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ABSTRACT

In recent times, automatic speech recognition (ASR)
has seen remarkable progress, particularly in recognizing
dominant speakers. Nevertheless, the challenge of multi-
talker scenarios involving distinguishing between speakers
and transcribing their speech accurately remains unsolved
due to limited data constraining model effectiveness. In this
study, We propose a novel methodology called Systematic
Synthetic Conversations (SSC), which leverages conventional
ASR datasets to help an end-to-end (E2E) multi-talker ASR
model establish new state-of-the-art results across synthetic
and authentic multi-talker datasets. Notably, we achieved a
3.47% word error rate (WER) for the Libri2Mix [1] set, and
WERs of 13.96% and 19.51% for the AMI-IHM and AMI-
SDM [2] sets, respectively. These outcomes underscore the
hidden potential of existing resources in tackling the compli-
cated multi-talker problems within the domain of ASR.

Index Terms— multi-talker, asr, synthetic conversation

1. INTRODUCTION

Multi-talker speech recognition is an emerging research in the
speech community due to its great potential in applications
such as conversation and meeting transcriptions. The issue
here is that the sounds we’re dealing with are complicated.
There are multiple people talking, sometimes all at once, and
this can be mixed with background noise and reverberation.
In this complex acoustic condition, a recognition system must
differentiate persons and transcribe their utterances. Many
studies proposed to handle this task. Figure 1 reveals a few
main approaches.

The initial approach, as depicted in Figure la, involves
a straightforward separation of mixture signals into multi-
ple channels, with each channel corresponding to a distinct
speaker (referred to as the speech separation model). Follow-
ing this, a conventional ASR model is applied to transcribe
the signals [3, 4]. This method yields discernible speech and
text outputs, each attributed to a specific speaker. Neverthe-
less, the training data for the separation model is usually
synthesized data. Furthermore, the training of the speech sep-
aration system often relies on a signal-level criterion, which
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might not inherently align with the optimal criteria for ASR
performance.

Instead of explicitly isolating the speaker at the signal
level, certain studies achieve this within hidden layers by em-
ploying a speaker modeling model (refer to figure 1b). In [5],
authors use additional information (speaker embedding) of
the person involved in the input signal. However, relying on
a fixed speaker embedding model can potentially bottleneck
the system when encountering unknown acoustic conditions.
Alternatively, in [6], speakers are implicitly separated within
the mixed speech embedding, avoiding the need for speaker
information that might not be available in practical scenarios.
With PIT [7], a joint multi-talker inference using permuta-
tion invariant training was also considered for this strategy. In
essence, this method resembles E2E multi-talker ASR, which
mitigates artifacts in the output signal that may be introduced
like in the first approach(figure 1a). Nonetheless, gathering
data for this method remains challenging, leading most studies
to conduct experiments solely on limited or synthetic datasets.

We can consider using a speaker diarization model to de-
tect “who speaks when” and then do ASR after that (figure
1c). This method [8, 9], however, could suffer from accuracy
degradation in overlapped regions because the ASR system is
usually designed to recognize single-speaker speech. In addi-
tion, data used to train the diarization model is also expensive
to annotate. [10] show that taking roughly 2 hours for a single
annotator to annotate 10 minutes of audio for one pass.

The approaches in figure 1(a, b, ¢) share a common trait:
they yield explicit outputs that identify speakers and their
dialogues. However, their training relies on limited real or
simulated data. Suppose we ignore the need to identify the
speaker, an alternate approach shown in figure 1d, an E2E
solution using a single ASR model is feasible. This strategy
employs a sequence-to-sequence model to produce token se-
quences, with special tokens marking speaker changes in tran-
scripts. In previous work [11], specialized tokens (<spk:dr>
and <spk:pt>) were inserted into ASR transcripts to distin-
guish doctor and patient speech. However, such a system can-
not be used for generic purposes. In [12], authors employed
75K hours of single-talker data to simulate 900K hours of
multi-talker audio for pretraining. Both [11, 12] use private
large-scale data, which has been considered a limitation.
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Fig. 1. ASR multi-talker approaches

Our study introduces an innovative method for leverag-
ing existing public ASR data. We establish a comprehensive
dialog dataset by employing label force alignment and con-
versation audio reconstruction. We named this process Sys-
tematic Synthetic Conversations (SSC). Our focus lies in the
E2E approach for multi-talker transcription generation. Sur-
passing prior state-of-the-art work [12], our results excel in
AMI-SDM and AMI-IHM benchmarks, achieving this with
a dataset smaller than five times their size. Moreover, we
establish a new state-of-the-art benchmark in the Libri2Mix
dataset. We openly share our label alignment to foster further
research, facilitating engagement with this challenge. hf.
co/datasets/nguyenvulebinh/asr-alignment.

