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Abstract

Pretrained models in acoustic and textual
modalities can potentially improve speech
translation for both Cascade and End-to-end
approaches. In this evaluation, we aim at em-
pirically looking for the answer by using the
wav2vec, mBART50 and DeltaLM models to
improve text and speech translation models.
The experiments showed that the presence of
these models together with an advanced au-
dio segmentation method results in an improve-
ment over the previous End-to-end system by
up to 7 BLEU points. More importantly, the ex-
periments showed that given enough data and
modeling capacity to overcome the training dif-
ficulty, we can outperform even very competi-
tive Cascade systems. In our experiments, this
gap can be as large as 2.0 BLEU points, the
same gap that the Cascade often led over the
years.

1 Introduction

Speech translation (ST) has been the main theme of
IWSLT for more than a decade and it goes without
saying between the traditional Cascade approach
and the recent End-to-end (E2E) possibility, the for-
mer has always been preferred. Being able to divide
the complicated ST to smaller sub-problems: au-
tomatic recognition, (often) re-segmentation (Cho
et al., 2017) and machine translation, the cascade
approach has the advantage of using more data to
separately optimize the components. The E2E, on
the other hand, relies on a single network archi-
tecture that requires an explicit speech-translation
dataset.

Over the years of participation, we observed that
the performance gap between E2E and cascade is
reduced (Anastasopoulos et al., 2021), and there are
three negative factors that outweigh the advantages
of having a single architecture without the problem
of error propagation (Sperber and Paulik, 2020).

• Data utilization: the end2end model can only
be directly trained on parallel speech transla-
tion data, which is often lacking compared to
speech-transcription or text translation data.
Previously the SLT models would require
a necessary pre-training step with ASR in
order to have comparable results with cas-
cade (Bansal et al., 2018; Pham et al., 2020c).

• Modeling power. The transition from shallow
LSTM-based models (Sperber et al., 2019)
to Transformer-based models (Pham et al.,
2020a) resulted in a big leap in model capacity
and showed the potential of the E2E approach.

• Better audio segmentation. Decoding directly
from long audio files is infeasible due to
the expensive memory requirement and the
presence of other distractions such as breaks,
noise or music. Applying either cascade or
E2E models absolutely requires an audio seg-
mentation step performed by a voice activ-
ity detection system. While the cascade sys-
tems can handle imprecise cuts based on a
re-segmentation process (Cho et al., 2017),
the E2E lacks this ability to recover from this
training-testing condition mismatch.

In our work, we massively improved our end-
to-end SLT systems for English→German with up
to 6 BLEU points by directly addressing the afore-
mentioned weaknesses:

• Pretrained acoustic (Baevski et al., 2020) and
language models (Tang et al., 2020) are incor-
porated in modeling. This allowed for trans-
ferring the knowledge during the pretraining
processes which contain a massive amount of
data. This effect is further enhanced when
combined with the pseudo labels generated by
machine translation.

190



• By using the pretrained models, we fully uti-
lized the large architectures that improved the
results further. More importantly, the pre-
trained acoustic model directly extracts fea-
tures from audio waveforms which is poten-
tially an advantage compared to the manually
extracted features in the previous systems.

• The audio segmentation component is
changed into a full neural-based solution com-
bined with pretraining (Tsiamas et al., 2022).
The new solution is not only more accurate,
but also directly optimized on TED Talks
giving the translation model more precise
and complete segmentations compared to the
generic voice activity detectors.

Moreover, we also applied the same techniques
to improve the Speech Recognition and Machine
Translation components of the Cascade system.
They also benefit from the above factors, albeit
to a limited extent. Unlike previous years when
the Cascade was always the better performing sys-
tem, for the first time we selected the E2E as our
primary submission.

For the current evaluation campaign (Anasta-
sopoulos et al., 2022), we also expanded the SLT
systems for two new directions: English→Chinese
and English→Japanese, with both of the ap-
proaches available. The resulting system is also
used in a simultaneous setting located in the same
evaluation campaign (Polák et al., 2022).

