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Abstract
Multilingual speech recognition with neural networks is often
implemented with batch-learning, when all of the languages are
available before training. An ability to add new languages after
the prior training sessions can be economically beneficial, but
the main challenge is catastrophic forgetting. In this work, we
combine the qualities of weight factorization and elastic weight
consolidation in order to counter catastrophic forgetting and fa-
cilitate learning new languages quickly. Such combination al-
lowed us to eliminate catastrophic forgetting while still achiev-
ing performance for the new languages comparable with having
all languages at once, in experiments of learning from an initial
10 languages to achieve 26 languages without catastrophic for-
getting and a reasonable performance compared to training all
languages from scratch.
Index Terms: speech recognition, multilingual, transformer,
continual learning, incremental learning

1. Introduction
In recent years, the rise of the end-to-end approach in speech
recognition using deep learning based models such as sequence-
to-sequence [1] or connectionist temporal classification [2] fa-
cilitates the development of multilingual speech recognition.
Without any intermediate requirement such as a pronunciation
dictionary with defined phonemes, the neural models can be ef-
fortlessly trained on datasets containing different languages, re-
sulting in supervised [3, 4, 5] or unsupervised [6, 7, 8] speech
models. Not only being beneficial in improving performance
for low-resourced languages, this approach is also industrially
appealing by reducing the amount of effort comparing to train-
ing many different models.

In practice, it is also possible that only a subset of the lan-
guages is available at first, and the data for new languages can
be added after the training process. On the other hand, the data
for previously trained languages might be discarded for storage
or privacy reasons. In such case, the typical batch-training sce-
nario often resorts to two options, either to fine-tune the mod-
els on the new datasets to obtain new models that are capable
of transcribing new languages, or to combine the old and new
datasets to construct new models that fit all languages. Non-
optimally, fine-tuning trained models on new languages poses
a threat for the previously learned languages to be forgotten,
known as catastrophic forgetting [9] that happened when the
parameters of the neural networks are shifted towards optimiz-
ing the loss function for the new dataset, and far away from the
optimal points with respect to the old ones. On the other hand,
training all languages together can potentially obtain the best
performance for all languages, but is costly since the training
time of neural networks can scale depending on the amount of

training data. Furthermore it is not possible when the previous
languages are no longer available.

To the best of our knowledge, such continual learning sce-
narios have not been investigated in multilingual speech recog-
nition. The most similar scenarios would be fine-tuning pre-
viously trained models, either in supervised or unsupervised
modes, on new languages. The objective of this paper, there-
fore, is to find new training strategy for multilingual speech
recognition in such continual learning scenario, to achieve the
following goals:
• Forward transfer: adding new languages to the current mul-

tilingual model can ideally obtain the performance similar to
when having them in the initial training.

• Backward preservation: catastrophic forgetting is avoided for
the previously learned languages, ideally adding the new lan-
guages should not affect the performance for the previously
learned ones.

• Optimal training cost: the process of learning new languages
should be economically better than re-training all languages
from the beginning, in terms of training speed and storage.

In the literature, exposing current models to new train-
ing data or new tasks often requires adding new parameters
to the model, which is often observed in state-of-the-art fine-
tuning from pre-trained models where adapters - specific net-
work components - are added for those specific tasks [10, 11].
Using larger components lead to higher performance but with
higher storage cost [12]. On the other hand, the original capac-
ity is preserved by preventing the weight values to deviate far
from the pre-trained states, using regularization [13, 14].

Back to speech recognition, based on the literature, our
key idea is to organize the weights in the networks into a
shared component while off-loading some information into the
language-specific components and allocate new weights for new
languages in a progressive manner [15]. In order to imple-
ment this efficiently, we relied on weight factorization [4] as
the method that factorizes each weight matrix in the network
into a linear combination of three different matrices, two of
which are then represented with low-rank forms for each lan-
guage pair while the main weight component is shared be-
tween languages. When exposing to new languages, the net-
work can allocate cheap low-rank weights for them while reg-
ularizing the shared weights during learning to prevent catas-
trophic forgetting. Here, we found that elastic weight consoli-
dation (EWC) [13] is both effective and efficient in preserving
the capacity of the shared weights, by using gradient-based im-
portance to find redundant weights in the network.

