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Abstract

Automatic text summarization, a task of machine translation that automates the
process of shortening a text while reserving the main ideas of the document. Previous
approaches proposed in this field can be categorized into two basic types: extrac-
tive and abstractive summarization. While the former generates summarizations by
deleting unimportant parts of the input sequence, the latter extracts the relevant
information from the input sequence and generates a new, grammatically correct
summarization.
This work deals with abstractive text summarization. The applicability of the Trans-
former Model, published by Vaswani et al. [2017], in the creation of abstract summaries,
will be examined. For these comparisons, publically accessible datasets from existing
research approaches will be used to provide good comparability. Moreover, we present
novel datasets that investigate the ability of modern sequence-to-sequence systems to
transfer their knowledge from one domain to a new one. Finally, we take a further step
towards summarization systems suitable for everyday use by creating a new dataset
showing the summaries of very long source inputs in the form of research papers.
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Zusammenfassung

Automatische Textzusammenfassung, eine Aufgabe der maschinellen Übersetzung, die
den Prozess der Kompression eines Textes automatisiert, während die Hauptideen des
Eingabedokumentes erhalten bleiben. Bisherige Ansätze, die in diesem Bereich vorge-
schlagen wurden, können in zwei grundlegende Arten unterteilt werden: extraktive und
abstrakte Zusammenfassung. Während erstere Verkürzungen durch Löschen unwichti-
ger Teile der Eingabefolge erzeugt, extrahiert letztere die relevanten Informationen aus
der Eingabefolge und erzeugt eine neue, grammatikalisch korrekte Zusammenfassung.
Diese Arbeit befasst sich mit der abstraktiven textuellen Zusammenfassung. Dabei
soll die Anwendbarkeit des Transformer Models, publiziert von Vaswani et al. [2017],
in der Erstellung von abstraktiven Zusammenfassungen, geprüft werden. Für diese
Experimente werden öffentlich zugängliche Datensätze aus bestehenden Forschungsar-
beiten verwendet, um eine gute Vergleichbarkeit zu schaffen. Des Weiteren werden
neuartige Datensätze vorgestellt, die die Fähigkeit moderner Sequenz-zu-Sequenz
Systeme erforschen, ihr Wissen von einer Domäne auf eine neue zu übertragen. Einen
weiteren Schritt zu alltagstauglichen Zusammenfassungssystemen wird durch die Er-
stellung eines neuen Datensatzes genommen, der die Zusammenfassung sehr langer
Quelleingaben, in Form von Forschungsberichten, darstellt.
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1 Introduction

In 2011, Hilbert and López [2011] published an astonishing study about the increasing
digital memory capacity of machines created by humans. The world’s technological
capacity to store information grew from 2.6 exabytes (optimally compressed) in 1986
to 15.8 in 1993, over 54.5 in 2000, and to 295 exabytes in 2007. This is equivalent to
less than one off-the-shelf 730-MB CD-ROM per person in 1986 (539 MB per person).
In the following years this number increased dramatically, requiring roughly 4 discs
per person in 1993, 12 discs in 2000, and almost 61 discs per person in 2007. Piling up
the imagined summed up 404 billion CD-ROM would create a stack from the Earth
to the Moon and a quarter of this distance beyond.
These numbers are backed by a recent1 study that quantifies the amount of online
text and multimedia information, human transfer online per year. It shows that we
are transferring about 864 exabytes in the year 2015, raising it by nearly 40% to 1464
exabytes in 2017.
To make this amount of information processable for humans, extracting the most
important facts is indispensable. We experienced this once more, while searching for
this study on the internet. Understanding the content of the search results we faced,
was only possible by presenting abstracts (summaries) to the reader, trying to process
all the presented search results.
With the exploded quantity of online text and multimedia information in recent years,
there has been a renewed interest in automatic summarization. In addition, modern
users are increasingly interested in obtaining information from various sources, which
requires filtering and translating information into an easily and quickly readable form.
Therefore there is an increasing need for automatic systems capable of extracting the
most relevant textual information and outputting it in the shortest, consistent and
most informative way.
The effort to make computers understand and use information expressed in natural
language is an open field of research known as natural language processing (NLP).
NLP has been particularly difficult due to the often ambiguous and imprecise language
utilized by humans. With achieving new state-of-the-art results in NLP, neural
networks based approaches have replaced Statistical Machine Translation (SMT).

1Cisco Systems. n.d. Datenvolumen des globalen IP-Traffics in den Jahren 2014 bis 2017
sowie eine Prognose bis 2022 (in Exabyte pro Monat). Statista. Zugriff am 27. März 2019.
Verfügbar unter https://de.statista.com/statistik/daten/studie/266869/umfrage/prognose-zum-
datenvolumen-des-globalen-ip-traffics/
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1 Introduction

Considering this new perspective of new architectures, the previous field of extractive
summarization, where the targets were generated by removing unimportant words
from the source, receives less attention. Instead, the focus of research is now applied to
abstractive summarization, where targets are novel sentences containing the important
facts identified in the source.

1.1 Goals
In this thesis we explore the recent Transformer Model architecture presented by
Vaswani et al. [2017] which sets new state-of-the-art performance in machine translation
research. Therefore several experiments applying this approach in the fields of
abstractive summarization were planed. The results are compared with previous
approaches using prior architectures. To ensure the comparability the common
datasets in summarization research should be used to evaluate the performance of the
Transformer Model.
A problem which isn’t examined by now in detail is the ability of neural models in
summarization, precisely the Transformer Model in our work, to be able to generalize
on completely different subjects compared to its original training data subject. In
this thesis we present new corpora containing data collected from different research
fields, to conduct novel experiments on the generalization ability.
Because of the fact that large-scale datasets for summarization of longer texts are
very rare, we create novel corpus including very large source sequences to present new
opportunities developing summarization models. This dataset should give researchers
the possibility to explore difficulties handling large inputs.

1.2 Outline
In the next chapter 2, we present our background research on neural networks introduc-
ing the fundamentals to ensure the understanding of our conducted experiments and
adoptions. After that we describe the background research in the summarization field
in chapter 3 to give information to the reader on the most important characteristics
in text summarization and evaluation. Furthermore we give details about related
work in chapter 4 describing the recent approaches and results.on the main tasks
in summarization: Headline Generation and Abstract Generation. Subsequently in
chapter 5 we present the datasets used in this thesis to conduct experiments on.
This includes introducing our new corpora and besides that an analytical comparison
between the existing and new datasets. In chapter 6 we describe the details about our
experiments to show and analyze the results in section 7 afterwards. Finally, chapter
8 concludes the thesis and explores future developments of our presented models.
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2 Neural Networks Background
Research

Achieving outstanding results in research topics for years, deep learning is used more
and more in daily applications. New approaches in the field of machine translation or
automatic speech recognition show great results compared to historically approaches.
With the use of machine learning in the task of abstractive summarization, where the
output contains entirely new generated output sentences, which do not necessarily
exist in the source text, new state-of-the-art systems were recently published ([Rush
et al., 2015]). In the following chapter background information about neural networks
used in this thesis are presented.

2.1 Recurrent Neural Networks
Recurrent neural networks (RNN) introduced a type of models, which are able to
deal with sequential information and model their dependencies over time. Rumelhart
et al. [1988a] mentioned recurrent nets first, describing them as layered feed forward
networks (FFN), where each layer corresponds to one time step. Next, Elman [1990]
published the first model architecture, where hidden unit patterns are fed back to
themselves so the internal representation reflects the context of prior internal states.
By introducing connections from one neuron to neurons of the previous layer, memory
is formed over the past. Figure 2.1 Recurrent neural networks over time depicts the
process of sharing context through weighted connections during continuous time steps.
According to Elman [1990] this can be formulated as shown in following term:

ht = σh(Whxt + Uhht−1 + bh)
yt = softmax(Wyht + by)

(2.1)

Here, the authors proposed that the current hidden state ht access the previous
hidden state ht−1 to compute the output yt. Wh, Uh, bh and Wy are weights, which are
trained by backpropagation introduced to neural networks by Rumelhart et al. [1988b].
Backpropagation uses the chain rule to compute the derivative of a loss function with
respect to each trainable parameter in the network. While this approach has become
standard, Jordan [1997] presented a novel architecture called Jordan network, where

3



2 Neural Networks Background Research

Figure 2.1: Unfold recurrent neural networks
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the following states depend on the previous outputs, not on hidden states.
The dynamics of this network across time steps can be visualized by unfolding the
network (Figure 2.1). Given this figure, the model can be interpreted not as cyclic,
but rather as a deep network with one layer per time step and shared weights across
time steps. To train unfolded recurrent neural networks, the original backpropagation
algorithm was adapted, to accumulate gradients through time steps. This algorithm
is called backpropagation through time (BPTT), and was introduced by Werbos et al.
[1990].
RNNs are ideal for tasks such as speech recognition and speech processing, where
access to previous states plays an important role. For example, determining the
semantic meaning of a word in a sentence often requires knowledge of the previous
words. With RNNs, it is possible to create a model that processes phrases on a word
level but includes information from preceding words in the classification decision.
A widely seen problem in using RNNs is the vanishing gradient problem, which
describes the degeneration of the gradients, when the backpropagation algorithm
runs in each time step. The gradients get smaller and smaller that by the time we
get back to the beginning of the sentence, the gradient is so small that it has no
significant effect on the parameters that need to be updated. One method to solve this
is introduced by a new neural networks architecture, shown in the following section
2.1.1 Long Short-Term Memory.
Although recurrent based models became standard in handling temporal information,
there are models without recurrence, such as time-delayed neural networks (TDNNs)
introduced by Waibel et al. [1989].

4



2.2 Encoder-Decoder Models

2.1.1 Long Short-Term Memory

Hochreiter and Schmidhuber [1997] introduced a novel architecture to overcome the
problem of vanishing gradients and handle long-term dependencies in sequential data.
The most fundamental idea behind the Long Short-Term Memory (LSTM) is that in
addition to the standard hidden state h used by most neural networks, it also has
a memory cell c, for which the gradient dct

dct−1
is exactly 1. Because of this special

gradient, information stored in the memory cell does not significantly suffer from
vanishing gradients, and thus LSTMs can capture long-distance dependencies more
effectively than standard recurrent neural networks. Moreover LSTMs contains several
gates. They control the removal or addition of information to the memory cell c.
Gates make use of the sigmoid function, which outputs values between 0 and 1 and
can be seen as a filter that restricts how much information the gate should let through.

2.2 Encoder-Decoder Models

Cho et al. [2014] present the first encoder-decoder neural model approach as novel
architecture in neural machine translation, where the encoder ”encodes” the source
sentence F to a fixed context vector. The decoder uses this information in the context
vector to ”decode” the target sentence E.
Figure 2.2 Encoder-decoder architecture depicts this novel system architecture where
the encoder is placed on the left side, containing a recurrent neural networks, expressed
as RNN (f). Each time step calculates a new hidden state for phrase input f t and
previous hidden state ht−1. Before we can use the words f t from the input sentence
E in our network, we have to create word embeddings m(f)

t (n-dimensional vector
representations of word f t). We visualize the generation of word embeddings emb(f)

for each time step in figure 2.2.
Word embeddings are a class of techniques where individual words are represented
as real-valued vectors in a predefined vector space. Each word is mapped to one
vector, where words with similar meanings have similar representations. There are
several different word embedding approaches, such as Gal and Ghahramani [2015]
presenting Embedding Layers that use one-hot encoded words jointly learned with
the neural network. In addition Word2Vec ([Mikolov et al., 2013]) and its extension
GloVe presented by Pennington et al. [2014] introduce a statistical method to learn
word embedding from a text corpus.

