2409.17702v1 [cs.RO] 26 Sep 2024

arxXiv

Episodic Memory Verbalization using
Hierarchical Representations of Life-Long Robot Experience

Leonard Birmann!, Chad DeChant?, Joana Plewnia', Fabian Peller-Konrad',
Daniel Bauer?, Tamim Asfour! and Alex Waibel!

Abstract— Verbalization of robot experience, i.e., summa-
rization of and question answering about a robot’s past, is a
crucial ability for improving human-robot interaction. Previous
works applied rule-based systems or fine-tuned deep models to
verbalize short (several-minute-long) streams of episodic data,
limiting generalization and transferability. In our work, we
apply large pretrained models to tackle this task with zero
or few examples, and specifically focus on verbalizing life-
long experiences. For this, we derive a tree-like data structure
from episodic memory (EM), with lower levels representing
raw perception and proprioception data, and higher levels
abstracting events to natural language concepts. Given such
a hierarchical representation built from the experience stream,
we apply a large language model as an agent to interactively
search the EM given a user’s query, dynamically expanding
(initially collapsed) tree nodes to find the relevant information.
The approach keeps computational costs low even when scaling
to months of robot experience data. We evaluate our method
on simulated household robot data, human egocentric videos,
and real-world robot recordings, demonstrating its flexibility
and scalability.

Code, data and demo videos at hierarchical-emv.github.io.

I. INTRODUCTION

Verbalizing their own experiences is an important ability
robots should have to improve natural and intuitive human-
robot interaction [[1], [2], [3]], [4]. It involves summarization
of and question answering (QA) about a robot’s past actions,
observations and interactions, such as the dialog shown on
the right of Fig. [I] Building a representation of an agent’s
Episodic Memory (EM) [5] is crucial to enable such verbal-
izations, as a system must efficiently store the information
from the continuous stream of experience, organize it, and
retrieve relevant past events from its EM in response to a
user’s query. This is particularly challenging as the time
horizon of the EM grows.

Existing work on Episodic Memory Verbalization (EMV)
either relies on rule-based verbalization of log files [2], [3],
or fine-tuning deep models on hand-crafted or auto-generated
datasets [1], [6] to perform QA and summarization tasks
given the recorded experiences. Both approaches are limited,
as they require designing vast numbers of rules or collecting
large amounts of experience data.
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Fig. 1. Our system answers queries about life-long experience of an agent
(human or robotic) by exploring a tree representation of episodic memory.

To avoid training a system, which typically entails collect-
ing large amounts of multimodal experience data, previous
works [[7]], [8] use language-based representations of the past
which can be obtained from pretrained multimodal models.
Given such a language-based representation of an agent’s
history of episodic events, a straightforward way to perform
QA is to pass the question and the history to a large language
model (LLM), and prompt it to produce an answer. While
this works nicely for short histories [7], [9], in this paper,
we focus on how to scale such approaches for verbalization
of life-long experience streams. Although recent LLMs of-
fer increasingly long context windows (i.e., the maximum
number of tokens they can process), up to 2M tokens [10],
previous studies [[11], [12] have shown that these models
have difficulty in using all information contained in such
long contexts. Furthermore, the computation of transformer
models scales quadratically with context length — reducing
the number of tokens is thus time- and cost-effective.

Therefore, to scale EMV to life-long experience streams
while maintaining a low token budget, we propose to derive
a tree-like representation from EM and use an LLM agent for
QA to interactively search the tree to find relevant informa-
tion. Our system, H-EMV (Hierarchical Episodic Memory
Verbalization, Fig. |I|), processes the continuous stream of
experiences and inserts it into a hierarchical representation
of the robot’s history of episodic events. Different levels of
this hierarchy represent different abstraction levels, with the
lowest level being raw observations and proprioception and
higher levels being represented as natural language concepts.
An LLM is prompted for segmentation and summarization
in order to recursively create higher-level abstractions. To
process queries to the EM, we repurpose the interactive
prompting scheme described in our previous work [13]. An
LLM is provided with the user’s query and functions to
access the history tree, and the LLM itself decides which
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functions to use in order to fulfill the query, i.e., to answer
the question or provide a summary. Since the history tree
will grow large over time, we apply an interactive semantic
search, inspired by work on robot navigation [14]. Specifi-
cally, we contract the tree, i.e., the LLM first sees only the
top-level node, and then interactively explores the graph to
retrieve the information relevant to the query.