2 Data

Speech Corpora. For training and evaluation
of our ASR models, we used Mozilla Common
Voice v7.0 (Ardila et al., 2019), Europarl (Iranzo-
Sánchez et al., 2020), How2 (Sanabria et al., 2018),
Librispeech (Panayotov et al., 2015), MuST-C v1
(Di Gangi et al., 2019), MuST-C v2 (Cattoni et al.,
2021) and Tedlium v3 (Hernandez et al., 2018)
dataset. The data split is presented in the following
table 1.

3 Cascade System for Offline Speech
Translation

We address the offline speech translation task by
two main approaches, namely cascade and end-to-
end. In the cascaded condition, the ASR module
(Section 3.1) receives audio inputs and generates
raw transcripts, which will then pass through a
Segmentation module (Section 3.2) to formulate

Table 1: Summary of the English data-sets used for
speech recognition

Corpus Utterances Speech data [h]
A: Training Data
Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
TEDLIUM 268k 482
B: Test Data
Tedlium 1155 2.6
Librispeech 2620 5.4

well normalized inputs to our Machine Translation
module (Section 3.3). The MT outputs are the final
outputs of the cascade system. On the other hand,
the end-to-end architecture is trained to directly
translate English audio inputs into German text
outputs (Section 3.4).

3.1 Speech Recognition

The speech recognition model is based on the
wav2vec 2.0 architecture (Baevski et al., 2020)
with a CTC decoder on top of the Transformer
layers. The model is trained to output characters
with a vocabulary of 30. Here we used the large
version of Wav2vec 2.0 (24 hidden layers, hidden
size is 1024), which was pre-trained on 53k hours
of English audio data. The fine-tuning process used
approximately 4.5k hours of audio (as illustrated
in Table 1). The CTC decoder is supported by a 5-
gram language model with a beam size of 100. The
text corpus used to create the 5-gram model comes
from the transcription label of the audio data.

3.2 Text Segmentation

The text segmentation in the cascaded pipeline
serves as a normalization on the ASR output, which
usually lacks punctuation marks and casing infor-
mation. On the other hand, the machine transla-
tion system is often trained on well-written, high-
quality bilingual data. Following the idea from
(Nguyen et al., 2020), since punctuation and casing
information always belong to words, we combine
that info into 15 tags label (e.g U. U, T! T$ ...).
In which, punctuation has 5 types are “. , ! ? $”
($ stands for no punctuation), casing information
has 3 types are “T” (uppercase the first character
of word), “U” (uppercase all character of word),
“L” (lowercase all character of word). Our text
segmentation model will become a sequence tag-
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ging model. We fine tune a BERT base-uncased
model (Devlin et al., 2018) to predict tag label for
each word in the input. Model has 12 hidden layers
and hidden size is 768. The Yelp Review Dataset
(Zhang et al., 2015) is used for training this model.

3.3 Machine Translation

For the machine translation module, we first re-use
the English→German machine translation model
from our last year’ submission to IWSLT (Pham
et al., 2020b). More than 40 millions sentence pairs
being extracted from TED, EPPS, NC, Common-
Crawl, ParaCrawl, Rapid and OpenSubtitles cor-
pora were used for training the model. In addition,
26 millions sentence pairs are generated from the
back-translation technique by a German→English
translation system. A large transformer architecture
was trained with Relative Attention. We adapted to
the in-domain by fine-tuning on TED talk data with
stricter regularizations. The same adapted model
was trained on noised data synthesized from the
same TED data. The final model is the ensemble
of the two.

To fully use the available resources this year,
we also fine-tune pretrained DeltaLM (Ma et al.,
2021). We use the “base” configuration with 12 en-
coder and 6 decoder layers. Similar to the approach
above, we conduct a two-step fine-tuning, first on
WMT data and then on TED transcript-translation
parallel data (except for English→Chinese where
we directly fine-tuned on TED due to computation
constraints). We also use this MT system to gener-
ate synthetic data from TEDLIUM transcripts for
training the end-to-end systems.