The empirical question would be: to what extent can we
prevent catastrophic forgetting and how can the method last
over time during continual learning? We applied the tech-
niques in a continual learning scenario involving 26 languages,
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in which the network is first trained on 10 languages and then
continually exposed to the rest, we showed that it is possible
to achieve almost the ideal performance (only losing 4% word
error rate (WER), as if all languages are trained at once) for the
new languages with a minimal loss in preservation (9% increas-
ing in WER). This is vastly contrastive to fine-tuning that very
quickly demolishes the performance of the previous languages
(with higher than 100% WER). In the long term, despite the
theoretical limitation of EWC that prevents it to maintain the ef-
fect, weight factorization remains as an efficient solution thanks
to the ability to completely prevent catastrophic forgetting with
a minimal cost. We found that EWC can keep the preservation
up to two continual learning steps, before freezing the parame-
ters with weight factorization is the better approach.

2. Related works
Learning tasks consecutively without catastrophic forgetting
and using the knowledge of previous tasks to facilitate learn-
ing new task is an important topic in machine learning that has
been investigated in computer vision or reinforcement learning.
There are three common approaches in continual learning: reg-
ularization, progressive architecture and replaying from mem-
ory. The regularization approach is model agnostic and focuses
on designing objective functions that punish weights that tend
to be shifted too far from the original positions, where the op-
timal state with respect to the previous tasks is achieved. The
important weights can be identified by importance [13] or mem-
ory synapses [16]. Besides, the network can also be designed to
to isolate the weights and module of each task, while allocating
new weights for new tasks [15, 17, 18]. It is also possible to
store examples of previous tasks as memory replaying [19] to
ensure that the gradient updates in the new tasks do not have
negative effect over the previous datasets.

In Automatic Speech Recognition, continual learning or in-
cremental learning has been explored in a number of mono-
lingual scenarios. The hybrid HMM models were explored
in continual learning by learning different datasets such as
World Street Journal, Reverb, Librispeech and Chime4 con-
secutively [20]. In a similar manner, the sequence-to-sequence
model can also be trained on different English datasets with the
goal of evaluating the performance in each domain after training
on another [21]. Recently, the replaying from memory approach
has been applied to online continual learning [?] without a clear
boundary within task.

Compared to the related works, continual learning new lan-
guages in multilingual ASR has a clear task separation due to
the difference between languages, compared to monolingual se-
tups. The weight factorization method can be classified into the
architectural approach, by assigning new network parameter for
new 5 languages. In our work, we combine both architectural
and regularization approaches to cover forward and backward
transfers in the desiderata.

3. Continually learning approach
An end-to-end neural model, such as a Transformer model,
learns to map the input acoustic features X to a sequence of
symbols Y .

HE = Encoder(X, θE)

HY
t = Decoder(Yt−1, HE , θD)

Pt = Softmax(WembH
Y
t )

in which HE is the encoded representation from X which is
then used by the decoder to auto-regressively generate the hid-
den states HY

t from the previous input Yt−1. The probabilistic
output layer Pt is generated by the product between HY

t and
the word embeddings Wemb1. Avoiding catastrophic forgetting
when adding new languages boils down to how these parame-
ters are used, because they are directly changed when the model
is exposed to new languages.

3.1. Weight factorization

A large part of the model parameters θE and θD are matrices
X that linearly project input features X , such as the query-key-
value matrices in attention or the weights of the feed-forward
neural networks in Transformers, such that the fundamental
transformation for an input X is2:

(1)Y = WX

For multilingual representation, these weights can be fac-
torized into the shared component WS and the language specific
parts WM (multiplicative term) and WB (bias term):

(2)Y = (WS ⊙WM +WB)X

The per-language capacity is then off-loaded to the sub-
matrices WM and WB assigned for each language. In order
to reduce the number of parameters as well as to encourage the
model to share more information between languages instead of
partitioning into the exclusive terms, each language-dependent
matrix WM or WB is further factorized into outer-products of
vectors r ∈ RDin and v ∈ RDout.