To evaluate our system, we use simulated household
episodes from TEACh [13]], real-world egocentric human
recordings from Ego4D [16], and real-world robot episodes
from ARMAR-7, the newest member of the ARMAR hu-
manoid robot family developed at KIT [17]. Our exper-
iments show that H-EMV efficiently scales to extremely
long histories of multiple simulated months or real-world
human egocentric videos of over six hours, outperforming
several baselines and ablations. Real-world robot demon-
strations showcase the applicability of our system. We pro-
vide our code, evaluation data, and demonstration videos at
hierarchical-emv.github.iol

II. RELATED WORK

Episodic Memory for Robots: The concept of EM stems
from human cognition [3] and is useful for various tech-
nologies including smart wearables [16], [[18]], smart rooms
[19], and especially robotics. For instance, robotic EM can
be represented using latent vectors created by deep neural
models [20], [1l], [21], or by explicitly storing relevant
information in a memory system [22], [23], [24]. Another
approach is to represent the history of episodic events as
text produced by pretrained models [7], [8]. In this paper,
we also represent the history tree in form of text, following
REFLECT [8] for the broad structure of the hierarchy’s
lower levels. However, we extend this by adding hierarchical
summarization. Furthermore, our multimodal episodic his-
tory tree can be dynamically explored by an LLM to gather
information from all levels, including the raw observations.
Robot Experience Verbalization: The first work to intro-
duce the term of “verbalizing” robot experiences was [2].
With a rule-based system, they converted a navigation route
taken by a mobile service robot to natural language. [3l]
adapted this framework to verbalization of manipulation ac-
tivities performed by a humanoid household robot. Similarly,
[25] use templates to convert their robot’s observations and
actions to natural language. More recent works phrase EMV
in a more interactive setting, defined as summarization and
QA on robot experiences [4]. Both [L], [6]] propose end-to-
end trained networks receiving multimodal experiences and
a question to produce an answer. While [6] work on visual
data only, [1]] additionally use symbolic and subsymbolic
information from the robot’s task execution and perception
components. Both train on data from simulated household
tasks. In contrast to these systems, H-EMV uses pretrained
foundation models and does not require additional training
data, thus increasing its versatility and easing deployment to
the real world. Similar to our setting, QA from streaming
data [26], [27] tackles the problem of answering questions
based on a long stream of data, where the question is

not known in advance and the raw data cannot be stored.
However, we apply this to robotics, and approach it with an
interpretable, modular system, instead of end-to-end trained
memory models.

Video Understanding: Video Understanding, especially
Video Question Answering (VideoQA), is related to EMV as
it also involves QA on a data stream, which, however, is only
a video instead of a multimodal robotic experience stream.
VideoQA is an active research area [28]] where current major
challenges include long-form videos beyond clips of a few
seconds as well as egocentric video understanding. Ego4D
[L6] is a large collection of unconstrained egocentric videos
showing daily activities of human camera wearers. Ego4D
GoalStep [29] and HCap [9] provide hierarchical annotations
for subsets of Egod4D, facilitating reasoning on different
abstraction levels. Recent long-form egocentric VideoQA
benchmarks include QAEG04D [18] and EgoSchema [30].

Recent methods for VideoQA can be grouped into (i) end-
to-end approaches [31]], [32], [33], [9], [34] that typically
connect pretrained frozen visual encoders with LLMs by
some trained adapter, and (ii) training-free ‘“‘socratic” [7]]
approaches [33], [36], [37], [38], [39], [40], [41] that in-
voke various off-the-shelf models to convert the video into
text to be processed by a few-/zero-shot prompted LLM.
For instance, [39], [41] use video captioning to produce
a transcript of the video and then apply an LLM for QA
based on this transcript. VideoTree [36] adaptively selects
the frames to caption using a top-down query-relevance-
based tree expansion instead of uniform sampling. [40]]
generate executable Python code from a question, invoking
different APIs to query visual and language foundation mod-
els. MoReVQA [38] decomposes this into multiple stages,
making the LLM’s job easier at each stage by focusing on
either event parsing, grounding, or reasoning, instead of all
at once. In contrast to these predefined prompting schemes,
both [35]], [37] use an LLM as an agent to analyze the video
content in an interactive loop. While [37]] iteratively ask
the LLM whether to gather more detailed information (by
captioning more intermediate frames) or produce the final
answer, [33]] provide the LLM with API functions invoking
tools to search in a database of tracked objects or a memory
of frame captions.

