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Abstract

Humans have a remarkable ability to organize, compress
and retrieve episodic memories throughout their daily life.
Current AI systems, however, lack comparable capabilities
as they are mostly constrained to an analysis with access
to the raw input sequence, assuming an unlimited amount
of data storage which is not feasible in realistic deployment
scenarios. For instance, existing Video Question Answering
(VideoQA) models typically reason over the video while al-
ready being aware of the question, thus requiring to store
the complete video in case the question is not known in ad-
vance.

In this paper, we address this challenge with three main
contributions: First, we propose the Episodic Memory
Question Answering (EMQA) task as a specialization of
VideoQA. Specifically, EMQA models are constrained to
keep only a constant-sized representation of the video in-
put, thus automatically limiting the computation require-
ments at query time. Second, we introduce a new egocentric
VideoQA dataset called QAEGO4D, far larger than exist-
ing egocentric VideoQA datasets and featuring video length
unprecedented in VideoQA datasets in general. Third, we
present extensive experiments on the new dataset, compar-
ing various baseline models in both the VideoQA and the
EMQA setting. To facilitate future research on egocentric
VideoQA as well as episodic memory representation and re-
trieval, we publish our code and dataset.

1. Introduction

During our daily life, we humans collect a vast amount
of experiences, which we intuitively filter, organize, aggre-
gate and store in our episodic memory (EM) [34]. Although
we certainly do not remember everything, we have the im-
pressive capability to recall relevant information with a high
precision, e.g., when answering questions about our expe-
riences in conversations with other people. Emulating such
episodic memory question answering (EMQA) competence

Question: "Where did I leave my keys?“ Answer: "on the table"

Figure 1. We introduce QAEGO4D, a new VideoQA dataset build-
ing on Ego4D [9] featuring long egocentric videos, natural lan-
guage questions and answers as well as temporal window annota-
tions.

in artificial intelligence (AI) systems is desirable both for
human assistance [9] as well as in robotics [2]. Most current
AI systems, however, lack key components of these capa-
bilities, even though first perceptual systems that attempted
to build knowledge for use in a 24/7 always-on environ-
ment were already proposed in [13, 36]. When using ex-
isting Video Question Answering (VideoQA) models like
[14, 38, 39] for EMQA, access to the complete video of the
corresponding episode is required. Crucially, regardless of
feature extraction or compression methods used, the storage
required to process an input video grows linearly with the
video length, thereby also implying linearly scaling com-
putation costs at query time. While this is not problematic
for current VideoQA datasets like [37, 38, 40] due to their
short video lengths ranging from a few seconds to a few
minutes, it prohibits future realistic deployment scenarios
involving long-horizon episodic data, e.g., a memorization
helper device recording egocentric video in a 24/7-manner,
or a robot equipped with an EM. Memory-Augmented Neu-
ral Networks (MANNs) [10, 45] solve this problem by pro-
cessing the video into a fixed size memory and then answer-
ing questions only based on that representation.

In this paper, we address these issues by precisely defin-
ing the EMQA task, collecting a benchmark dataset based
on Ego4D [9], as well as providing baseline experiments
for both (unconstrained) VideoQA and the EMQA setting,
where models are constrained to a constant-size memory.
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Specifically, we present three major contributions:
As a first step, we define the task of EMQA as a special-

ization of VideoQA . In analogy to [45], the key difference
lies in the allowed memory usage with respect to the in-
put video length, which is unconstrained (usually linearly
growing) in conventional VideoQA systems and bounded
to a maximum, constant size in the EMQA setting. This
has two crucial implications: First, it shifts the point in
time when “relevant” content needs to be extracted to the
time the video is given to the model (instead of the ques-
tion time), thus, turning an off-line analysis into an on-line
algorithm. Second, the upper bound on memory storage im-
plies an upper bound of computation at query time, thereby,
theoretically allowing the system to be used in a life-long
manner. In VideoQA terminology, this means, it is possible
to answer questions to arbitrarily long videos. Moreover,
we phrase VideoQA and EMQA as open-ended, generative
QA problems, hence, making the model more useful for re-
alistic scenarios as it is not restricted to choosing from a set
of predefined answers [4].

