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Abstract—Speaker-attributed automatic speech recognition
(SA-ASR) aims to transcribe speech while assigning transcripts
to the corresponding speakers accurately. Existing methods often
rely on complex modular systems or require extensive fine-
tuning of joint modules, limiting their adaptability and general
efficiency. This paper introduces a novel approach, leveraging a
frozen multilingual ASR model to incorporate speaker attribution
into the transcriptions, using only standard monolingual ASR
datasets. Our method involves training a speaker module to
predict speaker embeddings based on weak labels without requir-
ing additional ASR model modifications. Despite being trained
exclusively with non-overlapping monolingual data, our approach
effectively extracts speaker attributes across diverse multilingual
datasets, including those with overlapping speech. Experimental
results demonstrate competitive performance compared to strong
baselines, highlighting the model’s robustness and potential for
practical applications.

Index Terms—speaker-attributed, asr, multilingual

I. INTRODUCTION

Speaker-attributed automatic speech recognition (SA-ASR)
involves transcribing all speech within a multi-speaker record-
ing and accurately attributing each spoken word to the correct
speaker. Specifically, suppose a recording X contains speech
from K different speakers. In that case, the objective is to gen-
erate a set of transcriptions Y = {y1, y2, ..., yK}, where each
yk corresponds to the sequence of words spoken by the speaker
k. Addressing this challenge is crucial for various applications,
from meeting transcription [1]–[4] to conversational AI [5],
[6], where accurate speaker attribution is essential. Current
approaches to this problem typically fall into two categories:
modular strategies, which break down the task into separate
components, and joint methods, which attempt to solve the
problem in a unified framework.

Modular SA-ASR systems [7]–[11] decompose the SA-
ASR task into sequential processing stages, typically involving
speech separation, speaker diarization, and target speaker voice
activity detection. These systems often assign speaker labels to
speech segments prior to ASR. While modularity offers flexi-
bility and the potential to leverage advancements in individual
components, it can suffer from suboptimal performance due to
the independent training of modules. Misalignments between
the training objectives of these components can hinder the
overall system’s efficacy. In contrast, joint SA-ASR systems
[8], [12] address these limitations by processing the entire SA-
ASR task end-to-end, potentially achieving improved perfor-
mance and coherence.

Joint SA-ASR systems, also known as E2E SA-ASR mod-
els, typically consist of two main components: the ASR
module and the Speaker module. The ASR module generally
generates a sequence of tokens, while the Speaker module pro-
duces speaker embeddings for each token. These embeddings
are then used for speaker identification [13], [14]. In studies
such as [15]–[17], speaker embeddings have been shown to
enhance ASR performance by providing additional features
for the ASR decoder layer. In some cases [18], rather than
outputting speaker embeddings explicitly, they are utilized to
help the ASR directly generate speaker labels. Often [12], [14],
[15], [18], the ASR module not only generates a sequence of
tokens but also produces special tokens (e.g., < cc >,< sc >)
to indicate a change in speaker.

While much research on E2E SA-ASR has centered on
enhancing ASR performance by incorporating speaker infor-
mation, our approach offers a different perspective. Traditional
joint models often involve fine-tuning the ASR component
to add capabilities like generating speaker change tokens
or managing overlapping speech, usually relying on limited,
language-specific datasets. However, since overlapping speech
constitutes roughly 10% of multi-talker data (as illustrated
in Table I) and given the success of models like Whisper,
which are trained on large and diverse datasets, we question
the necessity of extensive ASR fine-tuning. The Whisper study
[19] demonstrates that models trained on comprehensive and
varied datasets can effectively handle a wide range of speech
recognition tasks. In contrast, models tailored to specific
datasets may excel within those domains but often lack broader
robustness. We suggest that by focusing on the speaker module
and utilizing a robust pre-trained ASR model, effective SA-
ASR can be achieved without compromising generalizability.

