
Audio-driven Talking Face Generation with
Stabilized Synchronization Loss

Dogucan Yaman1 , Fevziye Irem Eyiokur1 , Leonard Bärmann1 ,
Hazım Kemal Ekenel2, and Alexander Waibel1,3

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Istanbul Technical University, Istanbul, Turkey
3 Carnegie Mellon University, Pittsburg PA, USA

dogucan.yaman@kit.edu

Abstract. Talking face generation aims to create realistic videos with
accurate lip synchronization and high visual quality, using given audio
and reference video while preserving identity and visual characteristics.
In this paper, we start by identifying several issues with existing synchro-
nization learning methods. These involve unstable training, lip synchro-
nization, and visual quality issues caused by lip-sync loss, SyncNet, and
lip leaking from the identity reference. To address these issues, we first
tackle the lip leaking problem by introducing a silent-lip generator, which
changes the lips of the identity reference to alleviate leakage. We then
introduce stabilized synchronization loss and AVSyncNet to overcome
problems caused by lip-sync loss and SyncNet. Experiments show that
our model outperforms state-of-the-art methods in both visual quality
and lip synchronization. Comprehensive ablation studies further validate
our individual contributions and their cohesive effects.
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1 Introduction

Audio-driven talking face generation aims at generating a video with respect
to given face and audio sequences. The objective is to achieve synchronized lip
movements corresponding to the provided audio while preserving the identity
and visual details. This task has recently attracted significant attention due to its
versatile applications, including dubbing in the film industry, online education,
enhancing video conferencing, and dubbing for various types of videos [71,75].

The talking face generation task comprises two primary aspects: (1) lip syn-
chronization and (2) visual quality of the face. Since lips that are out-of-sync
with audio can be easily identified by humans, synchronized lips are key to
achieving natural and realistic talking-face generation. For this, the primary
solution is to evaluate audio-lip synchronization and use it as a training ob-
jective. Wav2Lip [46] introduced an improved version of SyncNet [14], a pre-
trained model designed to measure audio-visual synchronization. This model is
also used during training to extract features and compute lip-sync loss. Subse-
quently, many approaches have employed improved SyncNet [46] to guide the
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(a) SyncNet [46]
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Fig. 1: (a, b) Cosine similarity between GT audio-lip pairs on random LRS2 samples,
showcasing the instability of SyncNet and more robust performance of AVSyncNet.
(c) illustrates full mouth region / lip leaking from the reference, pose effect from the
reference, and similar identity reference-target image scenarios.

model throughout training. The main concept is to provide audio-video pairs to
SyncNet, which extracts features through its image and audio encoders. Sub-
sequently, cosine similarity with binary cross-entropy loss is measured between
these two features [46]. Since the model was trained in this manner, a higher co-
sine similarity is expected when the lips are synchronized with the given audio.
Although existing approaches with this strategy mostly surpass other methods in
lip synchronization, there are still challenges that must be addressed to enhance
performance.

In this work, we identify two main challenges in existing approaches that re-
strict models from achieving satisfactory performance in both lip synchronization
and visual quality: SyncNet instabilities and lip leaking. First, in alignment with
previous research [41], we observe instabilities in the performance of SyncNet [46]
on pairs of ground-truth (GT) lip and audio (see Fig. 1a and App. A). Thus,
when SyncNet is utilized as part of talking face generation training, it might pro-
vide an inadequate training signal, assigning low similarity scores to generated
images even when the lips are synchronized. This problem causes unstable train-
ing, degrading the lip generation capability of the network, thereby ending up in
out-of-sync lips or suboptimal lip-sync. Furthermore, the lip-sync loss [46] and
reconstruction losses are conflicting [39]. This leads models to have either poor
lip synchronization or degraded visual quality (sometimes even both), escalating
further when lip-sync loss and SyncNet are employed with high-resolution (HR)
data [39,73]. To address these problems, we first improve SyncNet and introduce
AVSyncNet, demonstrating a more robust performance (see Fig. 1b) and also
overcoming poor shift-invariance characteristics of SyncNet (see Fig. 6a). How-
ever, despite improved performance, the instability problem is not fully solved
(see Fig. 1b). To overcome this problem further, we also introduce a stabilized
synchronization loss. Specifically, instead of directly using the similarity of the
(generated lips, audio) pair, we calculate the difference of the similarities between
(GT lips, audio) and (generated lips, audio). We hypothesize that this alleviates
the described problems since it guides the model to generate a lip movement
with a similar synchronization score as for the GT face. Together with AVSync-
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Net, this method empirically enhances the lip synchronization performance as
well as avoids visual quality issues caused by misleading lip-sync loss.