Our second contribution is to utilize the Ego4D dataset
[9] to construct a new VideoQA dataset which we call
QAEGO4D (see Fig. 1), especially suitable for the EMQA
task. Ego4D is a dataset offering a huge amount of real-
world egocentric video recordings. One of the challenges
proposed by [9] along with Ego4D is called Episodic Mem-
ory – Natural Language Queries (EM – NLQ), where a a
video and a corresponding question are given and the goal
is to find the temporal window in the video which visually
shows the answer to the question. To utilize this for EMQA
and VideoQA in general, we employed human annotators
to collect the corresponding natural language answers to the
NLQ questions. This can be done efficiently, since the an-
notators can rely on the ground-truth temporal window, i.e.,
they only have to watch video clips of a few seconds to find
the correct response for each question.

Finally, our third contribution is to present extensive ex-
periments on the new QAEGO4D dataset, applying a va-
riety of baseline systems both on the VideoQA as well
as the EMQA task. For VideoQA , we compare two
recent systems from the literature, namely JustAsk [38]
and Hierarchical Conditional Relation Networks (HCRN)
[19], to a simple Transformer model [35] baseline and the
Longformer [1] architecture. In the EMQA setting, we
present results for a long-term variant of the Compres-
sive Transformer [28], the Differentiable Neural Computer
(DNC) [10], the Self-attentive-Associative-Memory-based
Two-memory Model (STM) [18], as well as the Rehearsal
Memory model [45]. Our experiments on the new dataset
indicate the huge challenges QAEGO4D sets for future
work. To facilitate such research, we publish1 both our
codebase as well as the QAEGO4D dataset.

1https://github.com/lbaermann/qaego4d

Dataset ∅|v| #V #Q Type τ? C?

MovieQA [33] 202.7 6,771 6,462 movies ✓

TVQA [20] 76.2 21,793 152,545 series ✓

Act.Net-QA [40] 180.0 5,800 58,000 YouTube

iVQA [38] 18.6 10,000 10,000 YouTube ✓

LifeQA [3] 74.0 275 2,326 YouTube

Pano-AVQA [41] 5.1 5,400 51,700 360°

EgoVQA [6] 2.2 520 520 Ego

QAEGO4D 495.1 1,325 14,513 Ego ✓ ✓

Table 1. Comparison of related VideoQA datasets. ∅|v| = average
video length in seconds. #V = number of videos. #Q = number of
questions. τ? = target moment annotations present?. C? = answer
confidence annotations present?. Ego = Egocentric videos

2. Related Work

VideoQA is a major topic in the vision-and-language re-
search community. There exist plenty of VideoQA datasets
[3,20,33,37,38,40], of which Tab. 1 compares several ones
related to this work. However, all of these have several lim-
itations when applying them to the EMQA task: First, the
typical video duration is rather short (3.3 minutes or less),
thus, not demanding for an intermediate, limited-size stor-
age in form of an EM. Second, except for EgoVQA [6] and
Pano-AVQA [41], they show third-person video hence not
transferring easily to realistic egocentric application scenar-
ios [2, 9]. While EgoVQA features first-person videos, it is
very limited in its size and video length. In contrast, our
new QAEGO4D dataset contains a large amount of long
egocentric videos (8 minutes on average). Furthermore, in
contrast to previous work, QAEGO4D provides both tar-
get moment annotations as well as answer confidence es-
timations, which can both serve as an additional source of
(weak) supervision.