Our method similarly treats the LLM as an agent, thus
not relying on any predefined information flow. However,
we use the full flexibility of code [42] instead of single API
calls like in [35], [37]. Compared to VideoTree [36], our
history tree is constructed independently of the user’s query,
since future questions cannot be known in advance in realistic
settings, and storing lifelong “raw” video experiences is
prohibitive [18]. In contrast to all of the above works, we
consider real-world dates and times an integral part of the
process. While the recent work TimeChat [43] is also time-
sensitive, they refer to video timestamps instead of real-world
date-times. Furthermore, and most crucially, we deal with
long sequences of multimodal robotic experiences, with the
longest experiment having over six hours of video or nearly
two months on a simulated timeline.
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III. METHOD

Our goal is to enable an artificial agent to verbalize
and answer questions about its past. Given the continuous,
multimodal stream of experiences of a robot agent, we
build up a hierarchical and interpretable representation of
EM (Sec. [I-A). When a user later asks a question, an
LLM interactively explores the history tree to gather relevant
information, detailed in Sec. [[II-B}

A. Episodic Memory Construction

From a stream of multimodal robot experiences, we derive
a hierarchical representation of the robot’s EM, a history
tree, as shown in Fig. ] with the lower levels broadly
following [8]. Specifically, the tree’s levels are:

L0 - Raw Experiences: Leaf nodes collect the raw
information available at a specific timestep during the robot’s
task execution. This includes all modalities that can be
perceived by the robot: RGB and depth camera images
and recorded audio, as well as information deduced from
this data, i.e., recognized objects, their positions, and a
text transcription of the audio, if there is user speech.
Furthermore, we include everything the agent knows about
its state: robot proprioception (joint configuration, mobile
platform position), symbolic information about the current
action and goal, and text to be spoken by the robot’s text-
to-speech component.

L1 - Scene Graphs: The first level of non-leaf nodes
in the history tree has a one-to-one mapping to the LO
leafs. On this level, we derive a scene graph from the given
observations, consisting of the detected objects as nodes and
their spatial relations (e.g., on top, inside) as edges. The
exact method for constructing the scene graph varies in our
experiments. For the pure vision-based approach, objects are
detected using pretrained models and heuristics are applied
to infer semantically meaningful relations [8]. In our real-
robot experiments, we use the existing components in our
robot software framework ArmarX [44] that already provide
semantic scene information.

L2 - Events: Next, we group and summarize the nodes
from the previous level based on changes in the scene graph,
the currently executed action or goal, as well as when there
is a new speech recognition. We also create a template-
based natural-language summary, including the latest scene
graph, the current action, and recognized speech command.
In our real-robot experiments, we use an LLM to filter
and summarize the raw action parameters, which would be
excessively detailed otherwise.

L3 - Goals: Based on the current goal from the LO
node, we group event nodes and again create a rule-based
natural-language summary containing the current goal and
the verbalization of the latest event. Note that we allow goal
nodes to have children of mixed types: either events or other
goal nodes. This allows representing subgoals of complex
tasks and is used in our real-robot experiments.

L4+ - Higher-Level Summaries: Summaries are gener-
ated dynamically by recursively asking an LLM to summa-
rize the previous level’s nodes. Specifically, given the set of
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Fig. 2. From the continuous, multimodal stream of robotic experiences,

we construct a history tree, a hierarchical representation of the EM.

nodes Sy at level £ > 3, we list them in order and prompt
an LLM to identify consecutive ranges of items that belong
together considering their times and content, and provide a
summary for each range. The output is parsed to group the
child nodes and create the summary nodes Sy for the next
level. We apply this strategy recursively, until |Sy| = 1 or
there is no further reduction, i.e., |Sp4+1| = |S¢|. In the latter,
the LLM is explicitly prompted to provide a single concise
summary of all items to force obtaining one root node.

B. Episodic Memory Access

Given a user’s query and the history tree built from all
experiences so far, we use an LLM as an agent [45] to
explore the tree, search relevant information, and eventually
answer the question. For this, we define an API to interact
with the history tree. We initially define each node of the
tree to be in a collapsed state, i.e., its textual representation
will only contain the node’s time range and natural-language
summary, but not list the child nodes. The LLM can then
interactively expand and collapse nodes, according to what
seems relevant given the user’s query. Furthermore, we
provide different tools to the LLM, e. g., to invoke a Vision-
Language-Model (VLM) to perform visual QA on the images
associated with leaf nodes. Moreover, there is a function to
perform tree search based on semantic similarity, selectively
expanding the children of the searched node in the tree that
match the search query.