Second, we address another main problem in the talking face generation lit-
erature: lip leaking. The current gold standard in 2D-based methods is to input a
bottom-half masked face image (“pose reference”), wherein the model is expected
to generate the input face with proper lip movements. However, because of mask-
ing, the model requires a reference image to retain the identity and texture in
the masked part. This is achieved by randomly choosing a face image from a
different part of the video sequence, referred to as “identity reference”. However,
this introduces a new challenge: As it is randomly selected, the lip movements
of the identity reference can frequently be similar to the GT lips during train-
ing (see last row of Fig. 1c). Hence, for faster convergence, the model tends to
replicate the lip movements from the identity reference, resulting in poor lip syn-
chronization or complete out-of-sync output. By following the literature [41,46],
we term this phenomenon as lip leaking. To tackle this problem, we propose a
simple yet effective technique: silent-lip generator. The concept involves modify-
ing the identity reference to make the lips closed (thus “silent-lip”) before feeding
it to the talking face generator network. This method ensures consistently closed
lips in the identity reference, effectively mitigating the lip leaking problem. Our
contributions are as follows: (i) We identify and analyze various fundamental
problems that harm lip synchronization learning and also cause visual quality
issues. (ii) We present a robust and shift-invariant AVSyncNet, and stabilized
synchronization loss to overcome the problems caused by lip-sync loss and Sync-
Net. (iii) We present a silent-lip generator to generate an identity reference with
closed lips before feeding the talking face generator to alleviate the lip leaking.

2 Related Work

Audio-driven Talking Face Generation. Initial studies mapped audio fea-
tures to time-aligned facial motions [69] or predicted facial motions by HMM [6].
In [57], videos were generated by finding the images most aligned with the au-
dio. ATVGNet [9] transfers audio to facial landmarks and uses pixel-wise loss
with an attention mechanism to avoid the jittering problem and leaking of ir-
relevant speech. [16] and [80] use facial landmark representation to synthesize
faces with synchronized lips. Recent papers address the task as conditional in-
painting by masking the bottom half of the input face and feeding the network
an identity reference from another time step of the same video, along with the
audio segment. Wav2Lip [46] proposes SyncNet and lip-sync loss to predict lip
synchronization and achieves significant performance. PC-AVS [78] introduces
a pose-controllable audio-visual system, while GC-AVT [36], EAMM [29] and
EVP [30] control the emotion by utilizing an emotion embedding. On the other
hand, SyncTalkFace [45] uses Audio-Lip Memory to store lip motion features and
retrieves them as visual hints for better synchronization. VideoReTalking [10]
proposes to manipulate the reference image to have a face with canonical expres-
sion to alleviate the sensitivity of the model against the identity reference image.
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Similarly, we introduce a silent-lip generator to implicitly learn to manipulate
the lips of the identity reference to mitigate the lip leaking problem. Compared
to the method proposed in [10], our method works more efficiently to preserve
the identity and visual quality. More recently, LipFormer [64] uses a pre-learned
facial codebook to generate HR videos, while DINet [73] proposes to use a defor-
mation module to obtain deformed features to enhance lip synchronization and
head pose alignment. IPLAP [76] shows satisfactory visual quality and stability
by using intermediate landmark representation and motion field. Recently, Talk-
Lip [63] introduces a global audio encoder, trained with self-supervised learning,
to encode features by considering the entire content of the audio. Besides, they
propose to use lip reading during the training as well as in the evaluation to
control whether the content is preserved. SIDGAN [39] performs important ana-
lyzes, and introduces shift-invariant APS-SyncNet and training objectives along
with the coarse-to-fine pyramid model for HR dubbed video generation. Recent
works use diffusion model because of its stability and accuracy [50, 55]. Finally,
in [61], talking face generation is used as a part of a full system to perform end-
to-end face dubbing, involving speech recognition, translation, speech, and video
generation. In contrast to the above, 3D-based and Neural Radiance Fields-based
(NeRFs) methods typically generate the entire head, rather than just manipu-
lating 2D images of the face, often involving manipulation of pose, emotion, and
3D face model [4, 5, 21, 37, 44, 49, 53, 58, 59, 62, 66–68, 70, 72, 74, 77, 80]. Similarly,
portrait animation aims at utilizing a single input image to generate a video by
predicting the pose and expression of the subsequent frames, along with ensuring
synchronized lips. Nevertheless, these tasks significantly differ from face dubbing
in terms of methodology, task definition, goals, and real-world applications.