For English→Japanese, the MT model based on
DeltaLM and trained using 11.3M sentences from
JESC, JParaCrawl, KFTT, TED and WikiMatrix
datasets. Similar to the English→Chinese model,
this model is also further finetuned on TED.

4 End-to-End System

4.1 Corpora

For training, we use all of the data available in
Table 2. Here, the Speech Translation is pre-filtered
using an ASR model to remove the samples that
have a high mismatch between the manual label
and transcription output1.

Because of the multilingual condition, we com-
bine the datasets for Japanese and Chinese from

1Here we used BLEU score as the metric.

MuST-C, CoVoST (Wang et al., 2020) to train mul-
tilingual systems. Moreover, we followed the suc-
cess of generating synthetic labels for audio utter-
ances (Pham et al., 2020b) and translated the tran-
scripts of TEDLIUM into all three languages using
the MT models. This process required us to recon-
struct the punctuations for the transcripts (Sperber
and Paulik, 2020) and the translation in general is
relatively noisy and incomplete (due the to fact that
the segmentations are not necessarily aligned into
grammatically correct sentences).

Table 2: Training data for E2E translation models.

Data Utterances Total time
English→German
MuST-C v1 228K 408h
MuST-C v2 250K 408h
Europarl 32K 60h
Speech Translation 142K 160h
TEDLIUM 268K 415h
CoVoST 272K 424h
English→Japanese
MuST-C v2 328K 420h
CoVoST 232K 400h
TEDLIUM 268K 415h
English→Chinese
MuST-C 350K 480h
CoVoST 232K 400h
TEDLIUM 268K 415h

During training, the validation data is the Devel-
opment set of the MuST-C corpus. The reason is
that the SLT testsets often do not have the aligned
audio and translation, while training end-to-end
models often rely on perplexity for early stopping.

4.2 Modeling
In order to fully utilize the pretrained acoustic and
language models, we constructed the SLT archi-
tecture with the encoder based on the wav2vec
2.0 (Baevski et al., 2020) and the decoder based on
the autoregressive language model pretrained with
mBART50 (Tang et al., 2020).

wav2vec 2.0 is a Transformer encoder model
which receives raw waveforms as input and gen-
erates high level representations. The architec-
ture consists of two main components: first a
convolution-based feature extractor downsamples
long audio waveforms into features that have sim-
ilar lengths with spectrograms. After that, a deep
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Transformer encoder uses self-attention and feed-
forward neural network blocks to transform the
features without further downsampling.

During the self-supervised training process, the
network is trained with a constrastive learning strat-
egy (Baevski et al., 2020), in which the features
(after being downsampled) are randomly masked
and the model learns to predict the quantized latent
representation of the masked time step as well as
encouraging the model to diversify the quantization
codebooks by maximizing their entropies.

During the supervised learning step, we freeze
the feature extraction weights to save memory since
the first layers are among the largest ones and fine-
tune all of the weights in the Transformer encoders.
Moreover, in order to make the model more robust
against the fluctuation in absolute positions when
it comes to audio signals, as well as the training-
testing mismatched condition happening when we
have to use a segmentation model to find audio seg-
ments during testing, we added the relative position
encodings (Dai et al., 2019; Pham et al., 2020a) to
alleviate this problem.

Here we used the same pretrained model with
the speech recognizer, with the large architecture
pretrained with 53k hours of unlabeled data.

mBART50 is an encoder-decoder Transformer-
based language model. During training, instead of
the typical language modeling setting of predict-
ing the next word in the sequence, this model is
trained to reconstruct a sequence from its noisy ver-
sion (Lewis et al., 2019) and later extended to a mul-
tilingual version (Liu et al., 2020; Tang et al., 2020)
in which the corpora from multiple languages are
combined during training. mBART50 is the version
that is pretrained on 50 languages.

