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ABSTRACT

This paper presents an end-to-end model designed to im-
prove automatic speech recognition (ASR) for a particular
speaker in a crowded, noisy environment. The model utilizes
a single-channel speech enhancement module that isolates the
speaker’s voice from background noise (ConVoiFilter) and an
ASR module. The model can decrease ASR’s word error rate
(WER) from 80% to 26.4% through this approach. Typically,
these two components are adjusted independently due to vari-
ations in data requirements. However, speech enhancement
can create anomalies that decrease ASR efficiency. By imple-
menting a joint fine-tuning strategy, the model can reduce the
WER from 26.4% in separate tuning to 14.5% in joint tun-
ing. We openly share our pre-trained model to foster further
research hf.co/nguyenvulebinh/voice-filter.

Index Terms— ASR, Speech Enhancement, Voice Filter

1. INTRODUCTION
In the ideal environment with a close speaking microphone,
the speech recognition performance of current ASR systems
can surpass humans, with a common word error rate usu-
ally below 5% [1]. However, in a realistic environment, the
ASR system has to deal with complex acoustic conditions
like noise, reverberation, cross-talk (known as the cocktail
party setting) [2, 3]. As a result, it makes the model perfor-
mance drops dramatically. For example, in CHiME-5 com-
petition, WER of barely below 80% achieved by the baseline
system; using a robust back-end, approximately 60% WER is
achieved [4].

Unlike machines, humans do an outstanding job of ignor-
ing interfering signals and focusing on what we want to hear
[5, 6]. As deep learning gains popularity in speech signal pro-
cessing, much impressive progress has been proposed to help
enhance speech signals [7] like denoising, dereverberation,
source separation, and neural beamforming. Among speech
enhancement techniques, masked-based is among the most
popular and effective. In masking approaches, rather than es-
timating the enhanced signal directly, we estimate a mask,
then multiply it with the noisy signal to get the enhanced
signal. Depending on the type of input/output we can have
waveform masking and spectral masking. Our study based on
spectral masking since it’s much faster than waveform mask-
ing.

Speech enhancement techniques generally use for blind
signal enhancement. In our case study, we want to develop a

robot to communicate and take orders from its master. So, we
know precisely to whom the robot needs to listen, which can
provide critical information that helps our speech recognition
system work better, especially in complex acoustic situations
like cocktail parties.

There are some related studies for this circumstance,
known as the speaker extraction problem, including DENet
[8], SpeakerBeam [9], and VoiceFilter [10, 11]. However, our
proposal has a few significant distinctions from them: (1) we
utilize an x-vector pre-trained model [12] instead of i-vector
or d-vector in [8, 9, 10, 11] since the x-vector brings better
results in our experiment. (2) We use scale-invariant source-
to-noise ratio (SI-SNR) [13] as a loss function because it is
a speech enhancement evaluation metric and a training target
that makes optimizing and choosing the best model more pre-
cise. (3) Different from [8, 9], we focus on improving WER
like [10, 11] but joint tuning ASR and speaker extraction
model rather than optimizing the loss function. (4) We make
a pre-trained self-supervised model based on wav2vec2 [14]
architecture that works better for the noise acoustic condition.
(5) For the mask estimation model, we use Conformer block
[15] rather than LSTM and CNN in [10, 11]. Furthermore,
we introduce a cross-extraction mechanism between the ref-
erence signal and noisy signal for speaker embedding, which
enhances the performance of our model, as demonstrated in
our experiments.

2. MODEL DESCRIPTION
Our system consists of two primary modules: speaker extrac-
tion, which enhances the target speaker’s voice, and the ASR
module. In the following subsections, we will describe each
module and our approach to jointly tuning them.

2.1. Target speaker’s voice enhancement
Figure 1 shows an overview of our target speaker’s extraction
module, ConVoiFilter. This module aims to remove all noise
and interfering speech from the noisy audio input, producing
a clean utterance for the target speaker.

Firstly, an embedding vector identifies the target speaker
(eref ∈ Rd emb) extracted from their audio recordings (refer-
ence utterance) using a speaker encoder module. Moreover,
we perform cross-extraction of speaker embedding from the
noisy audio (enoisy ∈ Rd emb). Afterwards, we concatenate
the two embeddings (from the reference utterance and the
noisy audio) and feed them through a feed-forward network
to produce the final presentation for the target speaker (e =
FFN(eref , enoisy) ∈ Rd emb). Without cross-extraction,
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Fig. 1. Overview of the ConVoiFilter model.

e = eref . We experimented with two different speaker en-
coder models: x-vector [12] and i-vector [16].

