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ABSTRACT

The connectionist temporal classification (CTC) loss func-
tion has several interesting properties relevant for automatic
speech recognition (ASR): applied on top of deep recurrent
neural networks (RNNs), CTC learns the alignments between
speech frames and label sequences automatically, which re-
moves the need for pre-generated frame-level labels. CTC
systems also do not require context decision trees for good
performance, using context-independent (CI) phonemes or
characters as targets. This paper presents an extensive ex-
ploration of CTC-based acoustic models applied to a variety
of ASR tasks, including an empirical study of the optimal
configuration and architectural variants for CTC. We observe
that on large amounts of training data, CTC models tend to
outperform state-of-the-art hybrid approach. Further experi-
ments reveal that CTC can be readily ported to syllable-based
languages, and can be enhanced by employing improved
feature front-ends.

Index Terms— CTC, LSTMs, RNNs, acoustic modeling,
speech recognition

1. INTRODUCTION

The introduction of deep neural networks (DNNs) and recur-
rent neural networks (RNNs) as acoustic models has brought
tremendous progress to automatic speech recognition (ASR)
[1, 2, 3]. In the hybrid approach, DNNs/RNNs are used to
classify speech frames to context-dependent (CD) states, i.e.,
senones. These states (and the corresponding training labels)
are generally derived from a “seed” Gaussian mixture model
(GMM) through forced alignment. Model training can then
be carried out with the cross-entropy (CE) objective function.
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Connectionist temporal classification (CTC) [4] has been pro-
posed for sequence labeling problems with variable-length in-
puts and outputs. With blank symbols inserted between la-
bels, CTC constructs frame-level paths as intermediate repre-
sentations to connect frame-level network outputs with label
sequences. When applied to acoustic modeling, CTC auto-
matically learns the alignments between speech frames and
labels. Thus, CTC removes the need for pre-generated frame-
level labels and thereby the building of the initial GMMs.
Used together with deep RNN models, CTC has been shown
to achieve state-of-the-art performance on large-scale English
acoustic modeling tasks [5, 6, 7, 8].

Despite showing convincing performance, CTC is still
less well understood than the existing hybrid approach. For
instance, the application of CTC on languages other than En-
glish has not been fully explored in the literature. This paper
presents an empirical study to investigate how CTC behaves
under various conditions. We focus on the following aspects:

Optimal configuration: CTC commonly uses deep
RNNs with Long Short-Term Memory (LSTM) units as
acoustic models. Motivated by past work on LSTMs [9],
we initialize the bias vector of the LSTMs forget gates to
larger values, which brings consistent gains for CTC training.
Our experiments also reveal how the amount of training data
affects the performance of CTC models.

Architectural variants: We study two architectural vari-
ants of CTC models. First, a convolution layer is added prior
to the LSTM layers. The resulting ConvLSTM architecture
achieves slight improvement over the “vanilla” LSTM. Sec-
ond, we compare a uni-directional LSTM model with the bi-
directional LSTM, and observe that the uni-directional model
performs dramatically worse than the bi-directional one.

Language Expansion: We report CTC results on a task
of transcribing Chinese Mandarin conversational telephone
speech [10]. By directly modeling thousands of Mandarin
characters, CTC achieves competitive results on this task.

Front-Ends: Apart from the raw acoustic features (e.g.,
MFCCs, filterbanks), the hybrid approach can exploit ad-
vanced front-ends (e.g., fMLLRs, VTLNs). This paper em-
pirically verifies the applicability of these front-ends in the
context of CTC modeling.



2. REVIEW OF CTC

Connectionist temporal classification (CTC) [4] is a loss
function for sequence labeling problems where the inputs
and the label sequences have variable lengths. When applied
to acoustic modeling, instead of employing pre-generated
frame-level labels, CTC automatically learns the alignments
between speech frames and their label sequences (e.g.,
phonemes or characters). In previous work [5, 6, 8], the
acoustic models used together with CTC are normally deep
RNNs with LSTM units [11] (which we will consistently re-
fer to as LSTMs). The nodes in the softmax layer correspond
to the original labels, as well as a special blank label which
estimates the probability of emitting no labels. CTC trains
the LSTM model to maximize lnPr(z|x), the log-likelihood
of the reference label sequence z given the inputs x.