To demonstrate generalizability, we extend SA-ASR to
handle multilingual speech. Multilingual SA-ASR studies are
rare, with the last in 2002 on speaker ID via multilingual
phone strings [20], [21]. Research in zero-shot multilingual
transfer learning [22] has shown that a frozen multilingual pre-
trained model can be trained for a task in one language and
then used to make predictions in another. Additionally, studies
[23], [24] have explored training models for multi-speaker
speech recognition using standard ASR datasets. Building on
this foundation, we leverage the Whisper model’s capacity to
process multiple languages and follow the approach suggested
by [23] to adapt regular English ASR datasets. This allowsIC
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Dataset Overlap (%) Duration (hours)
ESTER 1&2 [25] 0.67 260
ETAPE [25] 5.29 105
EPAC [25] 1.11 34
REPERE [25] 3.36 58
DIHARD [25] 11.6 34
AMI [25] 13.87 96
FISHER [26] 13.53 984
CHIME 6 dev/eval [27] 21 / 15 4.5 / 5.1

TABLE I
TOTAL DURATION AND PROPORTION OF OVERLAPS DURATION FOR

DIFFERENT SPEECH CORPORA.

us to create a new E2E SA-ASR model (MSA-ASR) that
can predict speakers across different languages, introducing a
novel method for multilingual SA-ASR. Through benchmark-
ing across various datasets, we demonstrate the effectiveness
of our proposed approach in handling SA-ASR tasks across
different languages and conditions.

II. APPROACH

A. Modeling

In designing our MSA-ASR model (Figure 1), we sought to
blend the advantages of both modular and joint SA-ASR sys-
tems. The model consists of two main components: the ASR
and Speaker modules. By keeping the frozen ASR module as
a modular system, we ensure the speech recognition process
remains stable and generalizable across diverse languages and
domains. Meanwhile, the Speaker module is fine-tuned to
work in harmony with the ASR system as a joint system.

ASR module is a transformer seq2seq model containing an
encoder and decoder. The encoder takes the input signal X
to produce hidden features Hasr ∈ RL×fe

where fe and
L are the feature dimension and the length of the feature
sequence. The ASR decoder then iterative estimates sequence
W = [w1, ..., wN ]. At each decoder step, the ASR decoder cal-
culates the output wn = ASRDecoder(w[0:n−1], H

asr) ∈ V
(V is the ASR vocabulary) given previous token w[0:n−1] and
encoder hidden features Hasr.

The Speaker module predicts a sequence of speaker em-
beddings E = [e1, e2, ..., eN ] ∈ RN×fd

where fd denotes
the speaker embedding dimension. Each embedding en cor-
responds to a token wn in the ASR-generated sequence. This
module, like the ASR, uses a transformer architecture. Speaker
encoder transforms X into hidden features Hspk ∈ RL×fe

(same shape as ASR encoder output). Figure 2 illustrates the
architecture of the Speaker decoder. The word and position
embeddings are shared between the ASR and Speaker decoder
modules to ensure alignment between their outputs. The cross-
attention of the first K layers in the Speaker decoder has been
customized to take Hasr as the key, Hspk as the value. In the
rest of (D−K) layers, the key has been calculated from Hspk.

The Speaker module’s training objective is to optimize E
to closely match the target speaker embedding sequence T =
[t1, t2, ..., tN ] ∈ RN×fd

using cosine similarity loss (4). We
also want the model to distinguish between speakers inside
an utterance. To do this, we first calculate the pairwise cosine
similarity between the embeddings within the output sequence

ASR Encoder

Speaker Encoder

w0 w1 w2 wn-1…

w1 w2 w3 wn…

e1 e2 e3 en…

Text tokens:

Speaker embedding:

ASR Decoder

Speaker Decoder
H spk

H asr

H asr

Fig. 1. Overview of MSA-ASR model. ASR decoder processes tokens
sequentially during inference, while the Speaker decoder can generate speaker
embeddings in parallel.

w0 w1 w2 wn-1…

e1 e2 e3 en…

Self-attention & Add & Norm

Cross-attention & Add & Norm

Feed forward & Add & Norm

Embedding

Kx

(D-K)x
QV

H spk

K

H asr

Self-attention & Add & Norm

Cross-attention & Add & Norm

Feed forward & Add & Norm

Linear

QV

H spk

K

H spk+

Fig. 2. Speaker decoder architecture. Similar as standard transformer decoder,
but cross-attention uses key and value from a different encoders.