2. SYSTEMATIC SYNTHETIC CONVERSATIONS

Conversation is a concept when multiple people express their
thoughts, ideas, and opinions back and forth. Intuitively, we
can combine utterances from multiple people with a relative
meaning to construct a conversation. In the AMI meeting cor-
pus, if we segment the recording at silence positions or non-
overlapping utterance boundaries, around 60% of the time,
a segment contains a single speaker, 25% and 10% involve
two and three speakers, respectively. Inside a segment that
has multi-speakers, around 20.5% of the time is overlapping
speech.

Based on that intuition, here we want to reconstruct a
conversation to make data for training the ASR multi-talker
model. To do that, we need a set of utterances that contains
only a single speaker. Many datasets fit that requirement, like
Librispeech [13], MuST-C [14], TED-LIUM [15], VoxPopuli
[16], and Common Voice [17]. However, most are the cor-
pus of read speech, so the diversity is not strong enough. A
dataset from YouTube like GigaSpeech [18] is more diverse,
but it can contain multiple speakers. We take a random 50.000
utterances from GigaSpeech and do the speaker diarization
[19], which shows that 29.8% of it contains more than one
speaker. Although containing multi-speaker, the overlapping
speech portion is small, just around 0.5%.
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Fig. 2. Correlation between the number of sentences in an
utterance in GigaSpeech and the proportion of single speaker.

We explored various approaches for extracting segments
with just one speaker from the GigaSpeech dataset. Initially,
we considered employing speaker diarization to isolate indi-
vidual speakers’ text. However, due to a reported Diarization
Error Rate of 24.3% on average [19], we found this method to
be less dependable. An alternative strategy we pondered in-
volved segmenting based on the semantic structure of the tran-
scriptions, achieved through sentence segmentation. In prac-
tice, breaking a sequence into sentences can often be guided
by punctuation. Fortunately, GigaSpeech’s transcriptions in-
clude punctuation marks. Even datasets lacking punctuation
can still benefit, as research [20] has made strides in infor-
mation recovery techniques. For datasets without punctuation,
we turned to a pre-trained model from Nvidia Nemo frame-
work [21] to restore these cues. The relationship between sen-
tence count and the prevalence of single-speaker instances in
the GigaSpeech dataset is depicted in Figure 2. Notably, when
an utterance comprises a solitary sentence, it is highly likely
to feature only one speaker.
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Fig. 3. Overview of Systematic Synthetic Conversations
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Dataset Size (samples/hours) # Turns

GigaSpeech 8283K / 10K 9680K
Common Voice 945K/ 1.7K 955K
MuST-C 248K /0.5K 304k
TED-LIUM 268K /0.5K 370K
VoxPopuli 182K /0.5K 218K
LibriSpeech 281K /0.9K 551K

Table 1. List of pretraining dataset

To align the textual content and audio, we leveraged the
open-source MMS developed by Facebook [22]. This has
been trained using the wav2vec2 CTC model, encompassing
31K hours covering 1,130 languages. Following the align-
ment, we re-evaluated the number of speakers in each audio
fragment (segmented by sentence). The percentage of single-
speaker now is 97%. This confirms the efficacy of text-based
alignment and sentence segmentation for isolating individual
speaker utterances from diverse audio sources.

Our SSC approach is depicted in Figure 3. The audio
pool includes various datasets (see Table 1). GigaSpeech ac-
commodates multiple speakers, while other datasets feature a
solitary speaker per sample. In total, this covers 14K hours.
Each sample undergoes alignment using the MMS, followed
by sentence tokenizer, facilitated by Spacy Sentencizer[23].
These segmented units, referred to as “turns”, are antici-
pated to emanate from individual speakers. This aligning and
splitting turn procedure is executed as a preliminary step pre-
ceding the actual training process. Post-segmentation, a total
of 12 million turns is obtained.