Lip Synchronization. Some earlier works [23, 52] used hand-crafted features
and statistical models to evaluate lip synchronization. Recent studies proposed
to use mutual information between audio-visual features to produce sync or out-
of-sync output for sound [8,26,43] or speech [2,12,15,32,33]. While some methods
learn lip synchronization implicitly [9,21,28,34,57,66,74], other methods employ
distance between landmarks or facial parameters [30, 44, 53, 80]. Contrarily, the
majority of works [17, 20, 36, 45, 46, 54, 56, 60, 62–64, 67, 73, 77, 78] extract audio-
visual features with an additional network (mostly SyncNet [46]) for audio-lip
synchronization prediction. Afterwards, while some of these methods utilize lip-
sync loss [46], others benefit from contrastive learning by using infoNCE [42].
We follow a similar strategy by utilizing an additional network to calculate a
synchronization loss. We propose a robust and shift-invariant AVSyncNet along
with a stabilized synchronization loss to overcome existing challenges.

3 Proposed Approach

3.1 Talking Face Generation

We propose an audio-driven talking face generation model GL with enhanced
lip synchronization. As shown in Fig. 2a, our model incorporates: 1) an audio
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Fig. 2: Talking face generation model GL (a) and face-decoding (FD) block (b). Our
model receives a pose reference sequence, mel-spectrogram of an audio snippet, and
a silent identity reference, that is generated by our silent-lip generator GS , aiming to
alleviate lip leaking problem. The model then synthesizes the talking face sequence to
ensure lip synchronization. Subsequently, the employed loss functions are computed.

encoder for processing the audio snippet, 2) an identity encoder for addressing
an identity reference image, and 3) a pose encoder for utilizing a pose reference.

Audio Encoder. The audio encoder EA generates phoneme-level embeddings,
serving as conditions for the face generator to generate lip movements accurately.
Our audio encoder extracts embeddings FA = EA(A) ∈ R1×1×512 from the
given mel-spectrogram A, representing the driving audio. In contrast to existing
methods [10, 46, 73, 76], we propose using a pretrained, frozen audio encoder,
concurrently trained with a face encoder to learn lip synchronization similar to
the objective in SyncNet [46]. Thus, we can obtain improved embeddings during
the talking face generation training by leveraging the capacity of the pretrained
robust audio encoder. We obtain the best score with such frozen audio encoder.

Face Encoder. In accordance with the gold standard in the literature, we uti-
lize an identity reference, IR, and a pose reference, I, as inputs to the model.
The identity reference is a face image of the subject that provides identity infor-
mation. It is different from the pose reference and randomly selected from the
same video. The pose reference is identical to the target image, except for the
bottom half, which is masked, as the model is designed to focus on generating
lip movements. Unlike most conventional methods that employ a joint encoder
for processing identity and pose references, we use individual encoders to allow
each encoder to focus solely on their respective tasks [39]. Therefore, we utilize
two parallel CNN-based face encoders to process identity and pose references
individually. This approach yields better feature representation and ultimately
leads to improved performance.
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Fig. 3: GS in inference (a) and AVSyncNet training pipeline (b).

3.2 Silent-Lip Generator

Talking face generation involves using an identity reference to preserve the iden-
tity in the generated image. This is particularly important because the bottom
half of the pose reference, specifically the mouth region, is masked. This masking
is necessary as we aim to synthesize appropriate lip movements corresponding
to the provided audio. However, models are unintentionally affected by the lip
movement of the identity reference, rather than solely gathering identity infor-
mation (see Fig. 1c and App. C for details). This behavior, which we refer to as
lip leaking, leads to poor lip synchronization or occasionally even non-converged
training. We hypothesize that there are two main reasons for this: First, the lip
movement of the identity reference may occasionally resemble that of the lips
in the target image (see last row of Fig. 1c). Hence, the model can lower the
synchronization loss more quickly by undesirably replicating the lip movements
of the identity reference. Second, the diversity of lip movements in the identity
reference may yield the model to seek a correlation with the target lips. This
causes a challenging disentanglement task for the identity encoder —namely
distinguishing identity information and lip movement.

To mitigate the aforementioned issue, we propose to use an additional model,
called silent-lip generator GS , prior to the talking face generation model GL,
aimed at modifying the lip shape of the identity reference. Specifically, we re-
construct the input face with closed, flat lips. This strategy reduces the likelihood
of having lips similar to the target face in the identity reference and resolves the
issue of diverse lip movements. Consequently, the model no longer replicates the
lips from the identity reference, resulting in stable training & improved lip sync.

