figure 3, middle), we

see that for MEM-ALL and MEM-FOUND the recognition

performance of new words is at approximately 70 % after the

new words are added to the memory. The models cannot utilize

more occurrences of the same word. Therefore, performance

does not increase over the course of the learning cycles. It

even degrades a bit because the number of training samples

per new word correlates with the total number of words in the

memory, and with more words in the memory the performance

degrades. In contrast, the performance of MEM-CL increases

consistently to over 80 % when more training samples of a

new word arrive. For the forward transfer precision (see Figure

3, right) we find that MEM-CL has the best performance of

all approaches and fewer false alarms are produced if more

training samples per new word are available. Words which

MEM-CL recognized better than the baselines include back-

propagate, CSPs, elementwise, frontend, LRU, MDP, MDPs,

MRU, prefetcher, RNN, RNNs, SRAM, SIMD and tanh.

A. Limitations

The extraction of words from the slides is not trivial. We

took all words from the slides and filtered by the words in the

training data. Errors occur when the words on the slides are

capitalized but in the transcript they should not be capitalized,

and when the extracted words contain spelling errors. A further

problem arises when the morphological variances of known

words are extracted, as their presence in memory increases the

rate of false positives. Adding other morphological variances

of the same word may help here. All these mentioned errors

can propagate through the learning cycles. Moreover, training

with pseudo-labels could lead to a degradation of the general

performance. We did not observe that, however, one could

restrict the training for the pseudo-labels to tokens that are

part of new words. Other false positives can occur, e.g., when

first a word like ISCA is learned followed by a word ISA

which is written similarly. In this case, a small supervised

intervention could help reduce the number of false positive

utterances added to the adaptation data.

V. CONCLUSION

We demonstrated a self-supervised continuous learning ap-

proach for learning new words. This is done by iteratively

extracting new words from slides of a given talk, detecting

new words by a memory-enhanced ASR model, and using

collected data for adapting low-rank matrix weights added to

each weight matrix of the model. With this approach, we can

increase the performance of new words as they occur more

often to more than 80 % recall while the general performance

of the model is preserved.
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