Architecture wise, this model follows the Trans-
former encoder and decoder (Vaswani et al., 2017).
During fine-tuning, we can combine the mBART50
decoder with encoder pretrained with the wav2vec
2.0 so that each component contains the knowledge
of one modality. The cross-attention layers con-
necting the decoder with the encoder are the parts
that require extensive fine-tuning in this case, due
to the modality mismatch between pretraining and
finetuning.

Eventually, the model is easily extensible to a
multilingual scenario by training on the combina-
tion of the datasets. The mBART50 vocabulary
contains language tokens for all three languages
and can be used to control the language output (Ha

et al., 2016).

4.3 Speech segmentation

As pointed out in (Tsiamas et al., 2022), the quality
of audio segmentation has a big impact on the per-
formance of the speech translation models, which
are trained on utterances corresponding to full sen-
tences, often manually aligned, and this rarely hap-
pens with an automatic segmentation system.

With the advantage of neural architectures
and pretrained models, we follow the SHAS
method (Tsiamas et al., 2022) to train a
Transformer-based audio segmentation model on
the MuST-C v2 corpus. Based on the high-level au-
dio features generated by wav2vec 2.0, the model
predicts the probability of each frame belonging to
an utterance or not with cross-entropy. Afterwards,
given the probabilities of the frames in an audio
sequence (which are actually averaged over several
rolls for more consistent accuracy), a segmenta-
tion algorithm called probabilistic DAC is used to
aggressively cut the segments at the points with
lowest probabilities, and then trim the segments to
get probabilities higher than a set threshold.

We found this method to be much more effective
than other voice activity detectors such as WebRTC-
VAD (Wiseman, 2016). In the next experimental
part, it will be shown that the audio segmentation
quality is one of the most important factors help-
ing the E2E system. Here we closely followed the
original implementations and parameters to obtain
the neural segmenter.

5 Experimental Results

5.1 Speech Recognition

The quality of our ASR system is measured on two
testsets: TEDLIUM and Librispeech (clean). For
comparison, we also provide the WER from the
models trained without pre-training, including the
Transformers (Pham et al., 2019), Conformers (Gu-
lati et al., 2020) and LSTMs (Nguyen et al., 2019).

Table 3: WER on Libri and TEDLIUM test sets.

Data Libri TEDLIUM
Conformer-based 3.0 4.8
Transformer-based 3.2 4.9
LSTM-based 2.6 3.9
wav2vec 2.0 1.1 4.2
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It is notable that the latest ASR system with pre-
training is substantially better than the same archi-
tecture (but with less layers) on both Librispeech
and TEDLIUM tests. While the improvement on
TEDLIUM is 12.5%, we observed a significant
63% improvement on Librispeech, which is en-
abled by the large amount of read speech included
in pretraining. The wav2vec 2.0 layer is also con-
siderably larger than both Transformer variants.

Compared with the LSTMs, the wav2vec model
is 57% better in Librispeech, yet the former reaches
lower error rate in TEDLIUM. Since TED Talks
accounts for the majority of the training data, pre-
training on a large amount of read speech might
not fully transfer to a more formal and spontaneous
speech style.

5.2 Machine Translation

In Table 4, we report the performance of the ma-
chine translation systems described in Section 3.3.
We first show results for English-German when:
1) translating directly from the ground-truth tran-
scripts, and 2) translating from the ASR outputs
(Section 5.1).

First, we see incorporating the pretrained
DeltaLM (Ma et al., 2021) improves translation
quality from the ground-truth by 0.9-1.5 BLEU.
The gain carries over to the speech translation per-
formance when cascading with the ASR model, yet
at a smaller scale of 0.5-0.8 BLEU. This suggests
that the MT quality still degrades when coping with
noisy inputs from ASR transcripts.

For Chinese and Japanese, the two newly added
language in this year’s evaluation campaign, we
evaluate on the MuST-C tst-COMMON transcript-
translation data. The BLEU scores are 28.3 and
19.5 respectively2.