5



2 Neural Networks Background Research

Figure 2.2: Encoder-decoder architecure
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Mathematically, RNN-based encoder-decoder architectures can be formalized as
follows.

m
(f)
t = emb(f)(ft)

h
(f)
t =

RNN
(f)(m(f)

t , h
(f)
t−1) t ≥ 1,

0 otherwise

m
(e)
t = emb(e)(et−1)

h
(e)
t =

RNN
(e)(m(e)

t , h
(e)
t−1) t ≥ 1,

h
(f)
|F | otherwise

p
(e)
t = softmax(Whsh

(e)
t + bs)

(2.2)

Here in the first two lines, we create the word embedding for our phrase ft and
encoder hidden state h(f)

t for each word in time step t. In the first time step 0,
the hidden state is set to an empty vector h(f)

0 = 0. This hidden state encodes
the information from our source sentence E. Lines three to five show the decoder
side, which creates word embeddings for the last output. Computing hidden states
for decoder and calculating word probabilities over the target vocabulary using
p

(e)
t = softmax(Whsh

(e)
t + bs). RNN (f) and RNN (e) can be either RNN or LSTM.

Until now, all the architectures are based on recurrent neural networks. In the
upcoming section 2.4 Transformer Model describes new encoder-decoder architecture
which doesn’t use RNNs. In contrast, it is entirely based on attention, which we a
describe in the next section 2.3 Attention.

6



2.3 Attention Mechanism

2.3 Attention Mechanism
A general problem with the previously described encoder-decoder models is the aspect
that it attempts to store information about sentences of any arbitrary length in a
hidden vector of fixed size. In other words, even if our translation system takes input
of lengths between 10 and 100 words, it always uses the same fixed context vector.
This leads to the problem that if the network is too small it cannot handle long
sentences. On the other hand, if we increase number of parameters in the network it
consumes more resources.
Bahdanau et al. [2014] first introduced an attention mechanism in their encoder-
decoder model. The basic idea of attention is to encode longer input sequences in
larger representations, compared to smaller inputs. Instead of attempting to convert
the entire input sequence into one vector representation (fixed context vector), they
now produce a single vector representation for each input word. This leads the system
to create more representations for longer input sequences and fewer for smaller ones,
avoiding inefficient representations. By referring to these vectors in the decoding step,
the neural network creates a mapping between input and output words through the
attention matrix.
The original attention mechanism is applied to bidirectional RNNs ([Bahdanau et al.,
2014]), where two different encoders are used. One is traveling forward and one
is traveling backward over the input sequence. Introducing the additional reverse
encoder ([Sutskever et al., 2014]) improves the problem of long-distance dependencies
between words at the beginning and end of the sequence.

−→
h

(f)
j =


−−−→RNN(emb(fj),

−→
h

(f)
j−1) j ≥ 1,

0 otherwise

←−
h

(f)
j =


←−−−RNN(f)(emb(fj),

←−
h

(f)
j+1) j ≤ |F |,

0 otherwise

(2.3)

Equation 2.3 shows the computation of hidden states for every word running forward
and backward over the source sentence using RNNs. Here, −→h (f)

j−1 is the hidden state
of the word on the left side and ←−h (f)

j+1 shows the hidden state of the word on the right
side. In the following equation 2.4 both vectors −→h (f)

j and ←−h (f)
j are concatenated to

obtain a bidirectional representation of one word. Further, each representation of
a word fj is concatenated to a matrix H(f), representing the entire input sequence
(Equation 2.5). Each column represents a word in our input sequence.

h
(f)
j = [←−h (f)

j ;−→h (f)
j ]. (2.4)

H(f) = concat_col(h(f)
1 , . . . , h

(f)
|F |). (2.5)
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2 Neural Networks Background Research

Figure 2.3: Attention weight for correspondence between source and target words
([Bahdanau et al., 2014])

Because we now have a matrix representing our source sequence, we cannot apply
traditional softmax(...), which takes a vector as input. One key innovation of the
attention mechanism is introducing αt as attention vector which is used to compute
vector representation of H(f) given a time step t. This attention vector controls how
much we focus on a specific input h(f)

j when predicting the next word in our output
sequence. In other words it contains weights, controlling influence of inputs for our
next output. Figure 7.4 depicts attention weights for correspondence between source
and target word. For example, the word août is highly connected to the word August
showing by higher attention weight (light pixels in matrix).
When applied to RNN encoder-decoder systems, attention mechanisms can be

implemented by calculating an attention score at,j as shown in Eq. 2.6. Mathematically,
given the current hidden states of the encoder and the decoder at time step t, the
attention score can be calculated originally by using Multilayer Perceptrons ([Bahdanau
et al., 2014]).

at,j = attn_score(h(f)
j , h

(e)
t ). (2.6)

Moreover, the authors propose a simple dot product between the hidden states, as it
does not add additional parameters to the network. After calculation and normalizing
how the attention score at,j, a context vector ct is computed, shown in equation 2.7.
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Further, similar to previous RNNs without attention, softmax is used to calculate
probability of each output word (Eq. 2.8).

ct = H(f)αt. (2.7)

p
(e)
t = softmax(Whs[h(e)

t ; ct] + bs). (2.8)

We introduced the attention mechanism in detail, because in the upcoming section
2.4 a novel architecture using a completely new attention mechanism , which replaces
the demand of RNNs by fully focusing on attention, is described.

2.4 Transformer Model

Vaswani et al. [2017] presented a new encoder-decoder architecture which introduces a
completely new design of handling sequential data. By that time, all state-of-the-art
approaches used recurrent or convolutional neural networks to model dependencies over
time (cp. section 2.1). In contrast to previous approaches, they entirely use attention
to handle the sequence-to-sequence task. Their main goal is to reduce sequential
computations, which are needed to compute hidden representations for words or
other phrases in our sequence. Because of dependencies of further states in regard
to previous states, parallel computing is slowed down and the number of operations
increases depending on the distance between input and output words. In addition
Transformer Model allows the stacking of layers similar to modern convolutional layer
approaches. Building deeper networks makes it possible to represent dependencies of
close inputs in early layers while distant inputs represent their dependencies in deeper
layers.
After introducing the attention mechanism for encoder-decoder systems it has became
an integral part of sequence models to handle dependencies without regard to the
distance between source and targets. In their work Vaswani et al. [2017] show how
to replace recurrent approaches, like LSTMs, entirely with attention to improve
parallelization significantly. Doing so, they present new attention spin-off called
multi-head attention, which we will discuss in detail in section 2.4.1.2.
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Figure 2.4: Abstract Transformer Model Architecture
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In figure 2.4 Abstract Transformer Model Architecture we present a conceptual
overview of the Transformer Model architecture showing stacked encoder layers on
the left side and decoder layers on the right side. We begin our introduction on
each layers, combine them and present the whole structure at last. Each layer uses
combined to multi-head attention which we describe in section 2.4.1.2.

2.4.1 Self-Attention

Before introducing Transformer Model, encoder-decoder models based on RNNs
handled their context while decoding new words entirely different. By using previous
hidden states weighted with attention they generated new words depending on their
context from the source sequence. Now, self-attention is the method Transformer uses
to connect relevant words into the new words, the model is currently decoding.
For introductory purposes, we first present self-attention (also called Scaled Dot-
Product Attention) based on vectors before moving to the generalized approach using
matrices that allow for increased parallelization. Having each stacked encoder and
decoder layer based on an identical layout, figure 2.5 depicts self-attention as a key
component of the Transformer Model.
Self-attention is computed for each input word (or character, if the model is character
based), after it is converted into word embedding representation. The main components
are three vectors named query (q ∈ Rdk), key (k ∈ Rdk) and value (v ∈ Rdv). They
are based on the input represented as word embedding (x ∈ Rdmodel). Generally,
dimensions dk and dv are smaller than embedding size dmodel to make self-attention
computationally efficient. The query can be seen as hidden state of decoder, key
as the hidden state of encoder and value as the normalized weight determining the
importancy that is put on the attention of the key. As figure 2.6 shows, query qi is
created from word embedding xi by multiplying it with a trainable weight matrix
Wq (Equation 2.9a). The same procedure is done to create key ki and value vi.
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Figure 2.5: Transformer Layers in Detail
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Weight matrices in self-attention learn features in sequences, comparable to kernels in
convolutional layers learning features from multidimensional inputs.

qi = Wqxi

ki = Wkxi

vi = Wvxi

(2.9a)

scorej =
qik

T
j√
dk

(2.9b)

vweighted
j = softmax(scorej)vj (2.9c)

Self-Attention(Q,K, V ) = softmax(Q ∗KT )√
dk

V (2.9d)

In equation 2.9b we calculate scores by dot product for each current query qi with
respect to all keys from the input sequence kj . This score determines, how much focus
should be placed on words kj while encoding qi. In addition we divide the score by√
dk to have more stable gradients. Moreover equation 2.9c we use the score as weight
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Figure 2.6: Computation of Self-Attention
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for each value vj to compute it’s dependency for qi (decoder state). Finally we provide
the self-attention computation in matrix form in equation 2.9d, which is used for
implementation to improve parallelization. Matrices Q, K and V represent batches of
sequences which are processed in one computation step by applying computationally
efficient matrix multiplication.

2.4.1.1 Position-wise FFN

As shown in figure 2.5 each layer in encoder and decoder also consists of fully connected
layers including max-pooling and ReLU ([Glorot et al., 2011]) activation function.
The inner layer is controlled by dimension dff . It projects the weighted values vweighted

j

to the dimension dff . This is followed by applying the RELU activation function.
Afterwards it’s projected back to dmodel dimension, described by equation 2.10. This
output is used as input for the next layer on the stack.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.10)

2.4.1.2 Multi-Head Attention

One problem of self-attention in Transformer Model is the reduced resolution due to
averaging attention-weighted positions ([Vaswani et al., 2017]). To increase resolution,
the authors propose the multi-head attention which performs the self-attention h-times,
representing the amount of heads in the model. This affects equation 2.9d as shown
in equation 2.11.

headi = Self-Attention(QWQi, KWKi, V WV i)
MultiHeadAttention(Q,K, V ) = Concat(head1, ..., headh)WO

(2.11)

By calculating each head in parallel this further increases the performance. In
addition heads can focus on different positions to expand the models ability to create
dependencies between target and source words. By concatenation of all heads, we
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receive a weighted values matrix, which is projected onto output dimension dmodel by
applying linear transformation with weight matrix WO.

2.4.2 Encoder-Decoder Architecture
Finally we present the complete transformer model architecture in figure 2.7 The
Transformer - Model Architecture. Either encoder and decoder side can be stacked
Nx times using the layer module (figure 2.5). Vaswani et al. [2017] recommend to do
this 6 times on both sides.
After embedding on encoder input is applied, authors introduce a novel approach to
represent the position of token in sequence called Positional Encoding. Moreover we
provide more information in section 2.4.2.1. In addition to self-attention modules
and position-wise feed forward networks, the authors include residual connections,
to allow gradients to flow through the network without applying them to non-linear
activation functions. Vaswani et al. [2017] propose this to reduce the vanishing or
exploding gradients in deep neural networks.

2.4.2.1 Positional Encoding

In RNNs the position of tokens is encoded by processing them one at a time. In the
Transformer Model the authors purpose to encode time as a trigonometric function
(e.g. sine wave). This vector is added to all inputs and outputs (shown in figure 2.7)
to represent the position within the sequence. The advantage of using formulas 2.12
given by the authors is being able to scale to unseen lengths of sequences.

PE(pos, 2i) = sin( pos

10000
2i

dmodel

)

PE(pos, 2i+) = cos( pos

10000
2i

dmodel

)
(2.12)

2.4.2.2 Generating Outputs

The final layers on decoder side turn the stack of float vectors into words. The models
follow previous research and calculate the softmax to obtain a probability distribution
over the output words. Furthermore the highest predictions are used in beam search
([Reddy et al., 1977]). Before applying softmax a linear layer adjusts the embedding
size from internal dimension dmodel to the target vocabulary size.