WM = rm ⊙ vm;WB = rb ⊙ vb (3)

We can increase the capacity of each factor by using k dif-
ferent rm, vm, rb, vb and summing up the outer-products of
each pair. With the value of k << Din or Dout, the cost spe-
cializing each language is 2k

Dout
number of parameters, assum-

ing Din = Dout
3. Using this method, new weights (WM and

WB specifically can be added to the model for new languages.
Freezing the shared weights WS is the obvious way to prevent
catastrophic forgetting, but due to the difference in size between
them and the factorized weights, such approach can compro-
mise the performance for the new languages.

3.2. Elastic weight consolidation

A different approach is to relax the shared weights to be elasti-
cally updated. EWC [13] is the regularization method [22] that
punishes the weights from being far from the previously trained
state, to avoid deterioration. Assuming after the first training
iteration with the initial dataset D0, we obtain the parameters
θ0 optimized for the training objective in D0, the next training
iteration with the dataset D1 is regularized with additional loss
term:

LEWC =
1

2

d∑

j=1

fj(θj − θ0j ) (4)

1In the case of end-to-end models using CTC loss, this modeling
scheme still applies without the involvement of Yt−1

2W is written here for simplicity, in practice its often transposed to
minimize the amount of transposing ops during the backward pass.

3Its actually much lower than that, because the network may contain
layers that do not need to be factorized, such as the output layer, or layer
normalization
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In which θ denotes the current parameters (initialized with
θ0) and fj is the importance of the parameter θ0j . Minimizing
this loss term prevents θ1 optimized for dataset D1 to not devi-
ate too far away from the D0-optimized params θ0. The impor-
tance f is estimated with the diagonal of the Fisher Information
matrix, containing the variance of gradients in D0

4.
It has been theoretically shown that EWC is fundamentally

Bayesian [23], by assuming the underlying posterior distribu-
tion of the weight θi conditioned by a dataset Dn P (θi, Dn) is
a Gaussian, in which the mean the optimal point for the previ-
ous dataset Dn−1 and the variance (or rather covariance for the
full weights θ) can be approximated by the Hessian w.r.t Dn−1

and is further approximated by the Fisher diagonal. For applica-
tions beyond two iterations, EWC can be expanded to the case
of m iterations. After iteration m− 1, the Fisher diagonals for
Dm−1 (estimated with θm−1) is accumulated to the sum of all
previously computed Fishers of D0...m−2 to be used as regular-
ization weights to train the next Tm.

4. Experiments and results
With such method in mind, we designed the experiments to ob-
serve how the models can learn new languages. The research
questions are:
• Freezing the shared weights in the weight factorization (WF)

scheme completely prevents catastrophic forgetting. Can
we achieve using elastic weight consolidation combined
with WF by minimizing the performance loss of previously
learned languages?

• On the other polar, how does the combination of WF and
EWC perform compared to the ideal case in which all lan-
guages are present at the same time?

• Given a large model size, can EWC solely allow for effective
continual learning?

4.1. Dataset and settings

The experiments were conducted on the combination of two dif-
ferent multilingual datasets: Mozilla Commonvoice [24] and
Europarl-ST [25] 5. The amount of data ranging from 7 to 1050
hours per-language, as can be seen in Table 1. Audio is only pre-
processed by converting to waveforms at sample rate 16KHz
with pre-defined segmentations coming from the dataset. The
textual labels are lower-cased with punctuations being removed,
before being tokenized with the MBART50 sentencepiece tok-
enizer6.