To implement GS , we structure the task and the model similar to the talking
face generation. Specifically, we input a bottom-half masked pose reference, an
identity reference, and an audio snippet to train a GAN [18] for generating a
talking face. The model is trained to reconstruct the face using both the pose and
identity references. Notably, we exclude any synchronization loss and SyncNet
during training and train the model under the weak condition. Consequently, the
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model focuses solely on generating lip movements without synchronization when
speech is present. Therefore, it implicitly learns to generate closed lips when the
input audio is silent as shown in Fig. 3a. Furthermore, by eliminating synchro-
nization loss, we overcome unstable training and the issue of lip leaking from
the identity reference for this network. We choose this approach for its efficient
utilization of the same model and data. Given the scarcity of closed-lip faces in
the dataset, we avoid using these frames directly to maintain effective training
and generalization. Please note that we use the same architecture for GS and
GL. We initially train GS separately on the same training data (LRS2) and then
incorporate it into the training of GL without further finetuning. Specifically, we
then only pass silent audio to GS , so that it modifies given identity references
to have silent lips for subsequent use as identity reference for GL.

3.3 Video Generation

For the talking face video generation, we employ the aforementioned compo-
nents. Initially, we employ our pretrained silent-lip generator GS to synthesize
the identity reference with closed lips. Subsequently, we input this silent identity
reference to the identity encoder and the pose reference to the pose encoder in
the talking face generation model GL. Similarly, we provide the mel-spectrogram
of the corresponding audio snippet to the audio encoder. Next, we concatenate
the embeddings from the identity and pose encoders, along with the depth di-
mension, and pass it through a 1 × 1 convolution layer to reduce the depth.
Finally, we concatenate this feature representation with the audio embeddings
before feeding them into the face generator. The face generator generates the
entire face with accurate lip movements by preserving the identity and the pose.

We illustrate the talking face generation model GL in Fig. 2a. We integrate
the U-Net architecture [47] for our overall design, leveraging its adequate per-
formance in reconstruction tasks while ensuring computational efficiency. Our
identity encoder and pose encoder share the same architecture, consisting of
consecutive face-encoding (FE) blocks. Each block has a strided-convolutional
layer followed by two non-strided convolutional layers, each paired with a batch
normalization layer [27] and a ReLU activation function [35,40]. We also use the
residual connection strategy [22] by summing the input and output of each block
before forwarding it to the next layer. On the other hand, our face generator has
consecutive face-decoding (FD) blocks. As shown in Fig. 2b, within each block,
we utilize a transposed-convolutional layer, followed by two convolutional layers
incorporating batch normalization and ReLU activation function. Moreover, we
apply a skip connection between the reciprocal layers of the face encoders and
the decoder to retain high-level features and enhance the training stability.

GAN Loss. To train our model, we utilize GAN loss [18] and employ a discrim-
inator, which is a straightforward CNN-based binary classification network to
distinguish real and fake samples, designed with a balanced architecture aligned
with our face encoders. We benefit from consecutive strided-convolutional layers
followed by the Leaky ReLu activation function and spectral normalization [38].
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Reconstruction Loss. We employ L1 loss in pixel space Lpixel = ||I ′ − IGT ||1
between the generated I ′ and the target faces IGT to ensure consistency in
areas outside the lips and maintain the illumination condition. We further utilize
perceptual loss [31] based on the pretrained VGG-19 [51]:

Lper =

5∑
i=1

ci||VGGϕi(I ′)− VGGϕi(IGT )||1 (1)

where ci are weight coefficients from [31], and ϕ indicates the set of VGG layers.

Adaptive Triplet Loss. Although our goal is to capture visual details from
the identity reference, we observe that the model occasionally focuses on the
visual details (e.g., illumination, pose) in the identity reference excessively and
this tendency could potentially degrade the quality and stability of the generated
face sequence, resulting in suboptimal performance. To tackle this, we exploit a
triplet loss strategy [48], aiming to minimize the distance between the generated
face and GT, while maximizing the distance between the generated face and the
identity reference. However, the random selection of identity references increases
the probability of choosing an image that closely resembles the GT. This scenario
poses a challenge for the vanilla triplet loss, potentially degrading training and
resulting in poor visual and pose quality. To mitigate this, we introduce an
adaptive triplet loss that considers the similarity between the identity reference
and GT during loss computation to alter its effect. The formula is as follows:

Lat =

[
D(VGG(I ′),VGG(IGT ))− D(VGG(I ′),VGG(IR))

D(VGG(IGT ),VGG(IR))
+ α

]
+

(2)

where [·]+ = max(·, ϵ), D represents the L2 distance, and we empirically choose
α = 1. In this loss, we leverage the ratio of the similarity between the generated
image and identity reference to that of the GT and the identity reference to
adjust the loss value. As the identity reference becomes more similar to GT, the
impact of the distance between the generated image and identity reference on
the loss diminishes, since expecting a high distance in this case is not reasonable.
Since our objective is to incorporate visual details from the identity reference,
we opt for a very low coefficient to avoid conflicting with the primary goal.