Fig.[3]illustrates typical steps the LLM performs to answer
a user’s question. Given the initially collapsed tree, the LLM
first expands the root node’s children based on the requested
date. It then selectively explores the respective child nodes
that seem relevant to the question using the search function.
Note that the LLM is prompted to collapse irrelevant nodes
again in order to save token budget and speed up further re-
quests. In the given example, when reaching a leaf node, the
answer to the question is not evident from any of the natural-
language summaries on each level, so the LLM decides to
invoke a VLM to gather more information. Finally, it invokes
the answer function to answer the user’s question.

Our implementation of the LLM agent uses a prompting
style inspired by the simulated Python console of [13]].
The LLM can issue any command — including compound
statements such as loops — using the provided API. After
the execution of the respective code, the LLM can “see”
the output of its command(s), or any execution error. This
process is repeated, and the prompt to the LLM always con-
tains the (growing) execution history. Zero-shot experiments
prompt the LLM with only a static prefix to explain the task
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To answer a user’s question, H-EMV prompts an LLM to interactively explore the history tree containing the agent’s experiences. The LLM

can further invoke tools (index search, VLM) or perform other calculations to gather relevant information, eventually invoking the answer function. This
figure shows an example from our real-world evaluation on the humanoid robot ARMAR-7, modified for illustrative purposes.

and the available API, while few-shot prompting adds top-k
examples selected based on semantic similarity to the current
user query. The final part of the prompt is always a string
representation of the history tree’s current state.

IV. EVALUATION
A. Simulated Household Episodes

Following our previous work [6], [1]], we use simulated
household episodes and automatically annotate them with
QA pairs based on the ground-truth (GT) simulation state.
Specifically, we use the TEACh dataset [15]], featuring
episodes of two real humans, one commander, and one
follower, interacting with the AI2THOR environment [46].
We adapt this data by rephrasing the commander to be a
human user, and the follower to be a robot interacting with
the environment (and the user). Thus, each TEACh episode
describes a robot experience, comprising egocentric images,
robot states and actions, and dialog with the user.

Data: Episodes in TEACh are on average 6.2 £ 5.3 min
long. Since we are interested in very long histories of robot
experience, we randomly combine them to form histories of
up to 100 episodes. We also randomize dates and times for
each episode, ensuring realistic sequences by picking one to
five episodes per day, avoiding nighttimes, and occasionally
skipping some days; the longest histories thus span nearly
two months. Based on these histories, we generate QA pairs
by adjusting the generation grammar from [6]. Specifically,
we generate ten types of questions. These ask for: a list
of high-level summaries of episodes (task descriptions); a
detailed description of one particular episode in a history;
a summary of an episode that happened either before or
after a particular episode; a list of episodes in which a
particular object was seen or action performed; a summary of
an episode that occurred at a given time or a specified number
of days ago; a list of times or number of days ago at which a
given task was performed. From the TEACh “valid unseen”
set, we generate test sets with 10 histories per sequence
length (combining |h| = 5, 15, 25, 50, and 100 episodes).
Each history is annotated with 10 QA pairs, making up 100
samples per history length.

Evaluation Metrics:  Evaluation of free-form EMV an-
swers is hard since there can be many ways to formulate

the correct answer, questions can be underspecified, and ver-
ifying abstract statements by grounding them in the history
tree is a research question in itself. Following [1]], we define
a semantic categorization of a model’s hypothesis h given
the GT g and question ¢: correct when h is semantically
equivalent to q; correctly summarized if h is a correctly
summarized version of g, still containing all relevant facts
(in context of ¢q); correct TMI (too much information) if
h is correct but overly specific; partially correct TMI if
parts of h are correct, but there are TMI parts and these are
wrong; partially correct missing if parts of h are correct, but
relevant facts from g are missing; wrong when h could be
an answer to ¢ but is none of the above; and no answer
if h is empty, completely irrelevant to ¢, or the model
threw an error. Since categorizing each evaluated sample by
hand is prohibitively expensive, we prompt GPT-4o0 [47] to
perform this evaluation. For this, we started by annotating 60
samples by hand, and use these as a database to retrieve few-
shot samples based on maximal marginal relevance [48]]. We
further tuned the prompts on a validation set of 100 hand-
categorized model outputs. For reporting, we aggregate these
semantic categories as the percentage of correct and partially
correct samples, S. and S, respectively.