2.5 Byte Pair Encoding
A drawback of state-of-the-art NMT systems is that huge vocabularies of natural
languages often exceed the memory of graphic processing units (GPU). Therefore the
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Figure 2.7: The Transformer - model architecture ([Vaswani et al., 2017])

vocabulary size must be reduced. Splitting words into sub-word units is a way to do
so.
Byte Pair Encoding (BPE) was first introduced by Sennrich et al. [2015] presenting
a new approach to segment text into subword units. This approach addresses the
handling of out-of-vocabulary words by encoding rare and unknown words as sequences
of subword units. One advantage is that for morphologically rich languages, morpho-
logical variants of words can be generated, that do not occur in the training data.
They define models containing the merging operations specified by hyperparameter
and learned from joined training corpora. This is important, because it ensures that
names or rare words are separated in the same learned way for source and target
corpora. In applying BPE on training data, based on learned merge models, the size
of splits which is defined by n-grams is also set by hyperparameter.
We apply BPE in preprocessing for all used datasets listed in chapter 5. Hyperpa-
rameters for the amount of merge operations are specified in the Experiments section
7.1.
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3 Summarization Background
Research

In this chapter, we present a classification of different summarization systems along
with our background research in the field of summarization research.

3.1 Characterization of Summarizations
According to Jones [1998] and Dong [2018], the task of text summarization can
be classified by the following factors: input, purpose and output. In this thesis
we especially concentrate on single-document including monolingual text on source
and target side. Our systems generate generic abstract summarizations. In one of
our experiments (6.2), we investigate if our system can be used in general purpose
(summarizing different subjects) or only domain-specific scenarios.

3.1.1 Input Factors

3.1.1.1 Single-document vs. multi-document

These factors describe the document input of the summarization system, which
distinguishes between generating a summarization based on a single document or
multiple documents. The task of entering multiple documents creates the problem of
concatenating the inputs in an appropriate way to the system.

3.1.1.2 Monolingual, multilingual vs cross-lingual

Separating the task of summarization according to the language pairs in the processing,
the system can be classified into three groups. In a monolingual system, the input
language of the source document and the output language of the summarization stay
the same. Besides this, the system can only handle one language pair. This fact
differentiates the first type from multilingual systems, where the system can handle
multiple language pairs at the same time. Nevertheless the generated summary has
the same language as its input text. In contrast a cross-lingual system distinguishes
from the types by the fact that the generated summary can be generated in different
languages. In other words it also adds the task of translating to the system.
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3.1.2 Purpose Factors

3.1.2.1 Generic vs. user-oriented

The key difference between generic and user-oriented systems is the fact, that generic
summarizations need to be suitable for all types of readers, not including their special
objectives or interests. Its counterpart is called a user-oriented system, which produces
personalized outputs including certain information from the source text, which is
indicated as most interesting for the special readers. This fact makes it mandatory
to know the interests of a user and add this information as additional input to the
generation of the summarization.

3.1.2.2 General purpose vs domain-specific

General purpose systems are able to create summarizations across any domain of the
input with no or just small modifications. In contrast, the domain-specific systems
only cover a small range of inputs for which the system is specifically created for.

3.1.3 Output Factors

3.1.3.1 Extractive vs abstractive

The summarization of the input can be created using two different approaches, defining
how input information is transformed to an output. The first and original approach
is called extractive summarization, which selects parts of the input. This approach
often reduces the readability of the summary. On the other hand is the abstractive
summarization, which generates new outputs. This includes selecting the important
source information and constructing a novel sentence. In current research extractive
and abstractive summarization are becoming more and more mixed up See et al.
[2017] including a copy mechanism to directly add important content from the source
to the new output.

3.2 TF-IDF Sentence Ranking
In this section, we introduce the task of information retrieval for summarization,
which has the purpose of finding sentences containing more important information
compared to others. In other words, we discard entire sentences which do not include
information to be transfered to our system output, the summarization of the source
sequence. Salton and Michael [1983] were the first to present the numerical statistic
term frequency–inverse document frequency (if-idf) reflecting the importance of words
in a document.
The TF-IDF computes a product of term frequency and inverse document frequency.
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Term frequency TF (d, t) counts the number of times a specific term t occurs in a
document d. Furthermore the inverse document frequency IDF (t) measures how
important a term is by computing its rareness.

TF(d, t) = ft,d

IDF(t) = log N

DF (t)
TF-IDF(d, t) = TF (d, t) ∗ IDF (t)

(3.1)

Compared to the original approach, we do not measure the importance of a word by
its rareness. In contrast, we assume that a sentence is more important for our target
summarization, if the words of a sentence are used more often in the source sequence.
In other words, if a topic (words) is more often part of the source or discussed more
often, is should get more importance in our goal summarization.
In order to find the most important sentences, we sort all sentences descending by
their TF-IDF score. After sorting, we sum up the amount of words of each sentence,
stopping after exceeding a threshold defining the maximum number of words a source
sequences is allowed to have.

3.3 Evaluation Metrics
We apply ROUGE Score evaluation to measure the quality of our output summariza-
tions. Since Mani [2001] and Lin [2004] published their work, ROUGE-1, ROUGE-L
and ROUGE-2 (which were published as ROUGE-N) have become the standard
quality metrics in field of summarization. We introduce and discuss the basic ROUGE
metrics in 3.3.1 Standard ROUGE. Furthermore there are several additional metrics,
which measure different qualities of summaries. For example whether the summary
contains words from source sequence or percentage of novel words in summaries. We
will present these metrics in section 3.3.2 Further Metrics.

3.3.1 Standard ROUGE Metrics

ROUGE, which stands for Recall-Oriented Understudy for Gisting Evaluation, defines
metrics, to determine the quality of generated summaries comparing to (human) gold
summaries. By calculating the overlapping units such as n-grams, word sequences
and word pairs between source and target corpus.
Despite the usually used ROUGE-N and ROUGE-L measure, Lin [2004] also published
ROUGE-W and ROUGE-S Scores. ROUGE-1 and ROUGE-2, which are special types
of ROUGE-N, measure the n-gram co-occurrence between the candidate and reference
summary defined in equation 3.2. Thereby, n stands for the length of the n-gram,
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gramn, and Countmatch(gramn) is the maximum number of n-grams co-occurring in
a candidate summary. S(ReferenceSummaries) is a set of reference summaries.

ROUGE-Nrecall =
∑
S(ReferenceSummaries)∑ gramnCountmatch(gramn)∑
S(ReferenceSummaries)∑ gramnCount(gramn)

ROUGE-Nprecision =
∑
S(ReferenceSummaries)∑ gramnCountmatch(gramn)∑

gramnCount(gramn)
(3.2)

Clearly, the ROUGE-N metric is based on recall (true positive rate/ hit rate) to
compare the n-grams from candidate and reference summary.
In contrast, ROUGE-L compares the longest common sequences (LCS). For a given
sequence X = [x1, x2, ..., xm] and subsequence Z = [z1, z2, ..., zn], ROUGE-L increases
depending on a strictly increasing sequence of indices [i1, i2, ..., ik] when xi = zi

(sequence X equals subsequence Z).

ROUGE-Lrecall = LCS(S,G)
length(S)

ROUGE-Lprecision = LCS(S,G)
length(G)

(3.3)

ROUGE-W defines an extension of ROUGE-L as Weighted Longest Common Sub-
sequences. It enhances the previously introduced ROUGE-L score by weighting con-
secutive matches higher. The weight depends on the length of the current consecutive
matches. Usually ROUGE-W is not used in the latest evaluations of summarization
models.
ROUGE-S measures Skip-Bigram Co-Occurrence Statistics, which describes the
matches of arbitrary bigrams in two sequences. Because of low significance in longer
sequences, this metric is usually not used either.
As we already introduced in equation 3.2 and 3.3 each metric is defined by recall
recall (R) and precision (P ) value. The commonly used ROUGE evaluation metric
is defined by its balanced F1 score shown in equation 3.4. In the following results
chapter 7 we evaluate our experiment outcomes using this score.

F1 = 2 PR

P +R
(3.4)

3.3.2 Further Metrics
Evaluating our models with the percentage of copied words from source sequence
to target summaries gives information about the abstraction level our models reach.
This is an important feature of abstractive models compared to extractive approaches.
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Recently additional metrics have been published to measure more qualities in the
complex task of comparing summarizations.
Kryscinski et al. [2018] define the metric novel n-grams measuring new words generated
by the model, which were not part of the source sequence. This advanced metric also
rates the abstraction level of our models.

3.3.3 Fact Aware Neural Abstractive Summarization
A main duty of generating summaries of documents is the preservation of facts.
Changing the truth content, while processing sources, makes the summary worthless.
By discarding a word, for example negations like not or no, the statement of facts
and entire sentences changes. Cao et al. [2018] discuss this problem in their paper
by running a study on summaries created on the Gigaword dataset. They compare
several models (we present more details about these models in section 4.2), presented
over the past years on their faithfulness. Unfortunately the authors do not propose
a metric to automatically evaluate summarization systems to keep facts unchanged.
They manually set FAITHFUL, FAKE or UNCLEAR flags on a small test set.
In the upcoming chapter we introduce the system of Cao et al. [2018] and other
researchers which published novel architectures in the summarization research field in
the past years.
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The active research topics in the field of abstractive summarization do concentrate on
two main tasks, headline and abstract generation.
On the abstractive headline generation task Rush et al. [2015] created the first attempt
using different encoder-decoder approaches with an attention mechanism. Achieving
favorable results on this task during the past years, people where looking for more
challenging competitions. Increasing the input size leads to the task of summarizing
whole text snippets or articles to abstracts. We will discuss recent approaches published
in both fields in this chapter.

4.1 Historical Methodology

The field of automatic summarization research started with an extraction-based
summarization task. Its goal is to automatically extract objects from an entire source
sequence and process these objects without modifying them. An Example of this
task is keyphrase extraction, where the goal is to select individual words and tag a
document with these key words. Furthermore the task of document summarization
has received a large amount of attention, with the goal of selecting whole sentences
without modifying them and create abstracts of documents. Pioneering work done
by Luhn et al. [1959] and Edmundson [1969] showed novel approaches to extract
sentences used to classify the entire document. For example, the sentence after section
headings like Introduction or Conclusion was used to identify the document’s topic.
Furthermore they showed, that sentences including words like significant or hardly
also signal topic sentences. Hovy et al. [1999] published their work about creating
a novel text summarization system called SUMMARIST. They proposed a pipeline
including the steps Identification, Interpretation and Generation. The Identification
step is used to extract the source (sub-)topics. Then Interpretation tags the sentences
with identified topics and decides which are the most important with regard to the
desired abstract length. Finally, Generation is used to formulate sentences, using
sentence generating systems shown in Bateman et al. [1991].
Despite concentrating on neural based approaches, several technologies from extraction-
based summarization are used in preprocessing steps of current systems. In section
3.2 we already presented the historic approach TF-IDF (see section 3.2) which is still
frequently used in modern systems. Moreover unsupervised concepts like LexRank
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([Erkan and Radev, 2004]) and TextRank ([Mihalcea and Tarau, 2004]) may be
frequently used again for preprocessing in the future.