Fostered by the amount of VideoQA datasets, there are
also plenty of methods applied to VideoQA. Among oth-
ers, recent models like SiaSamRea [39] and M3DC [25]
reach state-of-the-art results on various VideoQA datasets
by applying complex multimodal reasoning modules on top
of common transformer and convolutional backbone archi-
tectures. JustAsk [38] learns open-ended VideoQA using
a contrastive loss in combination with a huge set of auto-
matically generated pretraining data. For a more thorough
review of the broad VideoQA field, we refer the reader to
recent surveys [27, 32]. Furthermore, many methods allow
for flexibility concerning the used modalities, e.g., M3DC
uses audio stream, while HRCN [19] allows providing a tex-
tual stream of subtitles along with the video. In this work,
we focus on two input modalities (video stream + question
text) only, but the QAEGO4D dataset provides audio for
two-thirds of the videos thus allowing for future extensions.
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Natural Language Video Localization (NLVL) is
closely related to VideoQA as the input is a natural lan-
guage text and a video, and the model is supposed to find
the most relevant temporal window in the video. As for
VideoQA , there is a multitude of NLVL datasets, including
ActivityNet Captions [16], Charades-STA [8], TACoS [30]
and, most recently, the NLQ subset of Ego4D [9]. Recent
state-of-the-art methods [24,42,43] propose several models
highly specialized for solving the NLVL problem. In this
work, we focus on evaluating VideoQA and EMQA perfor-
mance, however we use the NLVL annotations as an addi-
tional source of supervision for our models.

Memory-Based Methods have a long tradition in neu-
ral networks research. Recurrent networks like LSTM [12]
or GRU [5] are the simplest form, but have severe limi-
tations regarding the capacity of the memory. More ad-
vanced memory-based networks like the Differential Neu-
ral Computer (DNC) [10] offer a much larger memory as
well as a more flexible way of reading and writing the
stored content. For instance, the Self-attentive-Associative-
Memory-based Two-memory Model (STM) [18] splits re-
sponsibility for storing items and relations between these
items into two separate memories. However, exploration
of memory-based architectures featuring a limited stor-
age requirement independent of input length is underrep-
resented in the VideoQA community. Recently, Zhang et
al. [45] propose a “Rehearsal Memory” and apply it to dif-
ferent sequence-processing problems, including VideoQA.
Inspired by this work, we propose the EMQA task as a sub-
task of VideoQA, which demands for memory-based archi-
tectures.

3. Problem Definition
In open-ended VideoQA, a model M is provided with

a video v along with a natural language question q, and is
supposed to output a correct answer a. More precisely, with
V being a vocabulary of (sub-)words, and F = [0, 1]W×H

being the set of all possible images with width W and height
H , we have v ∈ FN , q ∈ V Q, a = M(v, q) ∈ V A, where
N is the number of frames in the video and Q,A are the
number of tokens in the question and answer, respectively.
Note that during inference, A is determined by M itself by
stopping upon generation of a special “End of Sentence”
token.

To precisely distinguish the EMQA task as a subtask of
VideoQA, we now add further constraints, similar to the
“Rehearsal Memory” formalism of [45]. First, the model is
decomposed into an episodic memory formation module E
and a question answering module Q as M(v, q) = Q(e, q),
where e = E(v) is the EM. Second, we impose a constant
size constraint on the EM, i.e., |e| ∈ O(1) (and crucially,
|e| /∈ O(N)), where |e| represents the number of elements

of representation e, or – more generally speaking – its stor-
age requirement. This formulation automatically implies
that the video content v cannot be analyzed or filtered with
respect to the question directly, since Q can only access the
EM e. Conversely, the EM formation module is required to
condense all potentially relevant information into the fixed-
size representation e, thus, also leading to computation re-
quirements of Q being independent of N .

While we do not specify a fixed number for the upper
bound of |e| as part of the proposed EMQA task, we note
that for a fair comparison of models, it is crucial to report
details on |e| along with the results. Obviously, it is easier
to achieve good performance as |e| grows, approaching un-
constrained VideoQA when |e| gets bigger than the storage
required for the input videos v. As a quantitative measure of
|e|, we suggest to report the number of 4-byte floating point
entries of e in case of a latent vector representation (i.e., the
dimensionality of e, as done in Sec. 6), or alternatively the
storage constraint in bytes.

