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Abstract
Accent conversion (AC) aims to generate synthetic audios
by changing the pronunciation pattern and prosody of source
speakers (in source audios) while preserving voice quality and
linguistic content. There has not been a parallel corpus that con-
tains pairs of audios having the same contents yet coming from
the same speakers in different accents, the authors hence work
on a solution to synthesize one as training input. The training
pipeline is conducted via two steps. First, a voice conversion
(VC) model is constructed to synthesize a training data set, con-
taining pairs of audios in the same voice but two different ac-
cents. Second, an AC model is trained with the synthesized data
to convert a source accented speech to a target accented speech.
Given the recognized success of self-supervised learning speech
representation (wav2vec 2.0) on certain speech problems such
as VC, speech recognition, speech translation, and speech-to-
speech translation, we adopt this architecture with some cus-
tomization to train the AC model in the second step. With just
9-hour synthesized training data, the encoder initialized by the
weight of the pre-trained wav2vec 2.0 model outperforms the
LSTM-based encoder.
Index Terms: Accent Conversion, Voice Conversion, seq2seq,
wav2vec 2.0

1. Introduction
The main challenge in AC is that ground-truth data for the de-
sired output is not available. Previous solutions [1] [2] tackle
this issue by introducing a reference utterance from target ac-
cented speakers at inference. However, it is not always pos-
sible to get references from those target objects, which limits
the applicability of this method. As an alternative solution, we
propose an end-to-end AC approach capable of converting ac-
cent from source accented utterances without using any target
reference during the inference phase. The proposed approach
includes two major steps: (1) Generating synthetic data by a
VC model; and (2) Training a seq2seq AC model with those
synthetic data. In the first step, we use a VC model which can
preserve pronunciation pattern and prosody of the source audios
and only convert the identity (i.e., timbre and pitch) of a source
speaker into a target one. Since prosody and pronunciation pat-
tern are the most important constituents of an accent, if we can
preserve both of them in an audio, the accent will remain the
same. Accordingly, we can synthesize a pair of utterances hav-
ing the same voice and same context, yet different accents. The
process of generating synthetic data is described in section 3.1.
In the second step, we train a seq2seq AC model with audio data
created in the first phase.

Our approach is inspired by a number of prevailing speech
methodologies. First, speech recognition and accent conversion
models share the input type in common, which is audio data.

That is why we can investigate the architecture of a speech
recognition encoder to apply on an AC model. Also, using a
pre-trained audio encoder is proven to improve the performance
of speech recognition models without requiring much labeled
data [3]. Second, an AC model and a speech synthesis system
share the same output modality so we can employ the architec-
ture of a speech synthesis decoder for an AC model. In the end,
our experiment seq2seq AC model consists of a pre-trained au-
dio encoder and a speech synthesis decoder. In brief, we use
VC to resolve the ground-truth data challenge in AC problem
and then prove the advantages of using a pre-trained audio en-
coder in training the AC model without relying on a great deal
of labelled audio data.

2. Related work
The goal of any voice conversion system is to convert the voice
of a source speaker into the voice of another target speaker.
Traditional techniques based on Gaussian Mixture Models per-
formed well, but those based on Artificial Neural Networks even
outperformed them. Several architectures have been used to
solve VC problems such as GAN, VAE, and seq2seq. There
exist also many kinds of VC systems: one-to-one, one-to-many,
many-to-many, any-to-any, and so on. The any-to-any VC sys-
tem, which can convert any source speaker to any target speaker
even if a speaker has not been seen in training data, is the most
challenging one and has been addressed in several experiments
like VQMIVC [4], AutoVC [5], Adain [6], FragmentVC [7].
We adopt the two most recent architectures VQMIVC and Frag-
mentVC, to train a VC system and generate synthetic data, then
find out which is the better data synthesizing method.