To bridge the frame-level LSTM outputs with the utterance-
level label sequences, CTC introduces an intermediate rep-
resentation called the CTC path. A CTC path is a sequence
of labels at the frame level, allowing occurrences of blanks
and repetitions of the non-blank labels. The label sequence
z can be represented by a set of all the possible CTC paths
that are mapped to z. The likelihood is then evaluated as an
aggregation of the probabilities of the CTC paths:

Pr(z|x) =
∑

p∈Φ(z)

Pr(p|x) (1)

where Φ(z) is the set of CTC paths corresponding to z.
Pr(z|x) can now be evaluated using a forward-backward
algorithm over a trellis that compactly encodes Φ(z). The
likelihood of the label sequence z is then computed as:

Pr(z|x) =

2|z|+1∑
u=1

αu
t β

u
t (2)

where the forward variable αu
t represents the total probability

of all CTC paths that end with label u at frame t, and can
be recursively computed with the α values from the previous
frame t − 1. Similarly, the backward variable βu

t carries the
total probability of all CTC paths that starts with label u at
t, and can be computed with the β values from the following
frame t+ 1.

The loss function becomes differentiable with respect to
the LSTM outputs. The quantity ykt represents the posterior
of the label k outputted by the LSTM network. The gradients
of lnPr(z|x) with respect to ykt can be computed as

∂ lnPr(z|x)

∂ykt
=

1

Pr(z|x)

1

(ykt )2

∑
u∈Υ(z,k)

αu
t β

u
t (3)

where Υ(z, k) = {u|zu = k} defines an operation on the
label sequence that returns the elements of z which have the
value k. These gradients are taken as the errors that will be

back-propagated into the LSTM model for parameter updat-
ing.

Until recently, efficient decoding of CTC acoustic models
has been a challenge because of the blank label. Our previ-
ous work [8] proposes a general decoding method based on
weighted finite-state transducers (WFSTs) for CTC models.
In this method, individual components (CTC labels, lexicons
and language models) are encoded into WFSTs, and then
composed into a comprehensive search graph. The WFST
representation provides a convenient way of handling the
blank label, while enabling the effective and efficient incor-
poration of word language models into CTC decoding.

3. OPTIMAL CONFIGURATION

3.1. Experimental Setup

Our experiments in this section are conducted on the Switch-
board conversational telephone transcription task. We use
Switchboard-1 Release 2 (LDC97S62) as the training set
which contains over 300 hours of speech. For fast turnarounds,
we also select 110 hours from the training set and create a
lighter setup. CTC training uses a deep bi-directional LSTM
architecture as the acoustic model. On the 110-hour and
300-hour setups, the LSTM network consists of 4 and 5 bi-
directional LSTM layers respectively. At each layer, both
the forward and the backward sub-layers contain 320 mem-
ory cells. Inputs of the LSTM model are 40-dimensional
filterbank features together with their first and second-order
derivatives. The features are normalized via mean subtrac-
tion and variance normalization on the speaker basis. Initial
values of all the model parameters are randomly drawn from
a uniform distribution with the range [−0.1, 0.1]. Model
training adopts an initial learning rate of 0.00004 which is
decayed based on the change of the accuracy of the hypothe-
sis labels with respect to the reference label sequences. CTC
training models context-independent (CI) phonemes. Totally,
we have 46 labels including phonemes, noise marks and the
blank.

Our decoding follows the WFST-based approach intro-
duced in [8]. The label posteriors generated by the LSTM
model are scaled with the label priors estimated from the (ex-
panded) label sequences. A trigram language model is trained
on the training transcripts, which is then interpolated with an-
other language model trained on the Fisher English Part 1
transcripts (LDC2004T19). We report results on the Switch-
board part of the Hub500 (LDC2002S09) test set.

3.2. Results

Table 1 presents the results of the resulting CTC-trained
acoustic models under various settings. A key configuration
of LSTM models is the initialization of the forget gate bias
vector. Most of the existing work has simply initialized the
bias vector to 0 or small random weights. Although working



well on many applications, this initialization effectively de-
cays the gradients back-propagated at each time step. This
issue can be resolved simply by initializing the bias to a large
value [9]. In our experiments, we set the initial values of
the forget gates bias vector uniformly to 1.0. From Tables 1
and 2, we can see that this initialization brings consistent im-
provement over the initialization with small random values.
The word error rate (WER) is improved by 3.9% and 4.6%
respectively on the 110-hour and 300-hour setups.