To further illustrate the difference between VideoQA and
EMQA, we can compare it to a human watching a video.
VideoQA corresponds to the setting where one gets the
question before watching the video, and thus can directly
analyze the video with respect to the question. In contrast,
EMQA is the task of answering a question which is only
revealed after seeing the video. As a brute-force approach
would be to store the complete video (or some other lin-
early growing representation, e.g., feature representations
for each second), our EMQA formulation prohibits this by
constraining the memory created during watching the video
to a constant size, independent of the input length.

4. Dataset

We introduce the QAEGO4D dataset by explaining
where we obtained videos and questions, how we collected
natural language answers and finally presenting some statis-
tics.

Videos and Questions We build the QAEGO4D dataset
as an extension of Ego4D [9]. Specifically, each sample
s = (v, q, a, τ) in our new dataset consists of a video v,
natural language question q and answer a, as well as an an-
notation τ = (τstart, τend) of a temporal window in which
the answer can be deduced from the video. As one of the
challenges associated with the Ego4D dataset, Grauman et
al. [9] propose the EM – NLQ task, where v and q are given
and τ should be inferred. Thus, we only need to additionally
collect a for constructing QAEGO4D. We filter out samples
with “When?” questions, as there would be no well-defined
natural language answer for them. Furthermore, Ego4D
provides dense text narrations for each video, i.e., each nar-
ration n is defined by a text t as well as temporal window
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Figure 2. A screenshot of the website used to collect the
QAEGO4D dataset.

θ = (θstart, θend). We utilize this to ease data collection,
as described below.

Answer Annotation We employed human annotators to
give possible answers to each question from the Ego4D EM
– NLQ task. Since the ground truth annotation of the rele-
vant temporal frame τ is already provided by the NLQ data,
we utilize this and show the annotators only the correspond-
ing snippet τ ′ of each video, where τ ′ = (τstart−5s, τend+
5s) adds ten seconds of context so that it is easier for human
subjects to understand the video. In contrast to the length
of videos v which is 8.3 minutes on average, the answer
snippet v[τ ′] is only 19.5 seconds on average, thus, signifi-
cantly reducing the data collection overhead. Additionally,
annotators see the text narrations n which overlap with the
answer snippet, i.e., where τ ′ ∩ θ ̸= ∅. This is to
help answering the question and ensuring consistent word
choices when formulating the answer. For “Who?” ques-
tions, we ask annotators to answer with a short description
of the referenced person, e.g., “the woman in black”, instead
of reusing the identifiers (“person X”) from the text nar-
rations. Before submitting, annotators had to choose how
confident they are with their answer. Unanswerable ques-
tions could be skipped. A screenshot of the annotation tool
can be seen in Fig. 2.

Data Analysis After collecting the answer annotations,
we split up the dataset into train, validation and test. The
train set aligns with the train split of the Ego4D NLQ anno-
tations. Since the Ego4D test data is not published, we split
up the canonical videos in the validation set, and use half
of them for testing. Tab. 2 shows the sizes of each split of
QAEGO4D.

On exporting the data from the data collection site, an-
swers were normalized by converting to lower case, strip-

train valid test

#videos 997 162 166

#QA pairs 10746 1913 1854

Table 2. QAEGO4D split sizes.
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Figure 3. Histogram of 50 most frequent answers accross all splits
of the QAEGO4D dataset.
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Figure 4. Histogram of answer lengths (number of words) in
QAEGO4D.

ping whitespaces and removing trailing punctuation. 166
samples were excluded because they were skipped by three
annotators, and 404 further samples were removed from the
dataset by simple filtering rules based on the question type
and the first words of the answer (e.g. “Who...” with answer
“on the ...”). Additionally, a dictionary-based spell checker2

was used to detect typos and spelling mistakes, which were
then manually corrected by the authors (351 samples in to-
tal). In total, QAEGO4D contains 4837 unique answers, of
which 3740 occur in the training set. These unique train-
ing answers account for only 64.4% and 67.0% of answers
in the validation and test split, respectively, indicating the
importance of the open-ended, generative formulation of
VideoQA. The most frequent answers can be seen in Fig. 3.
Furthermore, Fig. 4 shows the distribution of answer lengths
across all data splits. The spike for answer length three can
be explained by the common “in/on/at the X” answers to the
“Where...?” questions.