4.2 Headline Generation

Presenting the first neural based abstractive summarization approach, Rush et al.
[2015] concentrated their research on single sentence generation from news articles
based on the Gigaword dataset. They use different encoder approaches (Bag-of-Words,
Convolutional and Attention-based) to capture the meaning representation of the source.
In other words it transforms a sequence of word embeddings w1, . . . ,wT to a vector
d, which is used as the meaning representation of the input. Afterwards the decoder
is used to generate a summary based on these representations. They achieved state-
of-the-art performance on DUC-2004 using their attention-based encoder combined
with attentional feed-forward neural network on the decoder side. We present their
results in section 7.5.1 as baseline called ABS for publishing the first scores applying
neural encoder-decoder model as we do for the Transformer Model.
Their approach has been improved with recurrent decoders ([Chopra et al., 2016])
and hierarchical networks ([Nallapati et al., 2016]) presenting the best results on the
DUC-2004 and the Gigaword datasets.
The CNN-based attentive encoder used in Chopra et al. [2016] is similar to the
attentive encoder proposed by [Rush et al., 2015], except that the attention weights
are computed, based on the aggregated vectors obtained by a CNN model. In addition,
they replace the previous decoder with a recurrent neural network. The authors
propose two decoder models based on the Elman RNN ([Elman, 1991]) and the
LSTMs. The resulting models are called RAS-LSTM and RAS-Elman and will be
included in our evaluation in 7.5.1.
Nallapati et al. [2016] published further improvements on the encoder side replacing it
with a feature-rich hierarchical attentive encoder based on bidirectional-GRUs to create
a meaning representation of the source. The additional features are concatenated
with the word embedding input vector and contain linguistic features, such as term-
frequency (TF) and inverse document frequency (IDF) of the word. On the decoder
side, the authors propose uni-directional GRUs including a large vocabulary trick to
reduce the softmax computation time. It limits the number of words the decoder
can generate during training by defining a small vocabulary for each mini-batch. It
contains a subset of words from the global target dictionary. In addition they use
a pointer network, which directly copies words from the source. This improves the
summary quality by including the rare words from the sources. Their approach is
called HA-RNNs (Hierarchical Attentive RNNs) and is included in the evaluation of
this thesis in chapter 7.5.1. Furthermore to the headline generation task, the authors
published the first results for the abstract generation task using the CNN/ DailyMail
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dataset. We will analyze their system in the following section 4.3.
The latest results were published by Cao et al. [2018] together with studiying the
faithfulness of summaries. In their approach, the authors propose a dual-attention
network to combine two separate encoders. Each encoder uses separate attention
mechanisms on the input to produce independent context vectors. The first encoder
is used to encode the entire source sequence comparable to Cho et al. [2014]. In
addition they propose to use a second encoder to include the facts of the first source
sentence. They extract the facts using Open Information Extraction (OpenIE) ([Banko
et al., 2007]). The facts are concatenated and used as input to the second encoder to
produce another context vector. Afterwards they combine both context vectors using
feed-forward networks to define the final representation of the source. On the decoder
side they use the popular GRU based architecture including an attention mechanism
([Bahdanau et al., 2014]). Their best model FTSumg sets a new benchmark in
evaluating on Gigaword dataset results.

4.3 Abstract Generation
Combined in one paper, Nallapati et al. [2016] published new state-of-the-art results
on the Gigaword dataset together with presenting a very rare large-scale new corpus
CNN/ Daily Mail (5.3) for multiple sentence summarization with the goal to create
abstracts for entire news articles. Thereby, the authors opened a new research area
by presenting a new model HA-RNNs, which is specialized to process longer inputs
(see section 4.2 for a description of this approach).
See et al. [2017] presented a new model for the abstract generation task called Pointer-
Generator Network. Their encoder completely resembles the architecture of Chopra
et al. [2016]. On the decoder side, they used a single-layer uni-directional LSTM. In
addition, a decoder/pointer switch that is similar to [Nallapati et al., 2016] is used for
copying source tokens directly to the target summarization. Moreover the authors
investigate the problem Nallapati et al. [2016] already described. They observed that
the models produce repetitions when generating multi sentences outputs. Because of
this, they propose a coverage mechanism penalizing repeated attentions on already
attended words. They maintain a coverage vector ct, which contains the sum of
attention over all previous decoder timesteps.

ct =
∑t−1

t′=0 a
t′

et
i = vT tanh(Whhi +Wsst + wcc

t
i + battn)

(4.1)

In equation 4.1 ct represents the scope, which words in the source documents have
received by the attention mechanism. The coverage vector is included as extra input
to the attention mechanism calculating et

i. It is combined with a learnable parameter
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Source Text
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Figure 4.1: Pointer-Generator Network ([See et al., 2017])

wc to automatically adjust its influence. Including the history of decisions made by
attention mechanism it helps to reduce repetitions in current decision (choosing where
to attend next).
Based on previous approach Paulus et al. [2017] present a new attention score cal-
culation called intra-attention mechanism on the encoder side. In their Neural
Intra-attention model, they combine hidden states he

t from the source embeddings
x = {x1, x2, . . . , xn} together with already generated outputs y = {y1, y2, . . . , yn′}
(summary) to produce hd

t using bi-directional LSTMs. Both, source and target hidden
states are joined using a weighted dot-product function f(hd

t , h
e
i ) = hd

t
T
W e

attnh
e
i pro-

ducing eti = f(hd
t , h

e
i ) which is then used to compute the attention score (see chapter

2.3, Equation 2.6). The basic building block used on the decoder side is similar to
See et al. [2017], where intra-attentions used an extra input to prevent the system
generating from already produced outputs in the target summary.

4.4 Using Transformer Model in Summarization

Presenting an entirely new architecture for sequence-to-sequence translation tasks,
Vaswani et al. [2017] released new state-of-the-art results for machine translation on
various language pairs. Presenting the possibility to stack layers in the encoder and
decoder to build deep models is a novel way to work with languages. Therefore it
becomes also very interesting in the task of summarization.
Liu et al. [2018] published the first work in summarization research using the Trans-
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Figure 4.2: Local-attention and Memory-compressed-attention ([Liu et al., 2018])

former Model. They investigate the feasibility of generating long sequences (summaries)
of various input sources. In more detail, they show how to generate Wikipedia1 ar-
ticles based on combined corpora from the articles citations and web search results.
Publishing a new dataset containing more than 2.3M examples up to 105 source
words. As a result of using long sequence inputs, they propose a novel way to com-
pute Self-attention in the Transformer Model, saving as much memory as possible
called Local-attention (L-Layer) in combination with Memory-compressed attention
(M-Layer). Figure 4.1 depicts the fundamental principle of the novel attention imple-
mentations. The main idea behind the new calculation of attention is to split the input
into blocks of fixed size, reducing the memory allocation. Furthermore they reduce
the number of keys and values (See equation 2.9a in section 2.4.1) by using strided
convolutions in Memory-compressed attention. They are stacking layers alternating
between the two attention types resulting in a 5 layer architecture called LMLML.

1wikipedia.org/
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In the following sections we present the datasets used in our experiments. The first
two corpora Gigaword1 (5.1, [Graff, 2003]) and CNN/ DailyMail2 (5.3,[Hermann et al.,
2015]) are publicly accessible. They are used to compare the experiments results
with existing approaches for headline- and abstract-generation tasks. Furthermore we
provide new datasets based on research papers for both tasks. In the following we
present statistics generated on the different corpora, showing difference and similarities
between the publically available datasets and our own.

5.1 Gigaword
The Gigaword dataset was originally published by the Linguistic Data Consortium
(LDC), based on several news paper corpora. It provides source and target files for
training and validation. It contains around 3.8 million news articles sourced from
various united states and international news services over the last two decades. As
targets, the titles of news articles are used. For evaluation Rush et al. [2015] extracted
a test set of 2000 sentences including headlines from the source corpus, which we will
also use to evaluate our models.
A general preprocessing is already performed on the original corpus (e.g tokenization,
substitution of numbers, etc.). We also apply our own preprocessing to the corpus,
removing special characters.
Information about data distribution is shown in section 5.2.4 Corpora Comparison. In
addition to the Gigaword corpus, DUC-200x3 provides standardized test data without
connections to our training data.

5.1.1 DUC-2003 and DUC-2004 Evaluation Datasets
The standard sentence summarization evaluation set is associated with the DUC-2003
and DUC-2004 tasks published by Over et al. [2007]. The data for each task consists of
624 and 500 news articles respectively from the New York Times and Associated Press
Wire services. Each is paired with 4 different human-generated reference summaries,
capped at 75 bytes. This dataset is for evaluation only.

1github.com/harvardnlp/sent-summary
2github.com/JafferWilson/Process-Data-of-CNN-DailyMail
3duc.nist.gov/data.html
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5 Datasets

5.2 ArXiv Headline Generation
Directly comparable to the previous Gigaword dataset, we provide a new novel ArXiv
Headline Generation datasets, which offers new opportunities to evaluate or train
models. By comparison to the existing Gigaword dataset, the task stays the same,
creating headlines based on multiple source sentences. In contrast to most previous
published corpora, our dataset does not consist of news article related examples. The
data for our new corpus is extracted from arXiv4. The source data consists of the
abstracts of research papers and the targets are articles titles.

5.2.1 Data Structure
Compared to the Gigaword corpus the basic structure stays the same, containing
source and target files for training, validating and testing. Moreover we publish two
different datasets containing data from different research fields. The first corpus
contains all papers from Computer Science research, which are available on arXiv until
December 2018, which results in more than 180k examples. In addition we present
a corpus including abstracts and titles from the field of Physics research, storing
more than 970k examples. Both models can be used for separate training, giving
new opportunities to compare the performance of models trained on different type of
domain. In Section 7.2.3 we present our results that show the ability to generalize
over different subjects used for training and testing.

5.2.2 Corpus Creation
We use the fact that arXiv participates in the Open Archives Initiative5 (OAI) as
OAI-PMH data-provider. Lagoze and Van de Sompel [2001] presented the initiative
in 2001, enhancing the access to e-prints in scholarly communication. Data-providers
like arXiv submit nightly meta data updates. For our purpose, the meta data includes
all information we need to build our corpus, containing abstracts and titles from all
newly added papers. Furthermore, classification of papers in research areas is also
available to distinguish between physics and computer science papers. Using a freely
available OAI-PMH implementation6, accessing the arXiv metadata is also free of
charge.

5.2.3 Corpus Preprocessing
We apply additional preprocessing on the data harvested from arXiv. This includes
transforming to lower case, normalization of punctation and tokenization. Furthermore

4arxiv.org/
5openarchives.org/OAI/2.0/openarchivesprotocol.htm
6github.com/infrae/pyoai
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5.2 ArXiv Headline Generation

we replaced numbers, removed formulas from abstracts and deleted special characters.
In table 5.1 we show two examples from our new corpora.

5.2.4 Corpora Comparison
Finally we provide statistical comparison between Gigaword and ArXiv Headline
Generation corpora to present differences and similarities on the data level. In table
5.2 the first row shows the number of examples in each corpora. In this case, significant
differences between the three datasets exist, to compare how much the corpus size
affects the performance. Additionally we present the data distribution of words for
source and target side. As we can clearly see, the number of words is higher on our
own datasets, compared to Gigaword. In contrast to this fact, the number of words
on target size stays nearly constant between all corpora. In conclusion, newly created
models need to summarize from longer sources to constant headline sizes.