E (denoted as Cee) (1), between the embeddings within the
target sequence T (denoted as Ctt) (3), also the pairwise cosine
similarity between E and T (denoted as Cet) (2). Then an
MSE loss (5, 6) used to make both Cee and Cet close to
Ctt. Our final Embedding Alignment and Discrimination loss
(EAD) will be the weighted sum of 3 losses (7).

Cee = [cos(ei, ej)]
N
i,j=1 ∈ RN×N pairwise similarity within E (1)

Cet = [cos(ei, tj)]
N
i,j=1 ∈ RN×N between E and T (2)

Ctt = [cos(ti, tj)]
N
i,j=1 ∈ RN×N within T (3)

L1 =

N∑
i=1

(1− cos(ti, ei)) ∈ R cosine similarity loss with E, T (4)

L2 =
1

N2

N∑
i=1

N∑
j=1

(Cee[i, j]− Ctt[i, j])
2 ∈ R MSE loss (5)

L3 =
1

N2

N∑
i=1

N∑
j=1

(Cet[i, j]− Ctt[i, j])
2 ∈ R MSE loss (6)

L = αL1 + βL2 + γL3 EAD Loss (7)

Our EAD loss function is similar to triplet and contrastive

Authorized licensed use limited to: KIT Library. Downloaded on April 10,2025 at 08:21:15 UTC from IEEE Xplore.  Restrictions apply. 



loss (widely used for speaker verification tasks [28]), as all
aim to distinguish between different speakers in the embedding
space. Like triplet loss, which pulls similar samples together
and pushes dissimilar ones apart, and contrastive loss, which
minimizes distances within similar pairs, our loss uses cosine
similarity (L1) to align output and target embeddings while
maintaining internal pairwise relationships (L2, L3). Our EAD
loss is chosen because we don’t have the ground truth of
speaker labels but only the target speaker embedding T , so
these target functions help in effective embedding differentia-
tion and alignment without needing explicit labels. A detail of
how T has been constructed is presented in the next section.

B. Data Processing

We extend the approach outlined in [23], which processed
speaker turns in conventional ASR datasets for multi-talker
speech recognition. While the previous work focused on de-
tecting speaker changes by combining random turns, it did not
account for the need to extract consistent speaker embeddings,
as each speaker might only appear once, limiting the model’s
ability to differentiate between speakers.

To overcome this, we employed a pre-trained speaker em-
bedding model, TitaNet-L [29], trained on 7,000 hours of
diverse speech datasets, to compute an embedding for each
speaker’s turn. Since clustering turns from the same speaker
is inherently complex, we opted not to rely on cluster labels.
Instead, as detailed in section II-A, we used the original
speaker embeddings as weak labels, avoiding the need for
explicit speaker labels. We identified similar turns by selecting
those with a cosine similarity score above the threshold θ.

The training samples were created by pairing turns ran-
domly. The target sequence of speaker embeddings T is
constructed by aligning each turn’s transcript with its corre-
sponding speaker embedding. Each turn was paired with at
least one similar counterpart, and we limited each sample to
five distinct turn groups with no overlapping similar turns.
This process ensured that each sample contained up to 30
seconds of no overlapping speech from a maximum of five
speakers. Similar to [23], we also incorporated random noise
and reverberation to enhance the data.

III. EXPERIMENTS

A. Datasets

To benchmark systems, we utilize three types of datasets:
multilingual (Voxpopuli [30]), monolingual (AMI-IHM [31],
LibriCSS [32]), and mixed-language (in-house data). Since
AMI-IHM and LibriCSS are typically employed for bench-
marking English SA-ASR systems, we will not delve into their
details here. The processing for the other datasets is as follows:

Voxpopuli is a multilingual speech corpus featuring one
speaker per sample across 16 languages. To adapt it for the
multi-talker benchmark, we used the approach from [23],
where test set utterances are randomly concatenated. This
produces samples with an average of 2.5 speakers, 20 seconds
of audio, and up to 5 non-overlapping turns.