Secondly, we utilize the short-time Fourier transform
(STFT) to process the noisy audio and generate a magnitude
spectrogram (F ∈ RS∗(n fft

2 +1)) that will aid in the mask
estimation process. In this step, we preserve the phase (P )
for the inverse STFT (iSTFT), which is used to reconstruct
the output audio. The variable S denotes the number of
time frames, and n fft represents the size of the Fourier
transform. To create the features required to guide the mask
estimation model, we horizontally concatenate the target
speaker’s embedding E with the magnitude spectrogram F ,
resulting in Ĝ = [F e] ∈ RS∗(n fft

2 +1+d emb).
Next, N conformer blocks used to transforms Ĝ into a

mask M ∈ RS∗(n fft
2 +1) of the same shape as the magni-

tude spectrogram F . Since Ĝ and M is in different shape
and we want to maintain the original conformer blocks, we
need to transform Ĝ into G = FFN(Ĝ) ∈ RS∗(n fft

2 +1)

which has the same shape with M . A conformer block (for-
mula 1) consists of four modules stacked together (described
in [15]) where xi is the input to conformer block i (x0 = G).
We selected conformer because it incorporates convolution
and multi-head self-attention, both of which are effective in
utilizing contextual information, which is crucial for detect-
ing interfering signals. The mask’s purpose is to amplify or
attenuate the amplitude of certain frequencies in the spectro-
gram, and therefore, it must be greater than or equal to zero.
The ReLU function is applied to the output of the conformer
block (M = ReLU(yN )).

x̃i = xi +
1

2
FFN(xi)

x′
i = x̃i +MHSA(x̃i)

x′′
i = x′

i +Conv(x′
i)

yi = Layernorm(x′′
i +

1

2
FFN(x′′

i ))

(1)

Finally, the estimated mask M is multiplied element-wise
with the magnitude spectrogram F to obtain an enhanced

magnitude spectrogram. Phase information P is combined
with this enhanced magnitude spectrogram to reconstruct the
output audio iSTFT (M ⊙ F, P ). We evaluate audio quality
using the SI-SNR [13] loss function, which compares it with
the clean utterance of the target speaker.

2.2. Automatic speech recognition

Self-supervised learning of speech representations [17] has
recently shown its effectiveness in utilizing unlabeled speech
data, resulting in outperforming the state-of-the-art (SoTA)
in many automatic speech recognition (ASR) datasets. For
our study, we utilized the pre-trained wav2vec2 model [14]
to construct our ASR model. The wav2vec2 model acts as a
speech encoder, and for the decoder, we used an RNN trans-
ducer [18]. Despite having a speech enhancement module to
eliminate noise from the audio, the output may still contain
noise. To address this issue, we utilized the self-supervised
learning capabilities of wav2vec2 and created a pre-trained
model by incorporating noise and room reverb into the un-
labeled data (see section 3.1 for dataset details). Our sub-
sequent experiment demonstrated that this approach signifi-
cantly enhances the system’s accuracy.

2.3. Joint fine-tuning strategy

ConVoiFilter is expected to produce only the target speaker’s
voice. However, in practice, speech enhancement always
comes up with unknown artifacts. In a naive way, we can
directly connect the enhancing module to the ASR module
and optimize their total loss. However, there are two reasons
why it does not work. Firstly, the enhancement works in a
high resolution of the input (e.g., an audio 15s, rate of 16kHz,
STFT has hop size of 128 will output around 2000 time-
frames). It makes the mask estimation module hard to work.
Whereas with the wav2vec model, the same audio will output
about 700 time-frames. Secondly, ConVoiFilter quickly fails
the ASR module at the beginning of optimization because its
output is too noisy.

We handle these issues with a chunk-merging strategy.
Below is the pseudo-code of the forward function. First, long



audio is split into smaller chunks (line 4) to optimize the en-
hancing module, then the output (line 6) to optimize the ASR
module. Audio input is padded into integer times the chunk’s
size to ensure all chunks are the same after splitting.

1 def forward(noisy_audio, spk_embed,
2 clean_audio, label):
3 chunk_size = 5 #5s each chunk
4 noisy_chunks = split(noisy_audio, chunk_size)
5 output_chunks = enhance(noisy_chunks, spk_embed)
6 output_audio = merge(output_chunks)
7 enh_loss = si_snr(output_audio, clean_audio)
8 if snr_loss < threshold: #enhancing is well
9 output_text = asr(output_audio)

10 else:
11 output_text = asr(clean_audio)
12 asr_loss = transducer_loss(output_text, label)
13 loss = enh_loss + asr_loss
14 return loss

In the beginning, the enhancement module can output ran-
domly. So, we use a threshold to decide if the enhancement
module works well; then, the ASR module will learn from its
output; else, the ASR model will learn from the clean audio.