Table 5.2: Comparison of Headline Generation Datasets
arXiv Headline Generation

Corpus Gigaword Computer Science Physics
#Examples 3803957 186578 972048

Source Comparison
Lowest #Words 11 2 1
Highest #Words 99 512 846
Average #Words 30.8 139.7 122.6

Target Comparison
Lowest #Words 2 2 1
Highest #Words 45 46 66
Average #Words 7.7 9.9 9.9

In the following we present analysis of data distribution over all datasets for the
headline generation task. The histograms 5.1 Data Distribution Gigaword Source and
5.2 Data Distribution Gigaword Target visualize the distribution of source and target
lengths in the corpus. We show the same statistics for ArXiv Headline Generation
copora including Computer Science papers (see figure 5.3 Data distribution Computer
Science Papers sources and 5.4 Data distribution Computer Science Papers targets)
as well as Physics papers (see 5.5 Data distribution Physics Papers sources and 5.8
Data distribution Physics Papers targets). On one hand, the histograms show the
source side (in Gigaword corpus it’s visualizing an abstract of news article and in
ArXiv Headline generation corpora it’s the abstract of papers), the data distribution
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5 Datasets

Table 5.1: Examples of novel ArXiv Headline Generation corpora
Field of
Research

Abstract Title

Computer
Science

in this paper we study the phase transition behav-
ior emerging from the interactions among multiple
agents in the presence of noise . we propose a
simple discrete time model in which a group of
non mobile agents form either a fixed connected
graph or a random graph process and each agent
taking bipolar value either # or # updates its value
according to its previous value and the noisy mea-
surements of the values of the agents connected
to it . we present proofs for the occurrence of the
following phase transition behavior at a noise level
higher than some threshold the system generates
symmetric behavior or disagreement whereas at
a noise level lower than the threshold the system
exhibits spontaneous symmetry breaking or con-
sensus . the threshold is found analytically . the
phase transition occurs for any dimension . finally
we demonstrate the phase transition behavior and
all analytic results using simulations . this result
maybe found useful in the study of the collective
behavior of complex systems under communication
constraints .

phase transitions on
fixed connected graphs
and random graphs in
the presence of noise

Physics we consider the interpretation of tetrad fields as ref-
erence frames inspacetime . reference frames may
be characterized by an antisymmetric acceleration
tensor whose components are identified as the iner-
tial accelerations of the frame . this tensor is closely
related tog ravitoelectromagnetic field quantities
. we construct the set of tetrad fields adapted to
observers that are in free fall in the schwarzschild
spacetime and show that the gravitational energy
momentum constructed out of this set of tetrad
fields in the framework of the teleparallel equiva-
lent of general relatrivity vanishes . this result is
in agreement with the principle of equivalence and
may be taken as a condition for a viable definition
of gravitational energy .

on reference frames in
spacetime and gravita-
tional energy in freely
falling frames
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5.3 CNN/ Daily Mail

Figure 5.1: Data Distribution
Gigaword Source
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Figure 5.2: Data Distribution
Gigaword Target
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is similar, but having different scale of X-Axis. Where the most examples of Gigaword
Corpus containing 20 to 40 words, the other corpora contain at least 50 up to 250
words. On the other hand, the target side shows similar data distribution over all
corpora, where most of the headlines contain between 5 and 25 words. Finally this
analysis can be used to remove outliers from the corpora, to reduce the range of words.
As we can see in all histograms, the right side is often deserted, which means the
amount of examples in containing that number of words is very low. The number
compared to the mean value is much smaller.

5.3 CNN/ Daily Mail
Hermann et al. [2015] introduced the CNN/ Daily Mail dataset in 2015 for their task
on teaching machines to answer questions. Insufficient data lead them to create a new
corpus, collecting data from CNN7 since 2007 and Daily Mail8 since 2010. As the first,
Nallapati et al. [2016] first used the corpus in 2016 for abstractive summarization.

5.3.0.1 Data Structure and Preprocessing

Comparing the CNN/ Daily Mail dataset to the previous datasets from headline
generation the size of sources and targets increased. The enhanced task of abstract
generation uses sources containing multiple sentences to produce abstracts also consist-

7www.cnn.com
8www.dailymail.co.uk
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Figure 5.3: Data distribution
Computer Science Papers sources
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Figure 5.4: Data distribution
Computer Science Papers targets
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Figure 5.5: Data distribution
Physics Papers sources
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Figure 5.6: Data distribution
Physics Papers targets
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5.4 ArXiv Abstract Generation

ing of multiple sentences. In section 5.4.1.1 Corpora Comparison we present once more
a statistical comparison between the freely available CNN/ Daily Mail dataset and our
own ArXiv Abstract Generation dataset. Furthermore to prepare the original corpus
for the summarization task, several preprocessing steps are needed. The original
dataset contains the story, which is a news article. It also contains highlights, which
are concatenated to create the articles abstract. Next, we remove outliers from the
dataset. As we can see in table 5.3 Comparison of abstract generation datasets, the
example containing the highest amount of words is far above the average. Removing
all examples over 380 words removes only 35 out of 311971 entries from the dataset.
Finally we replace unnecessary characters and numbers in sources and targets with
placeholders.

5.4 ArXiv Abstract Generation
Until now, CNN/ Daily Mail corpus is the only available dataset for abstract generation
task on summarization, which is big enough to train modern neural systems. Because
of this, we introduce a new dataset for abstract generation task. Our corpus is
based on research papers published on arXiv, similar to our corpora for the headline
generation task.

5.4.1 Data Structure

The main idea behind our new corpus is to create research paper abstracts from the
papers contents. Doing so, we download the whole papers LaTeX9 sources, apply
preprocessing which we describe more in detail in section 5.4.2 to produce plain text.
One of the problems we face during the preparation of our dataset is the wide range
of content length of the papers. This problem is resolved by removing outliers and
applying further selection of sentences by their statistical word importance using
tf-idf. Our current corpus contains papers published in the range from july 2017 to
december 2018 resulting in 143882 successfully processed papers. After removing
outliers which includes huge papers, we present our novel corpus containing 91847
examples. Additionally our scripts can be applied to generate more examples from the
past years to extend the dataset. We discuss further possibilities about this dataset
in our future work in section 8.2.

5.4.1.1 Corpora Comparison

In this section we compare the corpus CNN/ Daily Mail with our own, presenting
results in table 5.3 Comparison of abstract generation datasets. The following analysis

9www.latex-project.org
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5 Datasets

Table 5.3: Comparison of abstract generation datasets
Corpus CNN/ Daily Mail arXiv Abstract Generation
#Documents 311971 91847

Source Comparison
Lowest #Words 9 3
Highest #Words 2190 7417
Average #Words 688.4 3363.9

Target Comparison
Lowest #Words 2 2
Highest #Words 1953 346
Average #Words 49.5 141.5

of CNN/ Daily Mail dataset is done after removing outliers. As we can see on
the source side, our dataset contains longer sequences with 3364.1 words in average
compared to 688.4 words. Also the target side reflects the same, surpassing the CNN/
Daily Mail datasets with respect to the sequence length.

5.4.2 Corpus Creation

Similar to the datasets in section 5.2 our novel ArXiv Headline Generation corpus
is based on papers from arXiv. In contrast, the abstracts of papers, which were the
source of the summarization in the last corpora, become now the target. These targets
should be generated by the entire content of each paper. This raises several new
challenges, we faced during creation of our novel corpus. First, the usage of OAI-PMH
delivers only abstracts and titles of papers. Consequently a new way to access the
LaTeX Sources of papers is needed. This is realized by using a bulk data access10

provided by Amazon S311 where arXiv publishes monthly all new papers sources in
archives. These archives are downloaded using s3cmd12 implementation. Amazon S3
applies the requester pays buckets concept which is not free of charge. In the following
we conduct several steps to process the resulting corpus from LaTeX sources. We will
describe these steps shortly in the following sections.

10arxiv.org/help/bulk_dat_s3
11aws.amazon.com/s3/
12github.com/s3tools/s3cmd

34



5.4 ArXiv Abstract Generation

Figure 5.7: Data distribution
CNN/ Daily Mail sources
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Figure 5.8: Data distribution
CNN/ Daily Mail targets
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Figure 5.9: Data distribution
ArXiv Abstract Generation sources
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Figure 5.10: Data distribution
ArXiv Abstract Generation
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5.4.2.1 LaTeX sources to plain text

To use papers as training data in the summarization task, it is necessary to remove all
LaTeX commands. Before this happens, the archives are unpacked and preprocessed.
In this step, we remove unnecessary captions of figures, tables and formulas directly in
the LaTeX sources. This is already done in LaTeX sources, because filtering for special
LaTeX commands is far easier than removing it in plain text. Moreover we search
for the main LaTeX file, which can be different for each paper. After the main file is
indicated, we combine all sources. Next, we conduct a very important step, which
removes the abstracts of the papers from our source files. Without this step, the system
would be trained on inputs containing the desired outputs. After this we use adjusted
implementation of opendetex13 to remove LaTeX commands. Moreover preprocessing
is applied to the resulting plain text files to remove unnecessary characters, which is
described in the next paragraph.

5.4.2.2 Plain text preprocessing

In addition we process the plain text files, to remove unnecessary content. For example
we apply our preprocessing on formulas, numbers, comments and special characters to
reduce the complexity. A lot of special characters from the LaTeX source are copied
to plain text by opendetex, which are redundant or needless. Another problem appears
in papers from mathematics or physics, which include large sections of formulas and
equations. Removing them results often in words without connections. To manage this,
we exclude the whole sentence. This should not affect the summarization performance,
because detailed information about equations are usually not part of the abstract.
Last but not least we apply lowercasing, punctation normalization and tokenization,
as we already presented in our previously created datasets for the headline generation
task.

5.4.2.3 Matching papers and abstracts

Once more we use our OAI-PMH implementation from the ArXiv Headline Generation
corpora to download abstracts for our new ArXiv Abstract Generation dataset. Doing
so, the unique arXiv ID is used to combine the plain text of the source papers with
the abstracts. We apply the same preprocessing to abstracts as described in section
5.2.3.
In the following chapter we describe our novel experiments conducted on the new
created datasets in this thesis. Furthermore we use the publically accessible datasets
and compare the performance of the Transformer Model to previous approaches.

13github.com/pkubowicz/opendetex
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6 Experiments

Performing abstract summarization is about finding the most important facts from a
given source sequence and generating new output, which puts the facts into readable
and grammatically correct sentences.
Our main contributions are presenting the first evaluations on the commonly used
summarization corpora Gigaword and CNN/ DailyMail. In addition we present novel
datasets harvested from arXiv providing new possibilities in comparison of models
performance and generalization. Furthermore we provide a very challenging dataset
including long source and target sequences, which contains research topics compared
to existing news articles datasets.
In the following we introduce our experiments, in the beginning mainly focusing on
searching for ideal hyperparameters in the training phase of the Transformer Model
in the field of summarization, presented in section 6.1. Moreover we conduct several
tests with different preprocessing steps shown in section 6.1.1.
Furthermore we present an entirely new experiment investigating the generalization
performance of abstractive models, if they were trained on different research topics.
We show novel results in evaluating models in unseen science fields. Afterwards we
present how fast a model can catch up after finetuning its parameters on the other
research topic.
Working with datasets containing large inputs, memory costs are a problem using the
Transformer Model. Different approaches and their results are shown in 6.3.1.
After the training phase, we further investigate the possibilities to improve the
performance of our models generating summaries of higher quality in the inference
process.
In the end we sum up our results and present our best models on each of the five
datasets that are used in this work.

6.1 Models and Experimental Setup
In the following we describe the experiments showing the usage of different hyperparam-
eters in training phase. For the tests we use the implementation1 of the Transformer
Model, which was forked from main repository to track all changes of this thesis in
a different fork. This implementation is oriented at the original model published by

1github.com/quanpn90/NMTGMinor

37



6 Experiments

Vaswani et al. [2017] and is intended for use in machine translation research.
Finding the suitable hyperparameters is key in the training phase of the Transformer
Model. Because of missing comparable research work, we first looked to the machine
translation task, where the Transformer Model already replaced previous encoder-
decoder models based on LSTMs. Popel and Bojar [2018] propose several suggestions
how the Transformer Model can be trained to achieve the best results on the machine
translation task. We mainly investigate the influence of different number of layers
and learning rates. Moreover the influence of novel update method noam ([Vaswani
et al., 2017]) is investigated and compared to previous used approaches.
Our implementation splits up the batch size in two components. The first component
is called batch size words, which defines the maximum number of words used in each
iteration. The second component is called batch size sentences and controls the num-
ber of lines used from the parallel training corpus for single iteration. One iteration
contains the forward pass using encoder and decoder layers. Using a generator, the
decoder outputs are converted to tokens using a generator, described in section 2.4.2.2.
We apply negative likelihood loss (NLLLoss).