Accent conversion is often related to the similar problem:
voice conversion (VC). While VC mainly focuses on changing
the speaker identity in audios, AC only changes or corrects the
pronunciation pattern while trying to retain the speaker identity.
AC is a more challenging problem because there are generally
no ground-truth data with the same voice and different accents.
Phonetic posteriorgrams (PPGs) [2, 1], which have been suc-
cessfully used for VC tasks, can also be used in AC despite var-
ious limitations of the systems. For example, in order to convert
a non-native accent to a native accent, these systems require ref-
erence native-accented utterances at the conversion stage, which
ultimately restrict their practical applications in real life. AC
without reference utterance is known as a reference-free pro-
cess [8]. Our literature research could only highlight two prior
works on reference-free AC, namely [9], [8]. The second re-
search has addressed some limitations in the first one by elimi-
nating some complicated components such as TTS, ASR and is
more related to our proposed methodology. They used speech
synthesizer with speech embedding as an input to do synthetic
data and an LSTM-based seq2seq AC model was trained from
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Figure 1: Synthetic data process

scratch. While their speech synthesizer requires to be trained
specifically for each speaker in the training set, our approach
uses a single VC model for synthesizing training data of all
speakers and is a more convenient way. As a result, we can
refer to their AC model as the baseline approach against which
our model is compared.

Most previous research focuses mostly on converting non-
native into native speech. The reverse conversion could be more
challenging since non-native speech data is not as available as
native speech. In this research, beside correcting the pronuncia-
tion of non-native speakers, we also concentrate on experiment-
ing native-to-non-native AC. This kind of conversion could help
to generate more non-native accented speech from native speak-
ers, enabling the enrichment of the non-native data resource.

Recently, pre-trained models have been applied to a suc-
cess in speech translation [10], speech-to-speech translation [9],
speech recognition [3], and voice conversion [7]. These models
have the potential to provide another way to overcome the in-
sufficiency of labeled data. Inspired by the success of wav2vec
2.0, our research proposes an AC model with wav2vec 2.0 pre-
trained that can run effectively in low-resource condition.

3. Method
3.1. Generating synthetic data

3.1.1. General idea of generating synthetic data

The purpose of generating synthetic data is to create pairs of
audios that can be used in training the seq2seq AC model. For
example, there are two audios of the same content recorded
by two different speakers: Andy with an American accent and
Rishu with an Indian accent. When we apply voice conversion
on Andy’s original audio, the expected result is an audio having
Rishu’s voice yet remaining in American accent. This is con-
sistent to a VC system which only changes a speaker’s identity
while preserves an original accent. At the end of the process,
we have a pair of audios with Rishu’s voice in two different ac-
cents - (original) Indian and (converted) American. If we do the
voice conversion other way round on Rishu’s audio, we expect
to have an audio pair in Andy’s voice but two different accents
- (original) American and (converted) Indian. These audio pairs
can be used as source and target for training the seq2seq AC
system. The voice conversion process is visualized in Figure 1.

3.1.2. Voice conversion

Our desired architecture should have the ability to change a
speaker’s identity and preserve the unique accent features (pro-
nunciation pattern and prosody). We investigate two promising
VC architectures, which are Fragment VC based on seq2seq
architecture [7] and VQMIVC [4] based on variational autoen-

coder architecture. After the model is finetuned thoroughly by
our data and with the same hyperparameters as in the original
papers, we use this VC model to generate synthetic data.

FragmentVC. FragmentVC, a seq2seq architecture con-
sists of a source encoder, a target encoder, and a decoder. The
decoder takes one output feature from the source encoder (Q)
and two output features from the target encoder (K, V). The out-
put feature sequence of the target encoder (K) is then attended
by the source encoder’s output (Q). The cross-attention module
in the decoder learns to align the source features to the target
features with similar phonetic content in this architecture. The
decoder then converts the Mel-spectrogram from the attention-
augmented features. In the training phase, the same utterance
is fed to the source, the target encoder and the decoder’s re-
construction target. The encoders automatically learn to de-
couple the content and the speaker information without any ex-
plicit constraint. As the converted speech shares the same con-
tent (phonetic) with the source speech, the pronunciation and
prosody (or the accent) will be preserved.