We evaluate the agreement of the LLM’s predicted cate-
gories with manually annotated ones on 200 model results
from our test data, resulting in an aggregated category
accuracy of 88%, and per-class f-scores of Fj(correct) =
0.89, F (partially_correct) = 0.84, F; (wrong) = 0.91. The
LLM categorizes correct and wrong samples very well and
has the most difficulties on the partially correct labels.
However, these categories are also defined imprecisely, and
the inter-annotator agreement [49] between the first two
authors has only a value of Cohen’s k = 0.66 (n = 110),
vs. K = 0.91 (n = 68) when only considering correct/wrong.
Thus, while not perfect, we use the LLM to automatically
obtain reasonable score estimates.

In addition to manual and LLM-predicted categorization,
we report standard automated metrics from machine transla-
tion that are often applied to free-form QA [6], [18]: BLEU-4
[30] and ROUGE-L (f-score) [51]]. However, we emphasize
that these surface-level metrics cannot grasp all varieties



— |h| 5 15 25 50 100
| method B R S. S, T ‘ B R S. S, T ‘ B R S. S, T ‘ B R S. S, T ‘ B R S. S, T
vision-only
Gemini 1-pass FS all | 26.5 50.3 29 27 325[19.0 348 16 27 663 |11.6 32.6 17 28 824| 53 214 8 23 1019 00C
Gemini 1-pass FS 2nd | 30.2 452 24 25 164|148 364 13 30 334|106 325 17 24 406| 3.7 218 11 24 512| 00 20.8 10 20 1256
H-Emv (1-shot) | 2.4 189 12 24 72| 20 179 14 24 136| 19 168 16 27 142| 24 175 16 24 105| 0.1 17.6 16 18 164
vision + speech
Gemini 1-pass FS 2nd | 39.5 65.0 57 26 165|37.0 475 30 43 336|379 485 39 30 418|252 409 25 35 861|169 352 17 37 1591
H-Emv (1-shot) | 4.3 329 27 38 11.6 ‘ 39 287 36 37 105| 22 303 36 35 11.8 ‘ 58 263 29 35 10.6 ‘ 1.0 17.3 24 33 15.1
full multimodal (objects + speech + actions)
H-Emv (1-shot) | 5.1 347 57 18 99| 40 320 50 24 104 | 47 299 46 24 114| 19 272 45 28 92| 1.1 252 31 33 10.7
H-Emv (O-shot) | 1.2 212 48 26 48| 09 182 44 25 44| 04 194 45 21 47| 0.1 184 43 20 48| 00 150 32 28 5.0
H-Emv (0-shot, L3) | 09 199 24 29 252| 1.0 176 18 3 656 0.1 161 25 24 604| 0.1 121 17 24 829| 00 44 4 11 166
Gemini 1-pass O-shot L3 | 2.4 255 32 33 120| 14 247 37 26 372| 05 276 35 34 422| 02 203 24 32 1055| 0.0 152 3 5 1893

B: BLEU, R: ROUGE, S., S:

semantically categorized (partially) correct in %, T: number of 1K prompt token. Gray token costs exclude out-of-context (OOC) samples.

TABLE I
RESULTS ON SIMULATED HOUSEHOLD EPISODES FROM TEACH [ 15]]

of correct answers in the EMV task, e.g., for a “when”-
question, both of the following answers are correct, but have
no word overlap at all: “at 4 PM” vs. “in the afternoon”.