During the random combination phase, we pick a max-
imum of n turns from the turn pool and arrange them ran-
domly along the time axis. This arrangement maintains an
approximate 20% overlap rate, inspired by insights from the
AMI dataset. To avoid excessive length, we enforce a strict 20-
second cap on the total combined audio duration. A turn from
the n turns is included only if its inclusion doesn’t result in
the total length exceeding this duration. This dynamic com-
bination takes place during model training. Labels are gen-
erated by concatenating the transcriptions of the turns, with
a unique (sc) token (indicating speaker change) inserted be-
tween consecutive turns. The order of transcriptions aligns
with the appearance sequence of the corresponding signals
within the mixture audio.

3. EXPERIMENTS SETUP

3.1. Modeling

The base model we use to benchmark is a typical ASR
sequence-to-sequence model. The encoder is WavLM;;¢¢
[16], and the decoder is BART-decoderyqse [24]. Formally,

given an input sequence X € R’ (I is the length of the sig-
nal), the goal of the ASR model is to estimate transcription
Y = (y € {1,...,|V|}|t = 1,...,T) where |V| is the size of
the vocabulary V), and T is the number of estimated tokens.
When we deal with multi-talker, the output sequence should
be Y = {y%v °* y%“lﬂ <SC>7 y%a °* y%h <SC>7 y%? s y%:w <608>}’
where y] represents the i-th token of the j-th speaker. Here,
(eos), a token for sequence end, is used only at the end of the
entire sequence.

The model advances using Speech-Encoder-Decoder from
the HuggingFace library [25] through two training phases.
Firstly, the pre-training phase employs data from the SSC
(refer to figure 2). This phase spans 300K training steps with
a batch size of 120. Following this, the second phase en-
tails fine-tuning with a standard multi-talker ASR dataset for
roughly ten epochs.
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Fig. 4. Utterance group-based
3.2. Dataset

For fine-tuning and evaluation, we employ LibriMix (syn-
thetic) and AMI Meeting Corpus (real multi-talker dataset).
LibriMix uses the "2-spk 16kHz max" setup (denoted as
Libri2Mix), where two random Lirispeech samples are mixed,
testing the model in fully overlapping scenarios. With the
AMI dataset, we follow [12], adopting an utterance group-
based approach. These groups can contain up to 4 speakers
(see example in figure 4), segmented from original audio
based on silence or non-overlapping utterance boundaries.

The Libri2Mix training dataset encompasses 58 hours of
speech mixtures from LibriSpeech train-clean-100, with 11
hours each for the dev and test sets. The AMI benchmark ex-
ists in two versions: AMI-IHM records meetings via closed
microphones, while AMI-SDM employs distant microphones.
Using the Kaldi toolkit’s scripts [26], we allocate 76.9 hours
for training and around 8.9 hours for both the dev and test sets
(applicable to both AMI-IHM and AMI-SDM).

3.3. Evaluation metric

During training, the sequence of each speaker’s transcription
aligns with their appearance time. However, during infer-
ence, speaker order may be randomized, lacking specific
constraints. We focus solely on completing content for each
speaker, not the order. Similar to other studies [12, 29, 7],
we employ the concatenated minimum permutation word
error rate metric. This involves concatenating all speakers’
reference transcriptions, generating permutation lists for hy-
potheses, and calculating WER for each permutation against
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Table 2. Comparison WER of different Table 3. Comparison WER of different Table 4. Impact of Data Processing Effi-

systems on Libri2Mix

systems on AMI (utterance group)