5. Methods

In this section, we first present the baseline models
we apply to the unconstrained VideoQA task, and then

2https://github.com/barrust/pyspellchecker
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proceed with the memory-based models evaluated on the
EMQA task. All models have in common that they op-
erate on a temporal sequence of feature vectors instead of
the raw video data. If not noted otherwise, we use the pre-
extracted Slowfast 8x8 ResNet101 [7,11] features provided
by Ego4D [9], which encode the video with window size
and stride of 32 and 16 frames, respectively.

5.1. VideoQA

JustAsk [38] is a recent model reaching state-of-the-art
results on existing VideoQA benchmarks by utilizing ex-
tensive pretraining on automatically generated VideoQA
data. We use the pretrained iVQA checkpoints provided
by the authors and fine-tune the network on QAEGO4D.
Video feature extraction and model training is done using
the code3 provided by the authors of JustAsk. Importantly,
this model does not perform open-ended, generative ques-
tion answering. Instead, it chooses from a fixed answer vo-
cabulary, for which we use the set of all answers present in
the QAEGO4D train set.

HCRN [19] is another recent VideoQA model. Using the
codebase4 of the authors, we train this model from scratch
on QAEGO4D , extracting appearance and motion features
from the data as defined in their code. Similar to JustAsk,
HCRN uses a fixed answer vocabulary, which is constructed
the same way as described above.

SimpleVQA is a very simple baseline model based on the
Transformer [35] encoder-decoder architecture, specifically
using a pretrained T5 [29] model (t5-base checkpoint).
We first transform each video feature using a linear layer to
match the hidden dimension of the transformer. The ques-
tion is passed to the transformer encoder and the resulting
representation is concatenated with the transformed visual
sequence to form the context sequence. Subsequently, the
decoder generates the answer in an auto-regressive manner,
using its cross-attention to attend to the context sequence.

Longformer [1] is a transformer model specifically de-
signed to handle very long input sequences by constrain-
ing self-attention to a local window around each position
and some privileged “global” tokens, instead of building
the full-scale attention matrix which scales quadratically
with the input length. We apply this model to VideoQA
on QAEGO4D in the following way: First, the video fea-
tures get projected to match the embedding dimension of
the Longformer. Then, these features and the embedded
question tokens are concatenated and passed to the Long-
former, where the positions corresponding to question to-
kens are allowed to perform and receive “global” attention,

3https://github.com/antoyang/just-ask
4https://github.com/thaolmk54/hcrn-videoqa

whereas the video tokens only attend to their local window
(and the global tokens). The Longformer’s output sequence
of hidden states is then passed to the cross-attention input of
an auto-regressive T5-decoder, which produces the answer.

BlindVQA is the most simple baseline, which is purely a
T5 encoder-decoder model. It does not receive the visual
input, and has to guess the answer based on the question
only. This accounts for dataset-specific bias, as answers to
some questions might be easy to guess (e.g., “Where is the
stove?” → “kitchen”).

5.2. EMQA

As explained in Sec. 3, building an EMQA model in-
volves defining the episodic memory formation module
e = E(v) and a question answering module a = Q(e, q).
All baseline EMQA models share a common architecture
for Q, for which we again use pretrained T5 [29] networks.
Specifically, the episodic memory e is concatenated with the
sequence of hidden states produces by the T5 encoder, and
the decoder attends to the resulting sequence using its cross-
attention during auto-regressive answer generation. How-
ever, we note that the EMQA setting does not constrain the
specifics of Q, as long as it only has access to the fixed-
size episodic memory e instead of the full-length video v.
More advanced architectures for Q are left open for future
work, and we focus on different modules for E , which are
introduced in the following.