3.4 Learning Synchronization

The lip-sync loss [46] serves as a method to calculate synchronization between au-
dio and video. Leveraging the pretrained SyncNet [46] for feature extraction from
both audio and video inputs demonstrates reasonable performance in learning
lip synchronization. However, the SyncNet is significantly unstable when mea-
suring this similarity. Our evaluation using SyncNet on GT training data reveals
notable fluctuations in cosine similarity between video and audio, contrary to
the expected high scores (see Fig. 1a and App. A for details). Therefore, this
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provides conflicting information to the system, resulting in poor lip synchroniza-
tion, unstable training, and degraded visual quality. To tackle this problem, we
present a more accurate, shift-invariant, and robust version of SyncNet, named
AVSyncNet, and introduce a novel, stabilized synchronization loss.

AVSyncNet. We employ a ResNet-50-based [22] image encoder, known for its
superior performance in face recognition, alongside a ResNetSE-34-based audio
encoder [11], which is a modified version of ResNet-34 [22] designed to handle
spectrogram inputs. This design makes the AVSyncNet model robust and shift-
invariant compared to SyncNet [46]. We train our model on the LRS2 training
data [1], calculating the cosine similarity between audio and lip features, followed
by a binary cross-entropy loss, as shown in Fig. 3b. During each training step,
we provide a set of images (5 images) along with the corresponding audio. For
negative samples, we randomly select an audio snippet from the non-overlapping
part of the video. Please note that as we feed the bottom half of the face to the
image encoder, we adapt the first layer of ResNet-50 for an input size of 112×224.

Stabilized Synchronization Loss (Lss). Although AVSyncNet shows im-
proved performance compared to SyncNet [46] and alleviates existing instability
problem that harms lip-sync and visual quality, the unstable performance is not
fully solved due to the inherent challenges of the task (see Fig. 1b and App. A,
B). Therefore, we introduce a stabilized synchronization loss (Lss) to improve
the lip synchronization performance further in conjunction with AVSyncNet by
providing more stable and precise supervision. The formula is shown below:

Lss = − log

(
1− |x− y|+ ϵ

|x− y|+ |y − d|+ ϵ

)
(3)

x = AVsim (I ′, A) , y = AVsim
(
IGT , A

)
, d = AVsim

(
IR, A

)
(4)

where I ′, IGT , and IR are generated, GT, and identity reference lips, respectively,
while A is their corresponding audio. AVsim(I, A) indicates the audio-visual
similarity between a face image (bottom half only, i.e. lips) and audio, given by
the cosine similarity of extracted image and audio features ϕV

AV S(I), ϕ
A
AV S(A)

of the respective AVSyncNet encoder.
In this formulation, x followed by cross-entropy loss denotes the lip-sync

loss [46]. However, to address the unstable and fluctuating performance, we uti-
lize the relative distance in similarity between GT lips-audio and generated-
audio pairs 4. Sometimes, randomly selected reference images may have a lip
4 This is reminiscent of distillation loss [25], as the actual value of the scores is ne-

glected, and only their difference provides loss value for the training. However, initial
experiments trying to directly minimize the distance between SyncNet (or AVSync-
Net) image encoder features of generated and GT faces showed poor performance.
We hypothesize that this is caused by SyncNet image features being only meaningful
for comparing with corresponding audio features due to its training strategy.
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movement similar to that of the target image. We have already introduced the
silent-lip generator GS to mitigate this situation. However, AVSyncNet, while
less severe than SyncNet, might still be unstable (e.g ., unexpectedly high scores
with incorrect pairs or vice versa), resulting in a minor lip leaking and stability
issue. This problem arises when AVSyncNet assigns an erroneously high score to
silent lip-audio pairs as well as when the target lip shape looks similar to closed
lips. To mitigate this, we inject the similarity score between the identity refer-
ence and audio into the formulation. Specifically, we penalize the model more
when the identity reference-audio pair shows higher similarity.