Settings and Baselines: We evaluate under three settings:
First, vision-only can act solely on the visual data stream.
As a baseline, we prompt Gemini 1.5 Pro [10] in one pass
with the sequence of images along with timestamps and
the question. While we use GPT-40 for H-EMV, the 1-pass
baseline uses Gemini because it requires extremely long re-
quests. However, despite Gemini’s 2M token context length,
we need to sample every 2nd frame for longer histories.
We few-shot-prompt with one static example history of five
episodes including ten QA samples for this history. H-EMV
does not take raw images, but constructs history trees by
inferring objects using YOLO-World [52] and actions using
a LongTS5 transformer model [53] fine-tuned on TEACh train.
Second, vision + speech enriches the visual information with
the dialog data from TEACh episodes, representing natural
language commands given to the robot. This is simply added
to the prompt for Gemini, and inserted into the history
tree for H-EMV. Finally, full multimodal uses the recorded
(GT) actions and goals from the TEACh episodes, as this
information is typically available when a robot executes
some actions. This setting also uses GT object information
to compare system performance assuming perfect vision
components. We compare H-EMV with one-shot and zero-
shot prompting of the LLM agent. For preparing the few-
shot samples, we use histories built from episodes in TEACh
train, and record traces of manually using the Python console
interface and the defined API to interact with the history tree
until the given GT answer becomes evident. While we collect
two to three samples per question type this way, making
up 21 samples in total, we select only the top-1 sample
when prompting the LLM, based on semantic similarity
of the user’s questions. Semantic similarity is determined
after asking gpt—4o-mini to cross out the task-specific
words from the question so that an example from the same
question type is retrieved (instead of an irrelevant example
just mentioning the same objects or activities). We further
ablate the hierarchical summarization: H-EMV 0-shot L3 is
our method without LLM-generated summaries (L4+), still
using the interactive agent to explore an initially collapsed
list of L3 nodes. Last, Gemini 1-pass O-shot L3 is a baseline

presenting the fully expanded tree (L3 and lower) to the LLM
along with the question in a single prompt, thus not using
the LLM as an agent.

Results: Results of our TEACh experiments can be found
in Table |} First, we can observe that every method’s per-
formance decreases with increasing |h|. Further, comparing
the surface metric scores (B, R) of vision-only 1-pass with
full multimodal H-EMV demonstrates that these metrics are
not sufficient for evaluating EMV: While vision-only 1-pass
has significantly higher B and R, H-EMV actually performs
better on the semantic scores. This can be explained by our
1-pass prompting seeing more QA samples and thus better
picking up the vocabulary of the generated data, which does
not necessarily improve the correctness of the hypotheses but
increases n-gram overlap. In contrast, H-EMV using GPT-40
tends to give more free-form answers, especially since it uses
hierarchically generated summaries.

Focusing on the vision-only and vision + speech results,
the Gemini 1-pass baseline outperforms H-EMV for shorter
histories. This is reasonable, as the baseline can directly
access the full stream of visual information, whereas our
hierarchical system suffers from error propagation and is
limited by pretrained vision components. In particular, the
history tree could contain incomplete or wrong information
or our method could fail by expanding the wrong nodes
of the tree, which cannot happen to the 1-pass baseline.
However, token costs scale linearly with history length for
1-pass, while it stays approximately constant for H-EmMV.
The performance also drops faster for 1-pass, with H-EMV
reaching comparable or better semantic scores for |h| > 25.

In contrast, when circumventing the limitations of percep-
tion components by using GT object detection and action
information (full multimodal setting), H-EMV outperforms
the 1-pass system in the semantic metrics, with a token
budget two orders of magnitudes smaller. Further, 1-shot
prompting significantly helps, but 0-shot also works reason-
ably well with half the token costs. Ablating the hierarchical
higher-level summaries significantly increases token cost and
leads to worse performance, also resulting in OOC errors for
longer histories (when the LLM expands all nodes).

B. Egocentric Human Videos

Next to verbalizing robot experience, EMV can be applied
to human egocentric recordings, e. g., in the context of smart



wearables. Here, the system does not summarize and answer
questions about its own actions, but the actions of its user.
Data: To evaluate our system under this setting, we use
Ego4D [16]. Randomly concatenating episodes (as done
above for TEACh) generates histories that are not cohesive,
thus restricting automatic summarization to bare enumera-
tion instead of abstraction of related events. Therefore, we
perform a small-scale evaluation on very long recordings
from Ego4D. Specifically, we manually select two very long
Ego4D videos (6:43h and 4:28h) showing diverse and inter-
esting actions in a tourist scenario. Additionally, we construct
one history by concatenating shorter episodes from similar
scenarios, selected to ensure some level of cohesiveness and
plausibility (in contrast to random sequences). We manually
write 40 challenging QA samples.