We compare the CTC models against hybrid HMM/DNN
and HMM/LSTM models. These hybrid models have been
built by following the standard Kaldi nnet1 recipes [12]. On
the 110-hour setup, the DNN has 5 hidden layers each of
which contains 1200 neurons. The LSTM model has 2 uni-
directional LSTM layers where linear projection layers are
applied over the hidden outputs. Each LSTM layer has 800
memory cells and 512 output units. Parameters of both the
DNN and LSTM models are randomly initialized. On the
300-hour setup, the DNN model has 6 hidden layers each
of which contains 2048 neurons. The LSTM model has 2
projected LSTM layers, where each LSTM layer has 1024
memory cells and 512 output units. The DNN is initial-
ized with restricted Boltzmann machines (RBMs), while the
LSTM model is randomly initialized. As with the CTC mod-
els, inputs of the hybrid models are filterbank features. More
details about these hybrid models can be found in [13].

Tables 1 and 2 show that on the 110-hour setup, the CTC
model performs slightly better than the hybrid DNN model,
but is still behind the hybrid LSTM model. In contrast, when
we switch to the complete 300-hour setup, the CTC model
outperforms both hybrid models. This comparison indicates
that CTC training becomes more advantageous when the
amount of training data increases. The validity of this obser-
vation needs to be further verified on even larger datasets.

Table 1. Comparisons of the CTC, hybrid DNN and hybrid
LSTM models on the Switchboard 110-hour training set, with
different initializations for the forget-gate bias (FG Bias).
“Small Random” refers to initialization with small random
values, while “1.0” means that the bias vector is uniformly
set to 1.0. M refers to million.

Model #Param FG Bias WER%
CTC 8M Small Random 20.7
CTC 8M 1.0 19.9
Hybrid DNN 12M — 20.2
Hybrid LSTM 8M — 19.2

4. ARCHITECTURAL VARIANTS

In the hybrid approach, previous work [14] shows the ben-
efits of combining convolutional neural networks (CNNs)
and DNNs with LSTMs. In this paper, we examine this
combination in the context of CTC training. Specifically, a

Table 2. Comparisons of the CTC, hybrid DNN and hybrid
LSTM models on the Switchboard complete training set

Model #Param FG Bias WER%
CTC 11M Small Random 15.7
CTC 11M 1.0 15.0
Hybrid DNN 40M — 16.9
Hybrid LSTM 12M — 15.8

1-dimensional convolution layer along the frequency axis is
placed over the input features (i.e., prior to the LSTM lay-
ers). This convolution layer is followed by a max-pooling
layer which shrinks the size of the feature maps by 3 times,
and finally by the LSTM hidden layers. From Table 3, we
can see that this combined architecture, ConvLSTM, gives
slight improvement over the pure LSTM. However, training
of ConvLSTM is presently unstable, partly because the out-
puts from the convolution layer have a high dimension and
therefore increase the size of the LSTM layers. This architec-
tural combination will be further studied in our subsequent
work.

As with most of the CTC work, we have used bi-directional
LSTMs for CTC training. A criticism of the bi-directional
structure lies in the temporal latency, which hampers the
deployment in real-world applications. In Table 3, we also
present the result when our acoustic model is constructed with
uni-directional LSTMs. In this case, the dimension of the
memory cell is 640, making the uni-directional model have
approximately the same size as the bi-directional network.
Applying uni-directional LSTMs causes 17.1% relative WER
degradation (23.3% vs 19.9%), similar to what was observed
in [7].

Table 3. Comparisons of architectural variants with CTC
training on the 110-hour Switchboard setup.

Model WER%
LSTM 19.9

ConvLSTM 19.6
Uni-directional LSTM 23.3

5. LANGUAGE EXPANSION

5.1. Mandarin

We evaluate CTC training on the HKUST Mandarin Chi-
nese conversational telephone ASR task [10]. In our ex-
periments, the training and testing sets contain 174 and 5
hours of speech respectively. The acoustic model contains
5 bi-directional LSTM layers, each of which has 320 mem-
ory cells in both the forward and the backward sub-layers.
Instead of phonemes, CTC on this setup models characters
directly. Data preparation gives us 3667 labels including En-
glish characters, Mandarin characters, noise marks and the



blank. A trigram language model is employed in the WFST-
based decoding. From Table 4, we can see that CTC training
achieves a CER of 39.70%. This number is comparable to the
hybrid HMM/DNN system (39.42%) which is trained with
the CE objective and over the speaker-adaptive (SA) features,
as reported in the Kaldi repository [12]. This observation
is on the contrary to [15] where CTC is found to perform
much worse than the hybrid models, due to the lack of word
language models in decoding.