3.5 Implementation Details

Combining all the presented contributions, the total loss is:

L = LGAN (G,D) + λ1Lpixel(G) + λ2Lper(G) + λ3Lss(G) + λ4Lat(G) (5)

where G and D indicate generator and discriminator outputs, respectively. We
empirically found the best coefficients as (λ1, ..., λ4) = (10, 1, 2, 0.5). Please note
that this is the loss function for training GL, while for GS we set λ3 = λ4 = 0.

We process videos by using 5 consecutive frames in each step to consider the
temporal information. We detect faces with FAN [7], followed by acquiring tight
crops and resizing to 96 × 96, as faces in LRS2 [1] are of low resolution. Our
audio encoder receives a mel-spectrogram of size 16 × 80 derived from 16 kHz
audio with a window size of 800 and a hop size of 200. We employ the Adam
optimizer with (β1, β2) = (0.5, 0.999) and set the learning rate to 1 × 10−4 for
all models. Training our AVSyncNet is done similarly to SyncNet [46] on the
LRS2 dataset, and then we freeze the audio encoder of AVSyncNet and use it
in the training of GS and GL. At the end of talking face generation, we apply a
post-processing step by using VQFR [19] to enhance the visual quality and the
resolution, aiming to achieve HR videos. We train and test our models with a
single NVIDIA RTX A6000 GPU.

4 Experimental Results

Dataset. We trained our silent-lip generator and talking face generator using
Lip Reading Sentence 2 (LRS2) [1] training set as it is a well-known benchmark
with extensive subject diversity. The evaluation was carried out on the LRS2 test
set and extended to the LRW [13] test set and HTDF dataset [74] to demonstrate
performance on unseen data.

Metrics and Baseline. For visual quality, we employ widely used metrics:
FID [24], SSIM [65], and PSNR. We also use inter-frame consistency (IFC),
presented as a training objective in [79]. This is achieved by calculating the dif-
ference between the distances of the consecutive frames in the generated and GT
videos. To evaluate lip synchronization, we follow the literature and use Land-
mark Distance (LMD) [9] in the mouth region and LSE-C & LSE-D metrics [46]
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Table 1: Quantitative results on the test sets of LRS2 and LRW.

LRS2 LRW

Method SSIM ↑ PSNR ↑ FID ↓ IFC ↓ LMD ↓ LSE-C ↑ LSE-D ↓ SSIM ↑ PSNR ↑ FID ↓ IFC ↓ LMD ↓ LSE-C ↑ LSE-D ↓
Wav2Lip [46] 0.86 26.53 7.05 0.21 2.38 7.59 6.75 0.85 25.14 6.81 0.20 2.14 7.49 6.51
PC-AVS [78] 0.73 28.24 18.40 0.46 1.93 6.41 7.52 0.81 32.25 14.27 0.38 1.42 6.53 7.15
EAMM [29] 0.69 21.01 84.65 0.51 3.54 3.31 9.93 0.71 26.22 44.16 0.48 2.61 4.32 9.04
VideoReTalking w/ FR [10] 0.84 25.58 9.28 0.22 2.61 7.49 6.82 0.87 27.11 5.30 0.23 2.39 6.59 7.12
DINet [73] 0.78 24.35 4.26 0.25 2.30 5.37 8.37 0.88 27.50 8.17 0.22 1.96 5.24 9.09
TalkLip [63] 0.86 26.11 4.94 0.24 2.34 8.53 6.08 0.86 26.34 15.73 0.26 1.83 7.28 6.48
IPLAP [76] 0.87 29.67 4.10 0.20 2.11 6.49 7.16 0.91 30.45 8.40 0.21 1.64 5.94 7.76
Ours w/o FR 0.95 32.64 3.83 0.16 1.13 8.41 6.03 0.92 31.45 4.46 0.18 1.22 7.86 6.24
Ours w/ FR (VQFR) 0.90 31.80 5.23 0.27 1.36 8.52 5.83 0.90 30.21 7.05 0.21 1.41 7.92 6.00

to measure the confidence and distance scores through a pretrained model [14].
We choose SOTA methods with publicly available codes and models to compare
them fairly under the same conditions, as the implementation of the metrics and
face cropping strategy before computing the metrics affect the scores.

4.1 Quantitative Results

In Tab. 1, we present quantitative results on test sets of two benchmark datasets,
namely LRS2 and LRW. We achieve state-of-the-art results in all visual quality
metrics excluding PSNR on LRW, which is a less informative metric compared
to SSIM and FID. On IFC, we similarly outperform all compared methods, indi-
cating that our model generates the most consistent videos in terms of temporal
information and stability of the faces.