Language Diarization+ASR MSA-ASR (Our) ASR
English 15.52 12.90 12.24
German 26.24 16.54 14.28
French 32.20 16.53 13.95
Spanish 20.75 13.73 11.32
Polish 34.94 16.15 10.31
Italian 33.52 23.71 20.06
Romanian 38.48 23.65 18.05
Hungarian 29.77 28.12 19.82
Czech 35.47 28.60 16.27
Dutch 29.81 18.12 14.68
Finnish 37.30 20.51 15.85
Croatian 37.52 34.52 28.05
Slovak 34.44 27.24 16.07
Slovenian 41.32 30.90 27.33
Estonian 44.65 39.59 37.15
Lithuanian 69.17 40.57 34.04

TABLE II
COMPARISON OF CPWER (%) ACROSS MULTIPLE LANGUAGES FOR

NON-OVERLAPPING MULTI-TALKER VOXPOPULI USING DIARIZATION
WITH ASR (PYANNOTE + WHISPER LARGE-V2), OUR SA-ASR SYSTEM,

AND ASR WITHOUT SPEAKER CONSIDERATION.

In our study, a mixed-language dataset includes samples
with multiple languages. Our dataset features English, Ger-
man, Turkish, and Vietnamese. Each session involves two
speakers discussing a scientific paper, one speaking in English
and the other in one of the other languages. The dataset totals
45 minutes, with language distribution as follows: English
(44%), German (9%), Turkish (12%), and Vietnamese (35%).
The overlap rate is approximately 3%.

B. Modeling and Metric

All systems will be evaluated using the concatenated mini-
mum permutation word error rate (cpWER) [33], depending on
ASR performance and speaker labels. For the multilingual and
mixed-language datasets, the baseline system is Diarization
+ ASR where diarization is Pyannote 3.1 [34] and ASR is
Whisper large-v2. The baseline for the monolingual English
dataset will vary between modular and joint systems, as
outlined in section I.

Our MSA-ASR model employs Whisper large-v2 as the
ASR component. The Speaker model has 12 layers for each
encoder and decoder. The first K = 1 layers of the Speaker
decoder use Hasr as the key. α = β = γ = 1 for the EAD loss.
θ = 0.7 is used for grouping similar speaker turns. We train
this model for 250,000 steps with batch size 80 (equivalent
to 40 minutes of audio), using AdamW optimization with
a learning rate 1e-4. We utilize spectral clustering [35] for
speaker assignment. Our MSA-ASR model is only trained on
the data that has been processed as described in section II-B
without fine-tuning for the in-domain data (section III-A).

C. Results

Table II shows the benchmark result on the multi-talker
Voxpopuli dataset. The first column is the results of using
diarization followed by ASR. The second column shows the
performance of our system. The third column is the baseline
ASR performance, which does not account for speaker labels.
This baseline ASR value is the lower bound WER, as the other
systems incorporate speaker information into the ASR output.
Overall, our system introduces a 29.3% relative error increase
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TABLE III
COMPARISON OF CPWER (%) FOR LIBRICSS

System Overlap ratio in %
0S 0L 10 20 30 40

LSTM SOT-SA-ASR [12] 10.3 15.8 13.4 17.1 24.4 28.6
Conformer SOT-SA-ASR [16] 8.6 12.7 11.2 11.3 16.1 17.5
TS-VAD + ASR [7] 9.5 11.0 16.1 23.1 33.8 40.9
NME-SC + SOT-SA-ASR [13] 9.0 12.2 8.7 10.9 13.7 13.9
MSA-ASR (our) 7.5 8.1 11.5 27.9 41.7 46.5

TABLE IV
COMPARISON OF CPWER (%) FOR AMI-IHM. ALL SYSTEMS

USE GOLD VAD.

System Dev Eval
Transformer SOT-SA-ASR [8] 14.5 15.0
NME-SC + SOT-SA-ASR [13] 16.3 15.1
MSA-ASR (our) 15.6 14.3
Gold transcript + MSA-ASR (our) 2.7 1.9

over the baseline ASR, whereas the Diarization + ASR system
increases it by 92%.