We used the Transformer encoder-decoder model [26] for
multilingual speech recognition. The decoder weights are ini-
tialized from the MBART50 pretrained language model [27].
Moreover, for better performance and higher model capac-
ity [28], the encoder is initialized with the xlsr-53 [29] pre-
trained wav2vec model [30]. These transfered weights con-
tribute for the shared components while the factorized weights
are randomly initialized. Factorization is parameterized at k =
8 for each weight matrix in the model except for the word em-
bedding at the input and output layers of the decoder. We used
the Large-configuration for both encoder and decoder with the
hidden size of 1024 and Dropout 0.3. The learning rate fol-
lows the warm-up-then-decay process with 4000 warm-up steps
for all training stages (starting and continual iterations). The

4This is computed using one single forward pass over the whole
dataset D0 and taking the variance of gradients for all samples

5Europarl-ST only covers 8 languages in the 26 language pool
6https://huggingface.co/docs/transformers/model˙doc/mbart

use of pre-trained models allowed us to train larger models [4],
with 774M parameters (including the word embeddings) before
factorization, and 969M parameters after adding factorized pa-
rameters for 32 languages. The cost of adding each language is
therefore about 0.7% overall.

For EWC training, it is necessary to tune the coefficient of
the EWC loss, empirically from 0.00001 to 0.1. Our training
strategy is to start from a high value (so that model learns with
almost frozen parameters [31] and the factorized weights first),
and then relaxing the value over the training course.7. Equally
important, the gradients are scaled to have norm at 4 before the
model parameters are updated with the Adam strategy [32]. Us-
ing a single NVIDIA A100 for training, it takes approximately
2 weeks to train the base model on 10 languages with the high-
est amount of resource and 4− 5 days for each continual learn-
ing iteration.

It is also notable that, the usage of a multilingual pre-trained
language model also allows for keeping the vocabulary intact,
if the new languages are covered by the model in the pre-
training stage. While adding new words/byte-pair encoded to-
kens into the vocabulary is by no means trivial, the focus of this
manuscript is on the core architecture to investigate catastrophic
forgetting.

Our experiments are divided into two scenarios: in a first
simple case, the model is first trained on 10 languages with the
highest amount of resource, followed by one iteration of contin-
ual learning with 16 languages. In the second scenario, these 16
languages are divided into 3 iterations, grouped as three blocks
in Table 1.

4.2. Can we learn new languages without forgetting?

In the first scenario, Figure 1 that shows the average error rates
of the languages shows different learning behaviour of differ-
ent approaches. A “vanilla” model when fine-tuned on the new
languages are quickly shifted so that it cannot retain any pre-
viously learned knowledge anymore, even when the encoder
and decoder are initialized with pre-trained models covering the
new languages. Likewise, the regularization of EWC led the
model to a bad state. The deterioration is less severe than com-
plete forgetting, however the performance of the new language
is handicapped at 30.1%. The models with weight factorization
(WF), however, showed more promising behaviours. Freezing
the shared weights keeps the previous learned languages intact,
while fine-tuning them increases the error from 7.7% to 29.8%.
Surprisingly, combining with EWC maintains the same perfor-
mance for the new languages compared to fine-tuning at 13.6%
and the deterioration for the old ones is limited at 8.4%. The
slight improvement over the fine-tuned WF model could be rea-
soned by the regularization effect of the weights that prevents
overfitting for low-resourced languages.

4.3. Continually learning in Multiple iterations

The second scenario involves several iterations, in each of
which the model is exposed with a new group of languages.
The starting point is the same 10 languages of the previous sce-
nario, we divided the rest of the 16 languages into three groups
based on the amount of data. Table 1 shows the rate of degrada-
tion over the course of learning with the combination of EWC
and WF, compared to the simple parameter-freezing approach.

7Starting at 0.001 the value is decayed by 10 times per 10K training
steps, the continual learning iteration takes about 20K−30K steps per
iteration, while training the base model (from scratch) takes 200K steps
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Figure 1: Comparison between different approaches: Weight
factorization (WF) with frozen/fine-tuned/elastic shared
weights, elastic weight consolidation (EWC) and a simple
fine-tuning (Vanilla). Reported is the average of word error
rates (WER) for the languages in the set.