Table 4. Comparisons of the CTC model and the hybrid
HMM/DNN model (whose number is reported in the Kaldi
repository) on the HKUST Mandarin corpus. The evaluation
metric is character error rate (CER).

Model CER%
CTC 39.70

Hybrid DNN 39.42

6. FRONT-ENDS

In the existing hybrid approach, the inputs of the DNN or
LSTM models are enhanced by feature learning using the
GMM models, or by feature enrichment with additional fea-
tures. This section focuses on more advanced front-ends in
addition to the filterbank features.

6.1. Speaker Adaptive Features

When building GMM models, we can estimate linear trans-
forms to project the original acoustic features into a SA fea-
ture space. Two most commonly used types of transforms are
vocal tract length normalization (VTLN) and feature-space
maximum likelihood linear regression (fMLLR). In the hy-
brid approach, the effectiveness of fMLLR and VTLN fea-
tures has been sufficiently verified for DNN models. In [13],
the hybrid LSTM model with VTLN-transformed filterbanks
performs consistently better than the model with the original
filterbanks. In this section, we study the utility of SA features
for CTC model training. Specifically, we transform the filter-
bank features with VTLNs estimated by a GMM model. The
LSTM model in CTC is trained over the VTLN-trasformed
filterbanks. Table 5 presents the results of the CTC models
with different front-ends on the Switchboard setups. As with
the hybrid models, the VTLN-filterbank front-end also gen-
erates better WERs than the original filterbank features. This
confirms that SA features are also applicable to CTC training.
Estimating the SA feature with VTLN has the drawback that
CTC training now has dependency on GMM models. How-
ever, in practice, we may have access to user attributes, such
as gender and age, to replace the VTLN factors. These at-
tributes can be exploited to obtain SA features and thus im-
prove CTC acoustic models.

Table 5. Comparisons of various front-ends with CTC train-
ing on the Switchboard setups.

Set Model Feature WER%

110-hour CTC filterbank 19.9
CTC VTLN-filterbank 19.2

300-hour CTC filterbank 15.0
CTC VTLN-filterbank 14.5

6.2. Pitch Features for Tonal Languages

Another way to enhance speech front-ends is to integrate dif-
ferent types of features together. In particular, the pitch fea-
tures have been found to be beneficial for tonal languages
(e.g., Mandarin, Cantonese and Vietnamese) [16]. On our
Mandarin setup (Section 5), we incorporate the pitch features
into CTC model training. The pitch features are extracted us-
ing the method described in [16]. On each frame, appending
the 3-dimensional pitch to the 40-dimensional filterbank fea-
tures gives us a 43-dimensional feature vector. From Table 6,
we observe that the CTC model with the appended features
obtains the CER of 38.67%, outperforming the CTC model
only with filterbanks.

Table 6. %CER of the CTC model on the HKUST Mandarin
corpus with different features.

Feature CER%
filterbank 39.70

filterbank+pitch 38.67

7. CONCLUSIONS AND FUTURE WORK

In this paper, we conduct an extensive study of the CTC
approach to training acoustic models. We present several im-
provements and observations: 1) Initializing the bias vector
of the LSTMs forget gates to large values (1.0) improves per-
formance. Also, the advantage of CTC gets more pronounced
on larger amounts of training data. 2) The ConvLSTM archi-
tecture, with a convolution layer inserted before the LSTM
layers, achieves slight improvement over the vanilla LSTMs.
Switching from bi-directional to uni-directional LSTMs de-
grades recognition accuracy significantly. 3) The perfor-
mance of CTC models can be further improved by speaker
adaptive front-ends, or by front-ends enriched with additional
feature types. 4) Using characters as targets, CTC achieves
competitive performance on a Mandarin ASR task.

For future work, we will investigate how to perform adap-
tive training [17, 18] and speaker adaptation [13] for CTC
acoustic models. Also, we would like to extend the convolu-
tion in the ConvLSTM architecture to both the time [19] and
the frequency dimensions.
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