Although both systems perform well in English, for lan-
guages with large datasets (over 1,000 hours, detail in whis-
per paper [19]) used to fine-tune the ASR model, such as
German, French, Spanish, Polish, Italian, Dutch, and Finnish,
our system results in a 26% relative error increase, compared
to a 120% increase with Diarization + ASR. For languages
with smaller datasets, including Romanian, Hungarian, Czech,
Croatian, Slovak, Slovenian, Estonian, and Lithuanian, our
system introduces a 35% relative error increase, while Diariza-
tion + ASR results in a 76% increase. These results demon-
strate that, compared to the language-independent diarization
approach, using the same ASR model, our system more
effectively leverages the generalizability of the ASR model to
handle multilingual scenarios, particularly in languages with
larger datasets.

Table III compares different systems on the LibriCSS
dataset across various overlapping ratios. All systems, except
TS-VAD, utilize a VAD model to segment long audio into
smaller chunks. In our setting, we use Silero VAD [36]. The
LSTM SOT SA-ASR [12] and Conformer SOT SA-ASR [16]
systems are similar to ours but enhance the ASR model by
incorporating speaker embeddings. TS-VAD is a target speaker
voice activity detection system, which, in [7], is followed by
an ASR model to transcribe the detected speaker. NME-SC
is a diarization system that integrates Conformer SOT SA-
ASR as in [13]. Our MSA-ASR system outperforms the others
in scenarios without overlapping speech but shows decreased
performance as the overlap ratio increases. This is expected,
as our ASR model is frozen, whereas other systems are fine-
tuned for this specific data type.

One of the significant advantages of our MSA-ASR model
is its ability to run the Speaker model independently of
the ASR model. This feature provides greater flexibility and
efficiency in processing. Table IV presents benchmark results
for various joint systems on the AMI-IHM dataset, using
the ideal scenario where gold VAD labels are available. In
this scenario, all systems focus solely on ASR and assigning
speaker information. Our MSA-ASR model, even without fine-
tuning on AMI-IHM, demonstrates competitive performance
compared to other state-of-the-art models like the Transformer
SOT SA-ASR [8] and NME-SC + SOT SA-ASR [13]. The
final row of table IV highlights our model’s unique capabil-
ity to directly accept gold transcripts for assigning speaker
embeddings, resulting in exceptional performance.

Table V highlights the performance of our system on real

System en de en tr en vi avg
Diarization + ASR 6.81 15.76 18.54 13.70
MSA-ASR (our) 5.71 5.98 11.54 7.74

TABLE V
COMPARISON OF CPWER (%) FOR MIX-LANGUAGES MEETING DATASET.

multilingual meeting data from a mixed-language dataset. The
long audio recordings were segmented into smaller chunks
using Silero VAD and then processed using our MSA-ASR
model. Since Whisper large-v2 is a multilingual ASR model,
it effectively manages multilingual audio. Compared to the
Diarization + ASR system, our MSA-ASR model delivers sig-
nificantly better results. Error analysis shows that while both
ASR and diarization have acceptable error rates, averaging
7.67% and 7.38%, respectively, combining diarization with
ASR leads to a higher cpWER than using a joint ASR and
speaker model like our MSA-ASR.

Table II and table V highlight the advantages of our joint
speaker attribute system, which effectively handles multilin-
gual scenarios despite being fine-tuned only on an English
dataset. While other joint systems often need fine-tuning
for each specific language (due to data constraints) and are
limited to those trained languages, our system demonstrates the
ability to generalize and adapt to multiple languages without
additional fine-tuning.

IV. CONCLUSION
This study introduces a novel approach for integrating

ASR and Speaker models into a unified speaker-attribute
speech recognition system, capable of handling multilingual
datasets while using only standard monolingual ASR data.
By fine-tuning exclusively on the speaker model, we preserve
the original performance of the ASR model. Our system,
although primarily optimized for non-overlapping data, also
demonstrates robust performance across a range of diverse
benchmarks. This highlights its capability to manage real-
world scenarios with varying complexities effectively. We have
made our pre-trained model and dataset publicly available for
further research at hf.co/nguyenvulebinh/MSA-ASR.
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