It is observable that the degradation rate of EWC seems to be
faster after the first iteration. For example, in the initial lan-
guage group (first block), the reduction rate is 5.2% in the first
iteration, then 22.2% in the second iteration, and then 19.3% in
the third. Similarly, the first new language group (second block)
only witnessed a 7.2% reduction rate (from 11%to11.8%), then
18.6%. In an attempt to explain this problem, we calculated the
number of important weights (ranked by the Fisher diagonal
values f and the parameters with fi ≥ 0.25 can be considered
important. After the initial iteration, the network has around
75% of weights being important and 25% weights that can be
allocated to the new languages. The first iteration quickly raised
this number to 99% and thus the network needed to compro-
mise further in the next step. In exchange, the elastic nature
of EWC allowed for the network to learn new languages bet-
ter than before. Albeit this advantage is somewhat hindered in
the third iteration, when the performance between EWC + WF
and frozen WF is similar. Probably the reason also lies on the
capacity problem above.

The explanation for the ineffectiveness of EWC probably
comes from the derivation into the final equation of the regu-
larization loss term. From the theoretical analysis [23], EWC
originates from replacing the log posterior log p(θ|T1) with its
Taylor expansion form, that requires the optimal value θ∗ dur-
ing optimizing the model for the data T1. The stochastic gradi-
ent descent (SGD) algorithm is not guaranteed to achieve the
exact optimal value, for example a typical practice in train-
ing Transformer is to average the parameters of several check-
points8 showed this trouble of SGD. The approximation is fur-
ther ”approximated” by the fact that the Hessian in the Taylor
expansion is approximated by the diagonal of the Fisher Infor-
mation matrix. Furthermore, the prior is also assumed to be
a zero-mean isometric Gaussian [23] which is rather a simple
assumption [33]. From such approximation, it is understand-
able that EWC might be only effective when the new task/data
is somewhat close to the original task which is unlikely in lan-
guage learning.

8which we applied here for the last 10 checkpoints with the highest
unigram development accuracy

Table 1: Combination of EWC and Factorization (WF) vs. WF
with frozen shared parameters for three iterations in word er-
ror rates (WER). Iteration 0 is the initial learning stage, with
10 languages. The performance of WF with EWC is shown in
each iteration, while the performance of WF is always the same
across iterations. The languages from the third block (ro, sv,
et, tr, ja) are added in Iteration 2 and then treated as “old”
languages in the third one.

Lg Hours EWC + WF WF
Iter 1 Iter 2 Iter 3 -

(de) 1050 7.4 8.7 10.5 7.23
(fr) 800 11.5 13.1 15 11.4
(es) 400 6.7 8.4 9.8 6.74
(it) 325 7.1 9.1 11.1 6.8
(fa) 293 4.1 4.9 6.5 3.7
(ta) 198 19.7 23.3 28.5 18.2
(pt) 120 7.3 9.2 11 7
(ru) 148 6 7.4 9.6 5.3
(pl) 145 8.1 9.4 11.3 7.72
(th) 133 3.4 4 4.6 3.2

Avg - 8.1 9.8 11.7 7.7

(nl) 150 7.19 7.7 9 8
(ar) 85 15.9 16 17.4 19.4
(zh) 63 14.8 15.7 16.9 17.7
(uk) 56 7.9 9.1 12.6 10.4
(cs) 49 9.3 0.3 13.9 10.6

Avg - 11 11.8 14 13.2

(ro) 45 - 11.6 12.8 12
(sv) 35 - 12.1 14.7 14.8
(et) 32 - 12.1 14.7 16.8
(tr) 30 - 7.5 9.5 9.4
(ja) 26 - 7.5 8.3 9.5

Avg - - 10.2 12 12.5

(id) 23 - - 7.9 8
(lt) 16 - - 28.5 29.3
(mn) 12 - - 27.7 28
(sl) 9 - - 11 12.3
(hi) 8 - - 29.7 30.8
(gl) 7 - - 12.3 10.9

Avg - - - 19.5 19.9

5. Conclusion
In this paper, weight factorization can help multilingual speech
recognizers to be extended to accommodate more languages.
The combination of elastic weights and weight factorization al-
lowed us to drive the learning process to the point where the
compromise between a good learning experience and catas-
trophic forgetting is minimal. The current weaknesses lie in the
modest representational power of each language factor, and can
potentially be addressed by a combination with distillation [34].
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