VQMIVC. VQMIVC (Vector quantization mutual infor-
mation voice conversion) uses a straightforward autoencoder ar-
chitecture to address the VC process. The framework is made
up of four modules: a content encoder that produces a con-
tent embedding from speech, a speaker encoder that produces
a speaker embedding (D-vector) from speech, a pitch encoder
that produces prosody embedding from speech, and a decoder
that reconstructs speech from content, prosody, and speaker em-
beddings. The phonetic and prosody are represented through
content and prosody embedding. The content embedding is dis-
cretized by the vector quantization module and used as target
for the contrastive predictive coding loss [11].

The mutual information (MI) loss measures the dependen-
cies between all representations and can be effectively inte-
grated into the training process to achieve speech representa-
tion disentanglement. During the conversion stage, the source
speech is put into the content encoder and pitch encoder to ex-
tract content embedding and prosody embedding. To extract tar-
get speaker embedding, the target speech is sent to the speaker
encoder. Finally, the decoder reconstructs the converted speech
using the source speech’s content and prosody embedding and
the target speech’s speaker embedding. Like in FragmentVC
architecture, the converted speech will share the same content
and prosody with the source speech, the accent is thus expected
to be preserved by the model.

3.2. Accent conversion

3.2.1. Baseline approach

The baseline system is based on an encoder-decoder paradigm
(Figure 2) with an attention mechanism. The encoder has two
pyramid bi-LSTM layers, similiar to [9]. Each layer has 768
units and the down sample factor is 2. Input of the baseline
encoder is 80 mel-filterbanks feature. On top of the encoder,
we add a phoneme classifier layer and compute a connectionist
temporal classification (CTC) loss.

The baseline decoder has a similar neural-network struc-
ture as the Tacotron speech synthesizer decoder [12] with an at-
tention mechanism. The attention mechanism comprises three
parts: query layer, key-value layer, and alignment layer. The
first two layers produce query vector and sequence of key-value
vectors which are of the same dimension. In other words, query,
key, and value are processed to be in the same vector space. Af-
ter that, the alignment layer learns the attention weights via a
method deployed in this vector space. The first step of the de-
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Figure 2: Accent conversion architecture

coding process composes query for the attention mechanism,
defined as Eq 2 where si is the hidden-state of the attention-
RNN layer, si−1 and ci−1 are the previous hidden-state and
context vector respectively. Then, the alignment layer of our
attention mechanism is defined as Eq 3, where αi is the at-
tention weights at ith the decoding step, Query layer, Mem-
ory Layer, and Location Layer are modules of the alignment
block. The attention mechanism considers three terms to cal-
culate the attention weights. Beside the fundamental query and
key-value, previous predictions of attention weights αi−1 are
also fed into the alignment block. Thus, the attention mech-
anism in the Tacontron decoder is not only content-based but
also location-sensitive. By this time, current attention weights
are available, hence we calculate a weighted sum of the key-
value sequence as shown in Eq 4. This weighted sum represents
the context information and thus is called a context vector. After
that, a decoder-RNN layer is defined as Eq 5, in which si and ci
are concatenated to be fed into this RNN-layer; di is the RNN
hidden-state. Finally, the RNN hidden-state is fed to the final
prediction layer and we get ymel

i as the mel-spectrogram pre-
diction at the decoding step i in Eq 6. To improve the spectro-
gram quality, the mel-spectrogram prediction is passed through
a convolutional PostNet module as in Eq 7. The output of the
tacotron decoder is 80 mel-filterbanks feature. We set the hyper-
paremeters of Tacotron decoder similar to this implementation
1.

hx
1...n = Encoder(x1...xN ) (1)

si = RNNAtt(si−1, [ci − 1;Prenet(ymel
i−1 )]) (2)

αi = Att(Query(si),Mem(hx
1...n), Location(αi−1)) (3)

ci =
∑

j

αi,j ∗ hj (4)

di = RNNDecoder(di−1, [si; ci]) (5)

ymel
i = Linear([di; ci]) (6)

yPostnet
i = Postnet(ymel

i ) (7)

3.2.2. Proposed approach

Our proposed model leverages a pre-trained encoder from
wav2vec 2.0 and and a speech synthesis decoder as the base-
line’s decoder.