Method: To construct history trees from Ego4D videos, we
apply VideoReCap [9] which produces low-level narrations
at 1 fps and mid-level summaries for each minute. We map
these to action (L2) and goal (L3) nodes of our hierarchy,
respectively, converting texts to first-person perspective us-
ing meta-1lama3-8b [54]. For constructing higher-level
(L4+) summaries, we generated few-shot samples for the
group-and-summarize LLM (see Sec. using Ego4D-
HCap [9]. To populate the L1 scene graph with objects,
we apply YOLO-World [52], an open-vocabulary object
detection approach, which we prompt with classes obtained
through a Socratic Models [7] approach: First, we select
the top-100 classes according to cosine similarity of the
mean CLIP [55] image embedding within one L3 node
and the CLIP text embeddings of all LVIS [56] labels.
Further, we prompt meta-1llama3-8b to propose ~ 20
objects that might occur given the current L3 goal annotation
produced by VideoReCap. We then apply YOLO-World with
the combined set of classes on each image within this L3
node and store the detected objects in the respective L1
nodes. The EMV agent for QA is instantiated zero-shot.
Results: The results of applying our method and manually
categorizing the results (following Sec. can be seen
on the left of Table |lI} Due to the very challenging nature of
our QA samples and the limitations of the used vision com-
ponents, the overall performance is low. Low performance
of the Gemini 1-pass baseline can partially be explained by
it seeing only a flat version of the L2 events without access
to the images. However, it also fails on most of the samples
that could be answered from the text history. This may be
explained by the noisy text history inferred from vision,
which H-EMV can handle better because of hierarchical
summarization and selective expansion of nodes, whereas
the 1-pass baseline observes all the noise at once. We did
not directly apply the 1-pass baseline on the images (which
would be possible only with aggressive sub-sampling) for
cost reasons. H-EMV L3 performs similar to H-EMV, with
double the costs.

C. Real-World Robot Recordings

Finally, we apply our method on the real-world humanoid
robot ARMAR-7. To obtain an EM, we record multiple robot

Ego4D ARMAR-7
B R S. S, T B R S. S, T
H-Emv | 1.1 11.6 28 25 219 70 18.6 43 27 128

H-Emv (L3) | 09 13.7 25 18 57.6 25 204 30 17 684
Gemini 1-pass flat | 0.8 4.7 5 8 438 || 124 288 40 10 227
TABLE II

EXPERIMENTS ON HUMAN & ROBOTIC REAL-WORLD DATA (0-SHOT)

sessions of typical household tasks, spanning a total duration
of 3.3 hours of robot actions over the scope of two months.
We record all entries made to the memory system introduced
in [22], in particular: vision (RGB and depth images),
robot state (proprioception), skill events (executed actions
and goals), speech (speech-to-text output and text-to-speech
input), symbolic scene (objects and their relations). From
such recordings, we build up a history tree by populating LO
with images, speech, and proprioception, L1 scene graphs
with the symbolic scene information, L2 and L3 with robot
action events (where L2 contains low-level actions and L3
contains actions that themselves invoke other actions). Note
that L3 nodes can be nested in this case (goals and their
subgoals). Higher levels (L4+) are constructed dynamically
by an LLM as described in Sec. with two manually
created few-shot samples.

Subsequently, we annotate the recordings with 30 QA-
pairs, apply our method, and again manually categorize the
results. Results can be seen on the right part of Table [II} In
general, our task is very challenging, and the 1-pass Gemini
baseline which has direct access to the complete stream
of episodic data (without images) scores only 40%/10% of
correct/partially correct samples. Compared to the Ego4D
experiment, the quality of the text history is better, as most
content (esp. current action, goal) is not inferred from vision.
Our interactive hierarchical system achieves slightly better
performance, with 1/17 of the token costs. The numbers also
highlight that the hierarchical aspect is crucial, as H-EMV
with only L3 has notably lower performance with more than
5 times the token cost. See the supplementary video for a
demonstration of our system in action, enabling ARMAR-7
to answer questions about its past interactively.

V. CONCLUSION & DISCUSSION

We present H-EMV, a system for verbalization of life-
long robot experience. The multimodal, hierarchical repre-
sentation of EM is interactively accessed by an LLM to
answer user questions, keeping token costs low even for
extremely long histories. Despite the promising results and
versatility of our system, it has some limitations: First, as a
modulated approach, it is limited by the performance of each
component and can suffer from error propagation. While
the interactive tree search improves interpretability, there
are no performance guarantees. Moreover, our system could
integrate more modalities and tools. For instance, joint angle
proprioception data could be rendered in simulation and then
verbalized by a VLM. Adding personalization, both to EM
and verbalization, is desirable for improved human-robot
interactions. We hope our code and data will foster research
on EMV, and will continue addressing these challenges in
future work.
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