6.1.1 Preprocessing Setup

We apply different preprocessing steps on our datasets, such as investigating the
influence of removing unnecessary tokens, applying BPE using different merge sizes
or splitting tokens in smaller n-grams to reduce the vocabulary size. Moreover we use
scripts published by Moses2 including tokenization (inserting spaces between words
and punctuation) and cleaning (Removing mis-aligned sentences).
These steps were also very helpful in the time we created our new datasets presented
earlier. Because of very noisy data returned by the crawler we used to get data from
arXiv (see 5.4.2).

6.2 Generalization Experiments
In this section we describe the experiments about the generalization ability of the
Transformer Model. At first we train two separate models on each research topic,
computer science and physics, described in section 5.2. Based on these models we
conduct evaluations, generating headlines (summaries) for each model on a random
test set collected from the dataset, excluded from the dataset before it was trained
on it. These results serve as our baseline in this experiment. We apply the standard
evaluation metric (3.3) ROUGE to measure the summaries quality. Additionally we
determine the number of copied words and average length of outputs.
After showing the initial performance of our models on similar data compared to

2statmt.org/moses/
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the training data, we investigate the scores our models can reach on test sets from a
different research subject. We apply the same measurements on the generated outputs.
This is followed by our last experiment, to determine how fast a model can catch
up on a different topic by finetuning it on the provided training data. We measure
the number of epochs needed for our best model to produce summaries of similar
quality than its counterpart baseline model. On top we perform the initial tests for
our baseline system once again, to see if the performance of the finetuned models has
changed on their originally learned data.

6.3 Model adaptation
In this section we describe our model adaptations performed on the Transformer
Model approach to overcome problems we faced during this work and furthermore
improve the performance on well-known problems in summarization, as we showed in
our chapter about related work 4.

6.3.1 Reducing Memory costs
Working on long sequence inputs, memory costs are always a problem in machine
translation. To address this problem we investigated three approaches to reduce the
memory allocation during training of our Transformer Model.

6.3.1.1 Local-Attention Experiments

Liu et al. [2018] showed in their work the possibility of the Transformer Model to
be able to work with very long input sequences by adapting the computation of self-
attention. The author didn’t publish either their implementations of local-attention
nor memory-compressed attention. To overcome our memory problems while training
on large inputs from our ArXiv Abstract Generation dataset (5.4) we included their
ideas in our implementation.
Reusing their idea to split inputs in fixed sized blocks to reduce memory costs in
computing the self-attention. We observe, that calculating ki (key) and vi (value)
from equation 2.9a on smaller blocks reduces memory costs because smaller linear
transformation is needed. To keep performance of self-attention constant we decide to
keep qi (queries) on its original size. To apply the computation of scores in equation
2.9b we then use a masked dot product, only calculating the partial score for a reduced
size of ki. These values are then merged into one full score to compute the full softmax
afterwards. While saving around 20 percent of memory, the speed decreased about
50 percent compared to our original implementation. Because of this loss, we prefer
using gradient checkpointing instead of Local-attention, which we will introduce in the
next sections.
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6.3.1.2 Gradient Checkpointing Experiments

Our implementation provides the possibility to use gradient checkpointing ([Griewank
and Walther, 2000]) for individual layers of the Transformer Model on the encoder
as well as on the decoder side. Gradient checkpointing describes a method to save
memory by recalculating the forward pass while propagating the gradients backwards
through the model. More in detail, in the common implementation, the activation
values of single learnable parameters in the model are saved after each forward pass, to
calculate the gradients and therefore the weight updates in the subsequent backward
pass. By applying gradient checkpointing we do not store the activations after the
forward pass. In contrast only the current loss is saved. As a result the activations
are once more calculated during the backward pass to use them to compute gradients
using backprogagation. To sum it up, we again sacrifice speed to save memory, but
compared to Local-Attention the reduction of speed is smaller. Therefore we prefer
this method to reduce our memory cost when working on long input sequences.

6.3.1.3 TF-IDF Sentence Ranking Experiments

Using TF-IDF Sentence Ranking (3.2) to reduce memory does not count as model
adaptation. We include it in this section, because we used this method, described in
3.2, to exclude statistically less important sentences from our source dataset. This
reduction of length saved memory while processing the sequences in the training phase.
One advantage of this method is the flexible configuration of the length threshold we
can apply to the source sequences. This threshold sets the desired amount of words
after the process. Our implementation excludes less important sentences (by TF-IDF
scores), until the threshold is reached. Therefore we are able to reduce the length of
sources to a length we choose, for example to use the memory of GPU in the most
efficient way.

6.4 Inference Experiments
Presenting the last section of experiments, we apply different tests in the inference
phase on trained models depending on different characteristics of our datasets. A
common problem is finding suitable parameters to generate the best summaries. We
evaluate different hyperparameters including coverage penalty and length normaliza-
tion presented by Wu et al. [2016].

6.4.1 Parameter Tuning

Achieving best possible results on a trained models in summarization depends on
the accurate parameters in inference. The hyperparameters describing the coverage
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penalty and length normalization presented by Wu et al. [2016] are used to regulate
the outputs. These hyperparameters in inference are known as alpha and beta values.
Coverage penalty beta is used to encourage the model to translate all of the provided
input. Length normalization alpha deals efficiently with the problem of comparing
hypotheses of different lengths during decoding. We conduct experiments on generating
different length summaries to explore the effects of resulting ROUGE scores. Moreover
we test if the influence of different coverage penalties to models improves the outputs.

6.4.2 Removing Duplicated Trigrams
Paulus et al. [2017] observe in their evaluation on the CNN / DailyMail dataset, that
the reference summaries almost never contain the same trigrams twice. Replacing
already generated trigrams with different tokens at testing time improved their results.
We apply this experiment on the CNN/ DailyMail and the ArXiv Abstract Generation
datasets to verify if this assumption can improve the quality of the output summaries
in general. We use this datasets, because our baseline outputs suffer from repeated
tokens at test time, which reduce the ROUGE scores constantly.
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In this chapter we present the results of our experiments. We explain our results of the
experiments in the order we proposed them in section 6. Starting with Experimental
Setup, followed by our Generalizaton Experiment. In the end we present experiments
we conduct during inference, ending with a full overview about the evaluation for all
used datasets.

7.1 Experimental Setup
This section gives an overview on our configurations used on the Transformer Model
for summarization tasks. If no other information on the specific experiment is given,
we use the following settings as default. We apply word embedding size of 512
dimensions and a internal feed forward layer of 2048 which is part of each encoder
and decoder layer (Figure 2.7). Furthermore we apply Adam ([Bengio and LeCun,
2015]) as optimization algorithm. In addition we use BPE with 30k merge operations
as preprocessing to our corpora.

7.1.1 Parameter Tuning
We begin presenting our results of finding ideal hyperparameters for the summarization
task with the Transformer Model.

7.1.1.1 Experiments with different Number of Layers

In the following we present the results of our experiments finding the ideal number
of layers in the Transformer Model for summarization task. We conduct these
experiments on several of our datasets shown in section 5 to confirm our results. We
conduct early experiments on insufficient preprocessed training data, which leads to
worse results. Nevertheless we present the results of these experiments in the sections
7.1.1.1 and 7.1.1.2, because they show different model settings, which leads us to the
best configuration we use for later experiments and corrected preprocessing, returning
our best results.

In table 7.1 we describe different configurations of numbers of layers for the encoder
and decoder in our Transformer Model. We enhanced our implementation to allow
imbalanced models. Overall we observe the best results using balanced encoder and
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Table 7.1: Experiments with different number of layers on CNN/ DailyMail Corpus
Encoder Layers Decoder Layers ROUGE-1 ROUGE-2 ROUGE-L
6 6 22.45 6.43 16.75
4 4 21.92 5.79 16.02
3 3 20.53 5.31 15.67
6 4 21.80 5.73 16.23
4 6 21.73 5.71 16.10

Table 7.2: Experiments with different number of layers on Gigaword Corpus
Encoder Layers Decoder Layers ROUGE-1 ROUGE-2 ROUGE-L
6 6 31.95 13.43 27.68
4 4 31.77 13.02 26.94
3 3 30.55 13.22 25.34

decoder layers sizes with amount of 4 and 6. Furthermore, we see similar results
using the Gigaword dataset, strengthening our results. Table 7.2 depicts the results
of evaluation which matches with our previous experiments. In the following we use
balanced models containing 4 and 6 layers as baseline models for our other datasets.
The choice of the number of layers naturally changes the number of training parameters
of our Transformer Model, making deeper networks both contain more parameters
and increase training time substantially. Testing deeper models containing 8 or more
layers on encoder and decoder side raise the amount of parameters in the model
significant. This leads to resource problems on the available GPUs and time.

7.1.1.2 Experiments with different Learning Rates and Batch Sizes

In this section we show the influence of different learning rates and update methods.
As baseline we use our Transformer Model containing 6 layers. The experiment is
performed on the CNN/ DailyMail dataset. Table 7.3 compares Mini-batch Gradient
Decent with sizes of 2048 (baseline) and 1024. We apply a constant learning rate of
0.001.

Table 7.3: Experiments using different Batch Size Update on CNN/ DailyMail Corpus
Batch Size Update Learning Rate ROUGE-1 ROUGE-2 ROUGE-L
2048 (baseline) 0.001 22.45 6.43 16.75
1024 0.001 21.32 5.43 15.12
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Table 7.4: Experiments using different Update Methods on CNN/ DailyMail Corpus
Update Method Warm-up steps ROUGE-1 ROUGE-2 ROUGE-L
regular 22.45 6.43 16.75
noam 4000 24.25 6.82 19.79

In our last experiment of parameter tuning we compare regular learning rates,
where the learning rate is constant in the training process, with the learning rate
decay scheme noam, proposed by the authors Vaswani et al. [2017]. Noam describes a
scheme how to bring the learning rate warm-up and decay together. It combines linear
warm-up for a given number of training steps, followed by a inverse square root decay.
Using noam, we could outperform our baseline on each ROUGE score. However we
still perform a lot worse in ROUGE scores compared to previous encoder-decoder
models for summarization based on LSTMs. We discuss this problem and provide our
solution in the next section 7.1.2.

7.1.2 Impact of Preprocessing

Table 7.5: Comparison after improving preprocessing
Model ROUGE-1 ROUGE-2 ROUGE-L
seq-to-seq + attn baseline ([See et al., 2017]) 30.49 11.17 28.08
Transformer + insufficient preprocessing (6 Layers) 24.25 6.82 19.79
Transformer + accurate preprocessing (6
Layers)

32.21 11.08 27.08

This section investigates the influence of our preprocessing steps on the summarization
performance. Using BPE (2.5) in preprocessing is a standard procedure in neural
machine translation since it was published. Sennrich et al. [2015] propose widely
used implementation to segment text into subword units. It improves handling of
Out-Of-Vocabulary (OOV) words. In addition the authors offer implementations to
further segment rare words into character n-grams, intended to separate words in
individual parts which are known by the model. In our earlier experiments this script
is used to segment rare words in smaller n-grams. Besides drastically reducing the
vocabulary size it also reduces the performance of our models. In table 7.5 we compare
our models including insufficient and accurate preprocessing, returning similar results
as the baseline of See et al. [2017] in ROUGE scores. In our further experiments we
build the models with sufficient preprocessing only applying BPE, without further
word splits. We obtain overall good ROUGE score performance in the following
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experiments. Detailed comparison between state-of-the-art systems and models in
this work is presented in section 7.5

7.2 Generalization Experiment
In this section we present our novel experiment, studying the ability of neural models,
especially the Transformer Model in our work, to generalize on different subjects.
Publishing the corpora ArXiv Headline Generation we present two datasets with
similar source and target structures but offering topics on different research subjects.