1https://github.com/NVIDIA/tacotron2

Wav2vec 2.0 is a decent framework to learn high-quality
speech representation from unlabeled audio data. It consists
of two components: feature encoder and context encoder. The
feature encoder contains temporal convolution layers, takes raw
waveform as input and conducts speech representation. In the
next step, they are fed to the transformer-based-context encoder
to generate context representations with sequence-level infor-
mation. In the pre-training phase, the model is optimized with a
contrastive loss [11] to distinguish the true target from distrac-
tors. The input to the context encoder is masked partially. The
speech representation is discretized by the vector quantization
module and used as targets for the contrastive loss. The pre-
trained model of Wav2Vec 2.0 Base trained on LibriSpeech that
extracts 768-dimensional speech representations is used in this
research. Unlike the baseline encoder, the input of the wav2vec
encoder is a raw audio waveform. We use the implementation
of Wav2vec from Fairseq 2. On top of the wav2vec encoder,
we add a phoneme classifier layer and compute CTC loss again.
In the training phase, we freeze the feature encoder and fine-
tune the whole parameters of the Wav2vec context encoder and
Tacotron Decoder.

In the training phase, the final loss function of both baseline
system and proposed system is Eq 8. We do not include the stop
loss token in loss function because we assume an output audio
has the same length as an input audio in the inference stage.

L = ||Ymel − Y Decoder
mel ||2 + ||Ymel − Y decoder

Postnet ||2 + Lossctc
(8)

In this paper, the WaveGlow network [13] is used as the
neural vocoder. We also use the open-sourced Pytorch imple-
mentation. Since the mel-spectrogram captures all of the rele-
vant details needed for high-quality speech synthesis, we sim-
ply use ground-truth 80 mel-filterbanks spectrograms to train
the WaveGlow.

4. Experiments
4.1. Dataset and training description

To train the VC model, we used audio data from CMU-
ARCTIC corpus [14] and L2-ARCTIC [15] Hindi-accented cor-
pus. These corpuses have 8 speakers in total (4 native English
speakers and 4 Indian accented speakers), and each speaker has
audios of same 1152 sentences. In order to get better VC output
on all speakers, we build on the pre-trained VC model in [4],
[7] by finetuning them on these data corpuses without having to
train the VC model from scratch.

In order to synthesize parallel data to train our AC model,
we firstly split 1152 sentences into a training set (1052 sen-
tences), a validation set (50 sentences), and a test set (50 sen-
tences). Each sentence is spoken by 8 speakers (4 native and 4
Indian-accented speakers). After applying the data synthesizing
process described in 3.1, we get 8 audio pairs for each sentence.
In total, we have around 9000 audio pairs of approximately 9
hours in length. All of them are sampled at 16khz.

Both baseline and proposed AC models are trained on a sin-
gle GPU by grouping with batch size 64 and the gradients are
updated every 8 mini-batches with the Adam optimizer in us-
ing the base learning rate 0.5 and 4000 warm-up steps with the
same learning rate schedule as Transformer model [16]. Both
models are trained for at most 20000 steps

2https://github.com/pytorch/fairseq/blob/main/fairseq/models/wav2vec
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4.2. Evaluation metrics

We conduct the evaluation on all models by using two kinds
of metrics: objective and subjective, which are described in
the following section. We use 50 sentences (200 American-
accented audio files and 200 Indian-accented audio files) in the
test set for evaluation. Sample evaluation audios can be found
here 3.

4.2.1. Subjective tests

Accentedness test and speaker similarity test : Two tests
are conducted by 10 Indian participants who listen to the pro-
vided audios and evaluate their accent features on a 5-point
scale: 1-bad, 2-poor, 3-fair, 4-good, 5-excellent. To generate
converted audios with an Indian accent, we apply our AC mod-
els on 200 American-accent audio files. For the accentedness
test, the participants give a score out of 5 for the degree to which
the converted audios sound like Indian-accented speeches. For
the speaker similarity test, they rate the similarity between the
voice identity of the input audio and the converted audio, then
give a score out of 5 as above.