3. EXPERIMENTAL SETUP

3.1. Data preparation
In our setup, we need a clean utterance of a specific speaker,
noisy audio containing that utterance, and that speaker’s em-
bedding. Although CHiME-5 [19] is like a cocktail party
dataset; however, the clean utterance is no warranty. It shows
through the WERs for the development set using the binaural
microphones (clean utterance of a speaker) reported around
47.9%. Instead, we train and evaluate the system using our
generated data. We use audio from the LibriSpeech dataset
[20] (2338 speakers for training, 73 speakers for testing). The
ambient noise dataset includes MUSAN and WHAM [21, 22]
(a total of 189 hours including music, speech, and environ-
mental noise, 169 hours for training, 20 hours for testing).
The reverb dataset is from Room RIR and BUT Speech@FIT
[23, 24] (2650 room impulse response signals, 2350 signals
for training, 300 signals for testing).

…

Other speaker’s
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Impulse 

Response

Ambient noise

Fig. 2. Data preparation pipeline

Figure 2 shows our data generation pipeline. Noisy audio
is cumulative of a few utterances and ambient noise. An ut-
terance can be convolved with a room impulse response. We
use random variables in the generating process to make the
dataset more diverse. The number of other speakers’ utter-
ances is random, from 0 to 3. Ambient noise is added in 80%
number of times. The room impulse response is applied 30%

number of times. All other speaker’s utterances and ambi-
ent sound is normalized (based on the target speaker’s clean
utterance) with SNR value around 1 to 20dB.

Both training processes (self-supervised wav2vec2 and
ConVoiFilter model) use this data pipeline. One difference
is that when we train self-supervised wav2vec2, we do not
use other speakers’ utterances (the dashed arrow in figure 2 -
means no cross-talk) because it makes the data too noisy and
can fail the wav2vec2 model.

3.2. Model setup
In our experiment, the ConVoiFilter model has 4 layer con-
formers with a hidden size is 1024, STFT has n fft = 512,
hope size is 128, speaker embedding is x-vector[12] model
has d emb = 512. A speaker’s embedding is calculated from
multiple utterances of that speaker. For the ASR model, we
use the wav2vec2-base architecture with 12 hidden layers; the
hidden size is 768.

3.3. Evaluation
Our system was evaluated using five different types of data.
The first is the “Clean Audio” which consists of the origi-
nal audio. The second type is the “Noisy Audio” which is
the output of the data processing pipeline (depicted in Fig-
ure 2) applied to the clean audio. The third type is the “No
cross-talk”, a subset of noisy audio, which contains only sin-
gle speaker samples with both ambient noise and speech re-
verberation. The fourth type is the “Ambient noise”, a subset
of noisy audio, which contains samples with cross-talk and
ambient noise only. Finally, the fifth type is the “Reverbera-
tion”, a subset of noisy audio, which contains samples with
cross-talk and reverberation only.

We evaluated our system using four different model set-
tings to assess the WER on various types of data (table 1).
The first two settings consisted of ASR models only, which
aimed to measure the ASR model’s ability to handle noisy
data. The first ASR model, named ASR based, was initial-
ized from the pre-trained wav2vec2 base model [14], which
was trained with 960 hours of Librispeech data. The second
ASR model, ASR noisy, was initialized from our pre-trained
wav2vec2 base model, which was trained with the same 960
hours of data, but augmented with noise and reverb data. The
remaining two settings incorporated a speech enhancement
module. The third was a cascade model, in which ConVoiFil-
ter and ASR were trained independently. The final model
was end-to-end, where ConVoiFilter and ASR were jointly
trained. The first two ASR models were trained with noisy
audio (without cross-talk). In contrast, the cascade and end-
to-end models were trained with noisy audio that may have
cross-talk.