In lip synchronization evaluation, we obtain the best performance in LMD.
Nevertheless, it is important to highlight that LMD is sensitive to the changes
in the image, as it does not disentangle synchronization and visual stability. For
instance, affine transformations impact the LMD score even when the lips are
synchronized, and vice versa. On the LRW dataset, we achieve SOTA results
with more reliable confidence and distance metrics for lip synchronization: LSE-
C & D. On the LRS2 dataset, TalkLip yields a slightly better score than our
model with the LSE-C metric. Nevertheless, we outperform TalkLip and achieve
a SOTA result with the LSE-D metric. All these results indicate the accuracy
of our method in terms of visual quality and lip synchronization. Similarly, we
achieve SOTA results for most metrics on unseen HDTF [74], see App. E.1.

4.2 Qualitative Results

In Fig. 4, we demonstrate a qualitative comparison with SOTA models and
GT data. We use their respective publicly available models and generate videos
from the HDTF dataset [74] to compare the models on unseen data since the
presented models were trained on the LRS2 dataset, except for DINet (trained
with HDTF). Due to SyncNet and lip-sync loss, TalkLip and Wav2Lip encounter
generalization issues, sometimes leading to visual artifacts in the mouth region
or face boundaries, especially when the pose of the identity reference differs from
the pose reference, despite generating accurate lip movements. This observation
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Ours w/o FR

TalkLip
(Wang et al. 2023)

DINet
(Zhang et al. 2023)

VideoReTalking
(Cheng et al. 2022)

Wav2Lip
(Prajwal et al. 2020)

Ground Truth

IP-LAP
(Zhong et al. 2023)

Fig. 4: Qualitative comparison with the SOTA methods. Reference videos (from
HDTF [74]) are randomly selected and not seen during training by our model. For
more images and videos, please check App. E, F and https://yamand16.github.io/

TalkingFaceGeneration/.

Table 2: Ablation studies on the LRS2 test set. See the text for details.

Ablation Setup Method PSNR ↑ SSIM ↑ FID ↓ LMD ↓ LSE-C ↑ LSE-D ↓ IFC ↓

Components

A GL + Ls 26.349 0.853 12.25 2.408 7.116 ± 1.92 7.396 ± 1.03 0.221
B A + Ea,S 26.614 0.868 9.82 2.325 7.271 ± 1.76 7.106 ± 0.98 0.223
C A + Ea,W 26.590 0.869 10.56 2.278 7.220 ± 1.75 7.158 ±0.99 0.228
D B + GS 27.180 0.872 8.16 1.741 7.752 ± 1.71 6.413 ± 0.95 0.221
E GL + Ea,S + GS + Lss 31.166 0.925 5.27 1.140 8.370 ± 1.16 6.032 ± 0.59 0.174
F E + Lt 30.658 0.917 6.24 1.250 8.260 ± 1.34 6.176 ± 0.64 0.183
G E + Lat 32.755 0.949 4.02 1.135 8.382 ± 1.16 6.057 ± 0.61 0.163
H G w/ AVSyncNet 32.640 0.952 3.83 1.130 8.410 ± 0.97 6.037 ± 0.55 0.160

Post-processing
FR1 Setup H + GPEN 28.991 0.919 58.77 1.197 7.625 6.457 0.192
FR2 Setup H + GFPGAN 31.169 0.916 13.07 1.219 7.624 6.496 0.214
FR3 Setup H + VQFR: full model 31.806 0.905 5.23 1.365 8.528 5.838 0.278

Silent face generation VRT-S VideoReTalking silent data 22.124 0.646 33.60 - - - 0.463
Ours-S Our silent data (GS) 33.328 0.951 4.41 - - - 0.141

clearly validates the motivation of our contributions. In contrast, our model gen-
erates consistent faces with comparably fewer artifacts, featuring appropriate lip
movements that align with both the GT faces and the corresponding audio. How-
ever, VideoReTalking demonstrates comparable lip synchronization and visual
quality performance to our model. On the other hand, IP-LAP shows sufficient
visual quality, while less accurate lip synchronization.

4.3 Ablation Study

Tab. 2 and Fig. 5a show a comprehensive ablation study on the LRS2 test
set, analyzing the individual impact of our contributions. We first train our GL

model using SyncNet [46] and lip-sync loss [46] as a baseline. As expected, we en-
countered several issues with unstable training. Once our model converged after
several random seeds, the results (Setup A) show that lip-sync loss can achieve

https://yamand16.github.io/TalkingFaceGeneration/
https://yamand16.github.io/TalkingFaceGeneration/
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GTSetup HSetup ESetup DSetup A

(a) Components.