7.2.1 Initial Experiments on ArXiv Headline Generation
Dataset

Table 7.6: Experiments using ArXiv Headline Generation Physics Model
Evaluation Set Model ROUGE-1 ROUGE-2 ROUGE-L
PY Transformer (4 Layers) 42.61 23.14 36.79
PY Transformer (6 Layers) 43.54 23.60 37.72
CS Transformer (4 Layers) 27.31 9.49 23.03
CS Transformer (6 Layers) 28.02 9.65 23.78

Table 7.7: Experiments using ArXiv Headline Generation Computer Science Model
Evaluation Set Model ROUGE-1 ROUGE-2 ROUGE-L
CS Transformer (4 Layers) 32.63 12.39 26.93
CS Transformer (6 Layers) 33.25 12.55 27.09
PY Transformer (4 Layers) 19.71 3.68 15.84
PY Transformer (6 Layers) 19.44 3.4 15.76

Presenting our initial experiments on both datasets we show ROUGE score evaluations
of processing our test set using the Physics model (PY) in table 7.6 and the Computer
Science model (CS) in table 7.7. It is clearly visible that both models perform well on
their test set randomly excluded of the dataset before they are trained on it. However
we can discover, that the Physics model performs nearly 10 ROUGE points better on
each score. We think this because of the larger amount of training data the Physics
corpus contains, compared to Computer Science.
Furthermore we provide evaluations conducted on the respective other test set of
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subjects. The results show that the Physics model performs much better and nearly
reaches performance of the computer science model itself. Reasons for this might
be also the larger number of training examples in Physics corpus and moreover the
increased size of vocabulary (34k on source and 33k on target side in Physics dataset
compared to 31k and 29k in Computer Science dataset). For our tests we apply BPE
(2.5) using the trained models from our initial preprocessing. In BPE preprocessing
of finetuning the Physics model the BPE model of the initial Physics dataset is used
on the Computer Science corpus. The same procedure is conducted in finetuning of
the Computer Science model.
In addition we see very similar results for our balanced models containing 4 and
6 layers in encoder and decoder, which confirms our initial experiments in section
7.1.1.1.

7.2.2 Ability to Generalize

To illustrate the ability of generalization we compare the outputs of both models in
table 7.8. It contains an example of the Computer Science test set, including the
source and reference title of the paper and predictions of both models before and after
the finetuning. In section 7.2.3 we will discuss the results of our finetuned models in
more detail.
It is clearly visible that the original title of our shown example is focused on the
method used in their paper non parametric belief propagation and their goal fault
identification, which can be seen in table 7.8. Both is successfully identified and used
to generate a new summary by the Computer Science Model. In contrast, the Physics
Model has problems identifying the method and summarizes the goal inaccurately.
Besides this it already produces acceptable outputs on different research subjects.
Anticipating the results from our following experiments on finetuned models, we show
the improved output of the Physics model after it was trained for 3 epochs on the
Computer Science corpus. Section 7.2.3 shows further evaluation scores. Reviewing
the new generated output of Physics model (shown in table 7.8) illustrates the
improvement of our model in determining the method of their paper non parametric
belief propagation, which is now the same as the output of the Computer Science
model. Moreover, the model improved its output of their thesis goal from linear
measurements of fault location to fault identification, which also matches with the
goal of the original title. In contrast, the results of the finetuned Computer Science
model decreased in generating the accurate title. The new output shows the correctly
identified goal identification of fault patterns but performed worse on finding the
correct approach used in this research paper.
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Table 7.8: Output Comparison in ArXiv Headline Generation Task on Computer
Science test set

Source we consider the problem of identifying a pattern of faults from a set
of noisy linear measurements . unfortunately maximum a posteriori
probability estimation of the fault pattern is computationally in-
tractable . to solve the fault identification problem we propose a non
parametric belief propagation approach . we show empirically that
our belief propagation solver is more accurate than recent state of
the art algorithms including interior point methods and semidefinite
programming . our superior performance is explained by the fact
that we take into account both the binary nature of the individual
faults and the sparsity of the fault pattern arising from their rarity .

Gold Target fault identification via non parametric belief propagation
Model Computer Science Model Physics

Prediction a non parametric belief propaga-
tion approach to fault identifica-
tion

a non parametric message passing
algorithm for linear measurements
of fault location

Prediction af-
ter Finetuning

identification of fault patterns
from noisy linear measurements

non parametric belief propagation
for fault identification

7.2.3 Finetuning Experiments

As last test in our Generalization Experiment we investigate how fast a model is able
to catch up in terms of summarization performance compared to the model which is
initially trained on this research subject. To explore this, we use our best performing
Physics Model, trained it on the Computer Science dataset and vice versa. To make
this possible we reused our vocabulary created on the initial training.
Evaluating the performance of summarization systems is often comparing the sources
with the output of each model separately. A novel method to rate the results for our
entire test set is an adaption of Kryscinski et al. [2018], which evaluates new n-grams
produced by the model according to the source input and target summary. In our
experiment we do not measure novel n-grams, in contrast we are interested in the
overlapping n-grams between the outputs of our separately trained models. Measuring
the overlapping 1-grams and 2-grams is equal to calculating ROUGE scores between
target summaries. This evaluation describes the similarity of outputs given by different
models. Now we compare our initial outputs and the outputs of the finetuned models,
evaluating if the summaries get more similar. Additionally we measure the copy rate
from source to summary and also the common ROUGE scores.
For our experiments, we use the Transformer Model containing 4 layers with reduced
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Figure 7.1: ROUGE-X progress in Finetuning Experiment
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amount of parameters as our baseline, because we think the model is likely to behave
better in finetuning because of fewer parameters. In figure 7.1, we show the progress
of ROUGE-X scores over 5 epochs. Values in Epoch 0 show the baseline scores of
PY model on both test sets. The tuning of parameters on CS corpus increases the
summarization performance on the corresponding dataset constantly for 5 epochs. In
contrast we can detect a falling performance on the initial trained subject Physics.
Between epoch 3 and 5 we can see the performance of CS is beating PY. As a result
we want to set the focus on the model after first epoch, where the performance
on Computer Science data increased a lot and on the other hand the decreasing
performance for Physics is still acceptable. Furthermore we include the performance of
CS baseline model (orange dotted lines) as constants to compare it with the finetuned
model. Surprisingly the finetuned model outperforms the CS baseline after the first
epoch. The reason may be the extensive training on Physics corpus, which contains
considerably more examples compared to our Computer Science corpus (see corpus
comparison in section 5.2.4).
In the end we compare the summaries on word level before and after the finetuning.
Figure 7.2 depicts the overlapping n-grams, where we see a significant increasing
overlap in n-grams between the initial PY model compared with the initial CS model
and the finetuned PY model. In addition we present the Copy-Rate of both models
in regarding to the sources. That value increased by 8.8% after 3 epoch parameter
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Figure 7.2: Overlapping n-grams and Copy-Rate on baseline and finetuned PY model
evaluated on CS
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tuning. This indicates that copying the correct words from source increases the
ROUGE scores.

7.3 Reducing Memory Costs

In this section we present our experiments to reduce memory costs of the Transformer
Model. We mainly conduct these tests on the CNN / DailyMail corpus, to see the
influence on datasets containing large inputs. The goal of these experiments is to
compare existing methods to save memory and measure the influence on our results
in the summarization task.
Our approaches to save memory, presented in section 6.3.1 differentiate between influ-
encing the performance and only reducing the training speed. Gradient checkpointing
has no influence on the results of forward- and backward-pass, it only changes its way
of calculation. However, using TF-IDF Sentence Ranking (??) to rank sentences by
their statistical importance allows us to exclude supposedly unimportant sentences. In
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Table 7.9: Experiments to reduce memory on CNN/ DailyMail
Model ROUGE-1 ROUGE-2 ROUGE-L
Transformer (4 Layers) 33.88 11.01 27.98
Transformer + TF-IDF (4 Layers) 34.05 11.67 28.25

the following we conduct experiments to measure the influence of removing sentences
based on TF-IDF Sentence Ranking.
Table 7.9 shows our experiments using TF-IDF Sentence Ranking to reduce the source
length of examples from the CNN /DailyMail dataset from average of 688.4 to a
maximum of 400 words. To reduce the source words about around 40% on average, we
apply our sentence ranking. Afterwards we exclude the most unimportant sentences
according to this metric until we reach the threshold. We applied the reduction of
source also on the test set. The results show that there is no major difference on
ROUGE score evaluation between the full sources and the reduced. This indicates
that the sentences, which were ranked as unimportant are classified as unimportant
by the Transformer Model as well.
We use these results for our last experiment in section 7.5.4, to investigate the
possibility of summarizing entire research papers from ArXiv using our novel corpus.

7.4 Inference Experiments
Achieving best possible results on a trained model in summarization depends on the
accurate parameters in inference. In the introduction 6.4 of our conducted experiments
we explained the coverage penalty beta and length normalization alpha presented by
Wu et al. [2016]. Coverage penalty beta is used to encourage the model to translate all
of the provided input. Length normalization alpha deals efficiently with the problem
of comparing hypotheses of different lengths during decoding. In other words alpha is
used to control the number of words the output summary should contain.
In table 7.10 we present our experiments using various settings. As baseline model
we use our Transformer + TF-IDF (4 Layers). Although these results give a good
overview how to set the configuration in inference, the configuration depends on the
desired target length, which depends on the reference summaries.
After conducting our tests we discovered changing beta value had no effect on generating
different summaries. All experiments shown in table 7.10, beta is set to 1. Empirically
we search for best alpha settings producing the best summaries on the CNN/DailyMail
dataset. We observe our best results using alpha equals 6 producing summaries
containing 48.93 words in average. Compared to the reference summaries our model
produces outputs which contain 0.65 words less achieving our best results. Further
increasing the alpha value did not result in better evaluation.
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Table 7.10: Evaluation of Inference Experiment on CNN/ DailyMail dataset
Alpha Average Sum-

mary Length
ROUGE-1 ROUGE-2 ROUGE-L

0.3 30.96 30.12 10.43 24.33
0.6 36.49 31.74 11.04 26.46
0.9 43.81 33.12 11.40 28.33
1.2 47.24 33.58 11.40 28.33
2.0 48.50 33.77 11.67 28.76
5.0 48.91 33.95 11.67 28.25
6.0 48.93 34.05 11.68 28.25
8.0 48.92 33.86 11.62 29.32
10.0 48.93 33.78 11.47 29.33

49.58 (Reference Summary)

7.4.1 Removing Duplicated Trigrams
Removing duplicated trigrams at inference time, as purposed by Paulus et al. [2017],
decreased the amount of repetitions in the generated summaries. In table 7.11 we
compare the outputs of our baseline CNN/ DailyMail model from the previous inference
experiment and replaced already generated trigrams with different predictions.

Table 7.11: Experiment removing duplicated trigrams
Model ROUGE-1 ROUGE-2 ROUGE-L
Baseline 34.05 11.68 28.25
Baseline + Removing
Duplicated Trigrams

34.93 11.69 30.81

Our experiment confirms the results of Paulus et al. [2017] that removing duplicated
trigrams increases ROUGE scores. Moreover we conduct the same experiment for
our ArXiv Abstract Generation dataset also suffering from generated repetitions in
summaries. Similar to the previous experiment, we observe increasing ROUGE scores
as well. We present the evaluation compared to our baseline in section 7.5.4.
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7.5 Full Results Overview
Our last section presents an overview over the best performing models created in this
thesis in comparison to the state-of-the art research papers.