Table 4: Performance of the machine translation module
in BLEU↑.

Testset en→de tst2015 tst2019 tst2020

From ground-truth
MT2021 33.9 28.5 32.3
MT2022 34.8 30.0 33.2
From ASR
MT2021 26.1 25.1 27.9
MT2022 26.9 25.9 28.4

2Using tok.zh and tok.ja-mecab-0.996-IPA re-
spectively from sacreBLEU(Post, 2018)

5.3 End-to-end Offline Speech Translation

Given two new factors coming into play for the
End-to-end models, namely pretrained models and
audio segmentation, the models are tested on the
static test which is the tst-COMMON set from the
MuST-C corpus (Di Gangi et al., 2019) with the
pre-segmented utterances and labels. This testset is
available for all three languages. The whole system
is tested on the IWSLT testsets without utterance
boundaries and labels are only provided in para-
graphs (each talk is contained in one paragraph).
In this condition, only English→German tests are
available.

The results on this test for all three languages
are presented in Table 5. On English-German, over-
all we managed to improve the purely supervised
model with Transformers (Pham et al., 2020a) by
2.6 BLEU points. Using the pretrained weights
from wav2vec and mBART is very effective for
an additional 1.6 BLEU points, while we found
that the relative attention also contributed for a 0.7
BLEU points, and training the model in the multi-
lingual setting is also slightly better.

Table 5: BLEU scores on tst-COMMON from MuST-C

Model BLEU
English-German

E2E 2021 30.6
wav2vec + mBART 32.2
wav2vec + rel + mBART 32.9
wav2vec + rel + mBART + multi 33.2

English-Chinese
wav2vec + rel + mBART + multi 24.5

English-Japanese
wav2vec + rel + mBART + multi 16.9

Table 6: ST: Translation performance in BLEU↑ on
IWSLT testsets (re-segmentation required). Progressive
results from this year and last year end-to-end (E2E)
and cascade (CD) are provided.

Testset → tst2015 tst2019 tst2020

E2E2021 22.13 20.43 23.20
CD2021 24.95 21.07 25.4
E2E2021 + SHAS 26.66 24.55 25.58
+W2V-MBART 26.64 26.31 28.66
+REL 27.27 26.58 29.11
+MULTI 27.65 26.84 29.2
+ENSEMBLE 27.87 27.61 30.05
CD2022 26.84 25.91 28.35
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The final results on previous IWSLT testsets are
presented in Table 6. First of all, the new seg-
mentation method SHAS managed to improve the
translation results of our previous year’s submis-
sion by up to 4.4 BLEU points (as can be see on
tst2015 and tst2019). By using a stronger model
with wav2vec and mBART pretrained modules, the
results are vastly improved by 2.2 and 3.1 BLEU
points on tst2019 and tst2020. The performance is
incrementally improved even further, by combin-
ing different techniques including relative attention,
multilingual training and ensemble. Eventually, we
obtain a result which is 7.8 BLEU points better
than the last year’s end-to-end submission.

The cascade system is also improved this year,
by using the pretrained ASR, MT and better seg-
mentation. On tst2020, we managed to improve
the BLEU score by 3 points. However this en-
hancement pales against the E2E, and this is our
first participation in which the E2E convincingly
outperformed the Cascade system.

6 Conclusion

If the end-to-end models remained as a promising
approach in the previous evaluation campaigns, it
eventually blooms as the superior solution when
the conditions are met to overcome its problems,
namely training difficulty, segmentation issues and
inefficient data usage. While the performance of
the E2E system is now better, we can still believe
that its far from being practical given the size of
the model and the required presence of an audio
segmenter. Moreover, the Cascade system is still
necessary since it can provide a distillation tool for
the E2E, via pseudolabels for better data utilization.
The development of both approaches remains to
be interesting awaiting the future achievement in
multilingual and multimodal unsupervised and self-
supervised training.
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