GTVQFRGFPGANGPENNo FR

(b) Face restoration methods.

(c) Generated samples for challenging
cases: Pose, teeth, beard.

VRT

Ours

GT

(d) Silent face comparison with VRT [10]. ©
European Central Bank (CC BY).

Fig. 5: Ablation studies of components (a), face restoration methods (b), and silent
face generation (d). (c) demonstrates generated images in challenging cases.

decent synchronization performance, despite lower visual quality and training
stability issues. In this setup, we train the audio encoder as a part of GL. Re-
placing this with our pretrained audio encoder enhances the synchronization and
visual quality (Setup B). For further comparison, we also utilize the audio en-
coder of the Wav2Vec2 [3], presented in Setup C. However, it slightly decreases
the scores, which validates our hypothesis about training the audio encoder for
synchronization purposes. Thus, we continue with Setup B and add our silent-lip
generator GS to generate silent identity references (Setup D). GS alleviates the
lip leaking problem, makes the training more stable, and improves the scores no-
ticeably. We further replace lip-sync loss with our stabilized synchronization loss,
yielding drastically improved synchronization and visual quality scores (Setup
E). Moreover, we observed that Setup E shows almost no instability in the train-
ing. In Setup F, we train Setup E including vanilla triplet loss and it enhances
neither visual quality nor synchronization; in fact, it even causes detrimental
effects. This shows the necessity of modifying the triplet loss and introducing
the adaptive triplet loss. In Setup G, replacing vanilla triplet loss with adaptive
triplet loss demonstrates a slight improvement in visual quality, while not having
a negative impact on lip synchronization. In Setup H, we switch SyncNet with
AVSyncNet and achieve slightly better visual quality and lip synchronization.

We compare GS with VRT [10] silent face generation approach in Tab. 2. Our
model surpasses VRT quantitatively and qualitatively (see Fig. 5d), preserving
the visual details and identity while modifying the lips.

We compare different face restoration methods as post processing and present
the results in Tab. 2 and Fig. 5b. VQFR surpasses other methods in preserving
lip synchronization as well as FID and PSNR. However, GPEN shows better
performance in the remaining metrics (see App. F.2 for details). In summary,
we employ VQFR for post-processing in our full model.
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(c) Further analysis.

Fig. 6: Graphs show the performance of SyncNet [46] and our AVSyncNet on LRS2
GT audio-lip pairs under certain transformations. See App. A for further details. We
apply lip-sync loss [46] for the analyses to fairly compare SyncNet and our AVSyncNet
independent from our loss function.

AVSyncNet. Comprehensive experiments on LRS2 GT data pairs highlight
AVSyncNet’s superior performance (see Fig. 6). Furthermore, it demonstrates
strong shift-invariance and robustness against affine transformations in the data
due to AVSyncNet’s design, particularly emphasizing its effectiveness in focus-
ing on lip synchronization while being less affected by other factors. Moreover,
AVSyncNet’s performance is not affected by face pose unlike SyncNet [46]. Tab. 2
also demonstrates that our AVSyncNet improves the performance of our talking
face generation model and works harmoniously with the proposed Lss.

5 Conclusion

In this paper, we improve audio-driven talking face generation by identifying
problems in current approaches and mitigating them accordingly. Specifically,
we introduce a silent-lip generator to mitigate lip leaking, which is a common
problem that harms lip-sync and training stability. Furthermore, we propose sta-
bilized synchronization loss along with AVSyncNet, which significantly improves
the training stability, lip synchronization performance, and visual quality by
solving the problems caused by lip-sync loss and SyncNet. Experimental results
on benchmark datasets and a comprehensive ablation study show the merit of
our method and contributions. Moreover, our detailed analyses reveal the main
issues, support our claims, and validate proposed contributions.

Limitations. Despite the notable improvements, SyncNet’s and AVSyncNet’s
unstable nature should be investigated further. Moreover, face restoration some-
times causes inconsistencies in the video. Silent-lip generator makes teeth invisi-
ble in identity references, occasionally resulting in suboptimal teeth generation.

Ethics & Social Impact. We believe that generating lip-synchronized faces
holds significant benefits across a broad spectrum of applications. However, we
acknowledge its vulnerability to potential misuse, particularly deepfake genera-
tion. We will utilize Watermarking and prevent uncontrolled usage of our model.
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