7.5.1 Gigaword Corpus Evaluation
We begin to compare our results with state-of-the-art apporaches on the Gigaword
corpus. Usually results are compared using the DUC-2004 evaluation set and the
Gigaword test set published by Rush et al. [2015]. In table 7.12 we present our
evaluation on DUC-2004 setting new state-of-the-art performance for ROUGE-X
scores. Outperforming all previous encoder-decoder approaches using LSTMs and
GRUs including special attention architectures shows the potential of the Transformer
Model in neural machine translation tasks ([Vaswani et al., 2017]).
Furthermore we present our evaluation on the Gigaword test set in table 7.13 showing
good summarization performance as well. Only the approach of Cao et al. [2018])
adding facts from the first sentence as additional input to the encoder performs
better in terms of single overlapping n-grams and longer sequences. In contrast, our
Transformer Model sets new state-of-the-art score for ROUGE-2.
Finally 7.14 shows further evaluations of our Gigaword model on DUC-2003 and our
own random test set excluded from entire Gigaword corpus. We can observe that our
model exceeded a score of 50 in ROUGE-1.
Additionally we compare the Copy-Rate of our Gigaword models for the previous
presented test sets of Gigaword dataset and DUC-2004, because this factor shows a
significant influence of ROUGE scores in Headline generation task. Our model copied
on average 75.8% of the source tokens in the new generated summary. Moreover our
model copied nearly the same amount of words on DUC-2004 dataset with about
75.1% in average. Douma [2018] published the same evaluation for their models. The
best model on DUC-2004 is sent2vec+wemb, which copied 84.3% of the words in their
target summary. However comparing the ROUGE scores in table 7.12 show, that our
Transformer Model outperforms their approach with lower copy rate. This shows that
the Transformer Model model has a great ability to select important words from the
source sequence, which also were selected by the humans, to achieve better ROUGE
scores.
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Table 7.12: Evaluation of Gigaword model on DUC2004 using F1 Score
Model ROUGE-1 ROUGE-2 ROUGE-L
ABS ([Rush et al., 2015] 26.55 7.06 20.12
ABS+ ([Rush et al., 2015]) 28.18 8.49 23.81
Sent2vec+wemb ([Douma, 2018]) 27.18 9.25 24.40
HA-RNNs ([Nallapati et al., 2016]) 28.35 9.46 24.59
RAS-Elman ([Chopra et al., 2016]) 28.97 8.26 24.06
Transformer (6 Layers) (ours) 30.79 11.89 26.69
Transformer (4 Layers) (ours) 30.85 11.57 25.86

Table 7.13: Evaluation of Gigaword model on test set published by [Rush et al., 2015]
Model ROUGE-1 ROUGE-2 ROUGE-L
ABS+ ([Rush et al., 2015]) 29.78 11.89 26.97
HA-RNNs([Nallapati et al., 2016]) 33.78 15.97 31.15
RAS-Elman ([Chopra et al., 2016]) 35.30 16.64 32.62
FTSumg ([Cao et al., 2018]) 37.27 17.65 34.24
Transformer (6 Layers) (ours) 35.84 18.09 32.27
Transformer (4 Layers) (ours) 35.37 17.22 31.90

Table 7.14: Further Evaluation of Gigaword model
Evaluation Set Model ROUGE-1 ROUGE-2 ROUGE-L
DUC2003 Transformer (6 Layers) 29.02 11.37 25.56
Random Gigaword
test set

Transformer (6 Layers) 50.39 27.66 46.40
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7.5.2 ArXiv Headline Generation Evaluation

Reviewing the scores presented on our novel ArXiv Headline Generation Corpus, we
presented baseline systems for Physics and Computer Science subject in table 7.6 and
7.7 respectively. The analysis of presented results is done in section 7.2.1. Moreover
we showed our finetuned experiments in figure 7.1. Our detailed description can be
found in section 7.2.3.

7.5.3 CNN/ DailyMail Evaluation

Table 7.15: Evaluation of CNN/ DailyMail model
Model ROUGE-1 ROUGE-2 ROUGE-L
seq-to-seq + attn baseline (150k vocab) ([See et al.,
2017])

30.49 11.17 28.08

seq-to-seq + attn baseline (50k vocab) ([See et al.,
2017])

31.33 11.81 28.83

HA-RNNs ([Nallapati et al., 2016]) 35.46 13.30 32.65
Pointer-Generator Networks ([See et al., 2017]) 39.53 17.28 36.38
Neural Intra-attention Model ([Paulus et al., 2017]) 39.87 15.82 36.90
Transformer + TF-IDF (4 Layers) 34.93 11.69 30.81

Representing the dataset containing the longest source and target sequences in
summarization task we present the final evaluation of our models trained on CNN/
DailyMail subsequently. The Transformer Model outperformed the baseline sequence-
to-sequence models based on LSTMs on two out of three scores. Compared to modern
approaches including novel coverage and copy mechanism included in the attention
calculation the performance surpasses our models. Transformer Models are affected
by a major problem of repeating words in the target summarization as well, which
reduces the performance in each ROUGE score.
Moreover we analyze the abstractivness of our models, compared to the approaches
presented by See et al. [2017] to measure the novel n-grams produced by the system
which are not part of the source sequences. Figure 7.3 depicts our results in direct
comparison to the Pointer-Generator Networks ([See et al., 2017]) shown in Figure
7.4. Comparing the abstractivness of all summaries, our model is located between
the sequence-to-sequence + attention baseline model and the reference summaries.
Because our model outperforms the baseline of See et al. [2017] the Transformer
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Figure 7.3: Novel n-grams of
Transformer Model
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Figure 7.4: Novel n-grams published by
See et al. [2017]

Model builds very abstractive summaries, but it is able to identify and include the
important facts of summaries correctly as well.

7.5.4 ArXiv Abstract Generation Dataset Evaluation
Finally we present the evaluation of our novel corpus ArXiv Abstract Generation
dataset (5.4), which is intended to be the next step to general purpose end-to-end
trained summarization systems. Table 7.16 shows our baseline model reaching a
good summarization performance on our randomly selected test set. Reviewing the
outputs of our basline model we can clearly see the problem of repetitions in our
sequence-to-sequence system. Compared to our model trained on CNN/ DailyMail,
the model suffers from increased input length. While having a average input length of
688.4 words on the CNN/ DailyMail corpus it raises by nearly 400% to 3363.9 in our
ArXiv Abstract Generation dataset.
To train our model, we used TF-IDF Sentence Ranking (3.2) to reduce the source
inputs by to a maximum threshold of 3k words. Based on the results of our experiment
shown in section 7.9, we could not see any decrease in performance using our TF-IDF
Sentence Ranking approach, to shorten source sequences. Furthermore we applied
gradient checkpointing on 4 of 6 layers on encoder and decoder side to reduce memory
costs. For our training we used a Tesla K80 GPU with 11.4GB of memory, which
was barely able to handle our source inputs using batch size words of 3k and batch
size sentences of 1 to process a single input sequence in one batch. This shows the
large memory demand of the Transformer Model and proves the need for approaches
to save memory during the training process in the summarization tasks. We use the
Transformer (6 Layers) + TF-IDF + gradient checkpointing (4 Layers) model as our
baseline. Moreover we conduct our inference experiment removing duplicated trigrams
from generated summaries. In section 7.4.1 our evaluation showed the impact on the
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CNN/ DailyMail dataset, increasing all ROUGE scores. The impact compared to our
baseline on ArXiv Abstract Generation is significant. ROUGE-2 increases more than
19%, ROUGE-1 raises about 21% and grows more than 37%.

Table 7.16: Evaluation of ArXiv Abstract Generation model
Model ROUGE-1 ROUGE-2 ROUGE-L
Baseline 24.81 7.28 16.62
Baseline + Removing
Duplicated Trigrams

30.03 8.67 22.84

Presenting this baseline shows the technical possibilities of modern sequence-to-
sequence systems based on the Transformer Model. Providing systems which are able
to work on inputs containing more than 3k words is enough to summarize the text of
most papers, which are currently published in research. Moreover in section 8.2 we
show the technical possibilities to enhance this dataset to increase the amount of data
or create various corpora of the ArXiv Abstract Generation dataset including different
research subjects. This allows the reproduction our Generalization Experiments (6.2)
on corpora containing large scale source sequences.
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8.1 Review

To achieve the first goal of this thesis, to evaluate the performance of the Transformer
Model on common summarization task datasets, we conducted experiments on the
Gigaword and the CNN / DailyMail corpora. Comparing the results to state-of-the-art
sequence-to-sequence approaches based on LSTMs showed that the Transformer Model
is able to outperform existing systems on the shorter sequences contained in Gigaword
corpus. Furthermore we showed with our experiments that the model provides a good
baseline on longer sequence summarization including the CNN / DailyMail dataset.
It was also able to outperform the baseline system of previous recurrent models.
HHowever, most recent approaches in the form of novel coverage and copy mechanisms
to avoid repetitions in the output summaries along with copying important facts
directly from the source to the output sequence have a great impact on the results.
These enhanced models performed better on longer sequences.
Presenting our novel results on experiments to explore the generalization ability of
neural models on the summarization task showed surprising outcomes. Our baselines
for both subjects in the ArXiv Headline Generation task demonstrate good results in
producing titles of research papers. Comparing them gives first indications of how big
the influence of large corpus is with respect to the model’s performance. Furthermore
presenting the results of our finetuning experiments showed how fast a trained model
learns and improves its performance on different subjects. We did not expect a
finetuned model to be able to outperform the model, which was initially trained on
this subject’s data from scratch. These results show once more the importance of
large-scale corpora. Analyzing the learning process of finetuned models additionally
showed the importance of finding the suitable point in time to stop the training, which
results in models that are able to perform well on both corpora, the original and data
used for the finetuning. The increase in performance after the first epoch already
shows how fast modern neural networks, especially Transformer Models are able to
learn and generalize on different topics.
Reviewing our third thesis goal, generating of a new corpus for very long input
sequence summarization resulted in the dataset ArXiv Abstract Generation containing
highly interesting data based on research papers, which allows summarization on
different areas than the usual news article corpora. Besides the interesting contents
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of our novel datasets, they provide new challenges to researchers because of longer
sequences on source and target side. Furthermore we present a first baseline model
generating summaries on ArXiv Abstract Generation to compare to further research.

8.2 Future Work
By improving the performance of translation system relentlessly in machine translation
using the Transformer Model, we also think our models also have huge potential to
outperform all previous sequence-to-sequence approaches in the summarization task.
In this work we showed the first experiments using this new architecture giving
researchers a good baseline including our configurations and experiences collected
while performing this thesis.
Reviewing our experiments conducted on the CNN/ DailyMail dataset, we see good
possibilities to improve the results by including a new copy and coverage mechanism
in the current system. The approach presented by See et al. [2017] sets a possible
direction to improve the performance. Moreover enhancements for the calculation of
self-attention such as including information about the important facts in the source
sequence possibly will improve future Transformer Models.
After presenting our new datasets for the ArXiv Headline Generation for Physics and
Computer Science we see more perspectives in generalization experiments we conducted.
For example arXiv offers the possibility of further subjects like Economics or Statistics,
which could be used to create additional datasets, extending our experiments. Beyond
that the aspects of corpus size can be explored more in detail by comparing very small
datasets such as Economics which only contains around 42k examples to determine if
this is enough to train summarization systems reaching similar scores.
Raising the size of sources and targets in summarization systems makes it more
complicated to build systems reaching the same quality of outputs compared to
systems working on shorter sequences. However reaching the goal of presenting a
system generating business-reliable outputs, the feasibility to handle large inputs
needs to be proved. One way to enhance the summarization quality is certainly the
adoption of current models. On the other hand training on larger datasets will also
ensure better performance. Using our methods, the ArXiv Abstract Generation dataset
can be increased from currently around 91k examples to the complete size of arXiv
database containing more than 1.5M research papers in march 2019. Furthermore
the repository is constantly growing as new results in research are made every day.
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