4.2.2. Objective tests

Word error rates (WER) and Accent classifier accuracy
(ACC) : We compute a WER of both original Indian-accented
audios and converted Indian-accented audios by our competi-
tive ASR system [17]. If the gap between two WERs is lower,
the quality of the converted audio is implied to be better. In ad-
dition, we design an accent classifier, which takes audio as an
input and predict the accent of that input. The accent classifier
is a 4-LSTM-layer network with 512 hidden units with an ac-
cent classifier layer on the top and trained on our training data
set. We compute ACC on both converted and original audios.
A better conversion model is expected to have a smaller gap
between two ACCs.

4.3. Results

Models Accentness Speaker Simlarity

Original Indian Accented audio 4.8

LSTM-based
+FragmentVC Synthetic Data 2.5 3.8
+VQMIVC Synthetic Data 2.3 4.1

Wav2vec-based
+FragmentVC Synthetic Data 3.8 3.1
+VQMIVC Synthetic Data 3.7 3.6

Table 1: Subjective metrics

The survey participated by Indian native speakers produces
several subjective metrics as in Table 1. For the Accentedness
test, the Wav2vec-based model outperforms the LSTM-based
model on all synthetic data conditions (3.8 vs 2.5 and 3.6 vs
2.3). On the other hand, the LSTM-based model seems to have
a better result in the speaker similarity test. Such observation
implies that the Wav2vec model might have changed the audios
to a greater extent compared to the LSTM-based model, which
actually produces a better accent output yet makes the partici-
pants find the speaker identity altered more. The FragmentVC

3https://tuannamnguyenkit.github.io

Models WER ACC

Original Indian Accented audio 9.7 96
Original US Accented audio 6.3 98

LSTM-based
+FragmentVC Synthetic Data 42 63
+VQMIVC Synthetic Data 35 47

Wav2vec-based
+FragmentVC Synthetic Data 24 88
+VQMIVC Synthetic Data 18 87

Table 2: Objective metrics

and VQMIVC receives fairly similar assessment in the Accent-
edness test (2.5 vs 2.3 and 3.8 vs 3.7). However, in the speaker
similarity test, FragmentVC method does not have as good per-
formance as VQMIVC. This means VQMIVC model is more
effective than FragmentVC in VC; hence it can generate target
ground-truth audios with similar voice to the source audios.

To determine the performance of the speech recognition
and accent classifier, we apply them to the original Indian and
American accented audios. On an Indian accented test set, the
speech recognition model achieves a WER of 9.7%, whereas it
is only 6.3% on an American accented test set. The accent clas-
sifier is also highly accurate, detecting 96% and 98% on Indian
and American accented test sets respectively. We apply these
models on our AC’s audio results to compare different synthetic
data and AC models. To compare the synthetic data models,
we use the output provided by the same AC model. Training
using VQMIVC Synthetic Data always results in an improved
WER for both LSTM-based and Wav2vec-based models. This
observation implies that the VQMIVC generates higher-quality
training data than FragmentVC. In terms of ACC, the Wav2vec-
based model yields comparable results for two synthetic models
(88% and 87% for Fragment VC and VQMIVC respectively).
However, the results from an LSTM-based model are somewhat
different (63% and 47% correspondingly). However, this does
not suggest that the Fragment VC preserves the accent better
than the VQMIVC, since the LSTM-based model is not power-
ful enough to generate a good quality output. When comparing
AC models, once again the Wav2vec-based has a better subjec-
tive result than LSTM-based on all data synthetic conditions.

5. Conclusions

In this paper, we have shown that a decent VC model could pro-
vide a convenient way to address the ground-truth data problem
in AC. Additionally, how a Wav2vec pre-trained encoder can
contribute to an AC model being trained in low-resource con-
dition is also described. Throughout the experiment, we only
focus on uni-directional (one-to-one) AC model. Given the ad-
vantage of the pre-trained audio encoder, our future goal is to
apply this approach in training a multi-directional (many-to-
many) AC with more accent data.
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