ciency on WER in AMI-IHM

Model dev test Model IHM SDM
ISM + WavLM-CTC [5] 1104 10.68  ISM+WaLM-CTC[S]  25.88 WavLM-BART WER  Differences
Conv-TasNet + Transformer [27]  21.00 219 PIT + WavLM [5] 27.02 (0) finetune 42.64 -28,68
PIT + Transformer [27] 26.58 26.55 Conformer [12] 149 212 (1) utterance data 33.69 -19.73
Wav2vec2-Sidecar [6] 7.68  8.12 Multi-talker Whisper (large) [28] - 214 (1) + finetune 25.72 -11,76
Whisper (large) 49.43 49.99 Whisper (large) 3421 50.71 (2) conversation data  26.31 -12.35
WavLM-BART (ours) 336 347 WavLM-BART (ours) 1396 19.51 (2) + finetune 13.96 0
the reference, selecting the lowest WER. For simplicity, we’ll \ Model # of talkers Total |
refer to this as normal WER going forward. ‘ 1 2 3 4 ‘
| Conformer [12] 147 196 257 355 212 |
4. EXPERIMENTS RESULT | Multi-talker Whisper [28]  12.0 202 293 40.6 214 |
Table 2 presents benchmark results obtained from various |  WavLM-BART (ours) 129 203 29.1 307 195 |

models evaluated on the Libri2Mix dataset. All models (ex-
cept Whisper) were pre-trained on a bigger dataset (including
full LibriSpeech) but finetuned only on Libri2Mix with the
train-clean-100 set. In this context, JSM refers to the Joint
Speaker Modeling, which combines speaker embedding with
the WavLM-CTC ASR model. The Conv-TasNet model is a
dedicated speech separation architecture, while PIT involves
multi-talker inference through permutation invariant train-
ing. The Wav2vec2-Sidecar method involves the separation
of mixed speech embeddings and subsequent transcription
for distinct speakers. Whisper [30] here to demonstrate the
limitations of a robust ASR model (trained extensively with
680k hours of audio) which can only handle the dominant
speaker. During our study period, the most recent state-of-
the-art (SOTA) achievement within the Libri2Mix dataset
was attributed to the Wav2vec2-Sidecar model. Our model
WavLM-BART shows outstanding result and beat other mod-
els by a large margin.

AMI meeting benchmark is shown in table 3. Along with
JSM and PIT models, we add a few more architectures to
compare. Firstly, a Confromer model [12] was pre-trained
with 75k hours in the multi-talker style. From that, they
finetuned with the AMI utterance group data and got a new
SOTA (WER 14.9 and 21.2 in IHM and SDM). In [28], au-
thors utilize the Whisper model and finetune them with the
AMI utterance group (result in WER 21.4 in SDM). It helps
to improve the default version of Whisper a lot (WER 50.71
in SDM). Our WavLM-BART model, which pre-trained with
only 14k hours of public audio (using our proposed SSC) and
fine-tuned with the AMI, outperformed both Whisper and
Conformer (which have much more private data).

We do an ablation experiment (table 4) on the AMI-IHM
dataset to show the efficiency of the SSC. The bottom line
showcases the outcomes of our prime system, which un-
derwent pre-training with conversation data and fine-tuning
using in-domain AMI data, resulting in a WER of 13.96%.
However, when pre-trained with original utterance data and

Table 5. WER for AMI-SDM evaluation set w.r.t the number
of speakers. All systems fine-tuned on utterance group data.
subsequently fine-tuned with AMI, the WER exhibits a
marked deterioration (33.69%), increasing by 11.76% in ab-
solute terms. In cases where no pre-training data is employed,
the model’s performance reaches its poorest performance,
with training solely on AMI data yielding a WER of 42.64%
(increasing by 28.68% absolute).

Table 5 details the pros and cons of systems based on how
models were trained. In this table, we can see how good each
system is depending on how many speakers exist in the sam-
ple. Whisper in [28] works best in the single-speaker setting
since it is trained with much more data in that type, but the
performance is down when the number of speaker increase.
Our model and the Conformer model in [12] work better when
a sample has multiple talkers because of those trained with
dialog-orient data. Although [12] has bigger data (more than
five times compared with us), we gain better performance in
1, and 4-speaker settings and competitive results in 2-speaker
setting. It proves the help of our proposed SSC.

5. CONCLUSION

In summary, our novel approach effectively harnesses com-
mon public ASR datasets to enhance multi-talker end-to-end
ASR systems. Our method demonstrates superior perfor-
mance on the AMI and LibriMix datasets, even with consid-
erably less data than prior studies, and we have openly shared
our label alignment to foster continued research. While our
current random conversation constructor is promising, future
advancements could involve integrating retrieval conversation
knowledge-based mechanisms for potentially superior results.
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