4. RESULTS
The WER for different model settings on various data types
is presented in Table 1. Generally, the end-to-end models per-
form better than other models across most input sets, except
for clean audio. In cases with cross-talk, the ConVoiFilter
model demonstrates its effectiveness by using speaker em-
bedding to extract the target speaker’s voice, resulting in
cleaner audio and a significant improvement in WER (the
result in the cross-talk column, rows 2 and 4). The “Noisy



Model setting Clean Audio No cross-talk Cross-talk Noisy Audio
Ambient noise Reverberation

ASR based 2.22 16.21 50.72 90.87 80.04

ASR noisy 2.03 12.12 45.12 84.14 75.19

Cascade ConVoiFilter + ASR noisy 3.51 11.59 20.24 30.30 26.40

End-to-end ConVoiFilter-ASR noisy 3.36 9.41 13.23 25.14 14.51

Table 1. %WERs for different types of model settings. The ConVoiFilter model uses x-vector as speaker encoder

System Overlap ratio in %

0S 0L 10 20 30 40

Baseline [25] 8.4 8.3 11.6 15.8 18.7 21.7

Whisper-large 3.64 3.4 8.86 15.64 23.55 32.73

ConVoiFilter +
Whipser-large 5.35 5.59 7.32 13.28 14.46 16.83

Table 2. %WERs for LibriCSS utterance-wise evaluation

Audio” column displays the overall model performance, with
only the ASR model achieving the best WER at 75.19%
(ASR noisy). When combined with ConVoiFilter model, the
WER can be significantly reduced to 26.40%. The end-to-
end model can further improve the performance, achieving
a WER of 14.51%. Additionally, our pre-trained wav2vec2
model (with noisy audio) proves its worth, with ASR noisy
outperforming ASR based in all input sets.

Table 2 presents the WER for the LibriCSS[25] dataset,
a 10-hour real-recorded dataset derived from the LibriSpeech
corpus featuring speaker conversations. The baseline com-
prises BLSTM ASR, speaker separation, and MVDR based
on 7-channels. We compare this baseline with a robust ASR
model (Whisper large [26]) and also explore a combination
of our ConVoiFilter with Whisper. The results clearly indi-
cate that ConVoiFilter significantly improves Whisper, par-
ticularly in reducing WER in overlapping audio.

Table 3 presents an ablation study comparing our proposal
to other studies on the speech enhancement model for a tar-
get speaker (speaker extraction problem). The effectiveness
is measured using two standard metrics, SI-SNR and SDR,
expressed in dB, where a higher value indicates better perfor-
mance. Our ConVoiFilter differs from the recent VoiceFilter
[10, 11] in three key aspects, namely the speaker encoder (x-
vector), mask estimation model (conformer), and loss func-
tion (SI-SNR loss). Table 3 demonstrates the improvement
resulting from each change we made. Firstly, replacing bi-
LSTM with Conformer resulted in the most significant gain
(5.56 points in SDR). Secondly, the SI-SNR loss function out-
performed the MSE loss used in [10]. We speculate that the
direct computation of the audio signal by the SI-SNR loss pro-
vides better optimization signals than the spectrogram-based
MSE loss. Thirdly, although the x-vector and i-vector were
trained with the same dataset, our experiment showed that the
x-vector provided better results than the i-vector.

Figure 3 illustrates the effectiveness of cross-extraction
of speaker embedding. In this example, the input is a mix-
ture of two people (labeled as per 1 and per 2) and ambi-

Method SI-SNR SDR

No Enhancement 1.04 1.14

ConVoiFilter 13.97 15.14
x-vector → i-vector 10.02 11.14

Conformer → bi-LSTM 8.12 9.58

SI-SNR loss → MSE loss 9.11 10.81

Table 3. Ablation study over each change in the ConVoiFilter
model. Source to distortion ratio (SDR) and Scale invariant
signal to noise ratio (SI-SNR) in dB.

ent noise. When we use the speaker embedding from per 1,
both the model with and without cross-extraction can extract
the target speaker as per 1. However, if the speaker embed-
ding is obtained from a random person, only the model with
cross-extraction can output a blank speech signal. Without
the cross-extraction mechanism, the model extracts the wrong
speech signal (the speech signal of per 2).

Input mix
(per_1, per_2, noise) per_1 

embedding

per_other 
embedding

Output
with cross-extraction

Output
w/o cross-extraction

per_1

Fig. 3. An illustration spectrogram demonstrating the extrac-
tion of the target speaker’s voice.

5. CONCLUSION
This paper details a case study on cocktail party speech recog-
nition. Instead of recognizing all speakers, our system focuses
on enhancing the target speaker’s voice before conducting
speech recognition. Through rigorous experiments, we show-
cased the effectiveness of our improved end-to-end model.
Noteworthy enhancements include a cross-extraction speaker
encoder, an improved mask estimation model, and an opti-
mized loss function. We also publicly share our pre-trained
ConVoiFilter to support ongoing research.
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