DNC [10] and STM [18] can both be immediately used
as E . However, with the very long input videos, this would
result in extremely slow training times. To tackle this prob-
lem, we first project down the video feature dimension
from hf to hs, then split up the video input sequence into
fixed-size segments of length l, and then feed the MANN
with each time step corresponding to one flattened segment,
where the input size to the MANN thus is s · hs. For
DNC, we directly use the memory matrix M (in the no-
tation of [10]) as e, whereas for STM, the output vector oT
for the final time step T is used as e, as using the item or
relation memory would require additional transformations.

LT-CT is a Long-Term (LT) extension of the Compres-
sive Transformer (CT) [28]. CT reads the input sequence
split up into fixed-size segments. Each segment is processed
by a transformer network, which has a recurrent connection
to the previous layer’s hidden states from the previous time
step. Previous hidden states are kept in a FIFO queue, and
the oldest items at each time step get compressed and put
into another queue of compressed memories. In turn, the
oldest vectors from the compressed memory are dropped.
Thus, the CT itself is not able to handle infinite context
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lengths. Therefore, we add a simple on-layer recurrent unit
in form of an LSTM cell to each layer of the CT, building
the LT-CT. Furthermore, we enhance the architecture by us-
ing multiple compression levels, with each one receiving
the vectors dropped from the previous one. After reading in
the complete video sequence, the episodic memory e is de-
fined as the flattened sequence of all the vectors in the mem-
ory, all compressed memories, and the LSTM cell states.

RM (Rehearsal Memory) [45] is another model specifi-
cally fitting to EMQA. Similar to the above models, the
video input sequence is split up into fixed-size segments.
Each segment is encoded by a transformer encoder, where-
upon a recurrent component based on GRUs attends to the
current segment to produce the new memory state. The set
of memory cells naturally form the episodic memory e. Im-
portantly, in addition to the usual language modelling loss,
this model uses self-supervised rehearsal training. For this
purpose, it picks segments from the video input and tries to
restore them from the final memory of the model. To pick
meaningful segments during this process, RM utilizes atten-
tion scores of an unconstrained VideoQA model as teacher
for selecting which segments are important. For this, we use
the a model similar to SimpleVQA described above, with
the modification that it receives input segments instead of
the individual items of the sequence.

5.3. Utilizing NLVL Supervision

To fully exploit the QAEGO4D data, models can use the
ground-truth temporal window annotations as an additional
source of supervision. We add this to two of our baselines
models in the following simple way:

For SimpleVQA+ and Longformer+, we extract the
transformer decoder’s cross-attention scores for the posi-
tions belonging to the video input. This subset of scores
is passed through softmax again to produce the distribution
of attention on the video only. Then, we inject the NLVL su-
pervision as a ranking loss on the attention scores as done in
the STAGE [21] model. Specifically, for each input position
part of the target moment (positive samples), we sample two
positions from somewhere else in the video (negative sam-
ples), and then apply LSE [22] loss between the positive
and negative samples. The final loss L = LLM + λ ∗ LNLVL
is the weighted sum of language modeling loss LLM and
NLVL loss LNLVL, where we empirically choose λ = 10 for
SimpleVQA+ and λ = 1 for Longformer+.

6. Experiments
6.1. Metrics

Since we phrase the VideoQA problem as open-ended,
generative QA, solely using the “plain” accuracy as a per-
formance metric, i.e., the percentage of answers where the

Acc. BLEU METEOR ROUGE

BlindVQA 9.0 3.6 17.4 25.9

SimpleVQA 9.3 6.1 17.4 26.1

Longformer [1] 3.0 2.4 15.4 20.9

HCRN⋆ [19] 10.3 7.6 17.2 25.7

JustAsk†⋆ [38] 9.6 3.9 17.8 26.7

SimpleVQA+ 9.7 3.6 18.3 27.1

Longformer+ [1] 6.7 5.4 16.9 24.4

Table 3. VideoQA results on the QAEGO4D test set. The mod-
els in the upper part of the table only use the supervision from the
answer annotations. Models in the lower part additionally have
access to NLVL temporal window annotations. †pretrained on ad-
ditional VideoQA data. ⋆ non-generative question answering.

model generates exactly the ground truth solution, is not
sufficient. Therefore, in addition to accuracy, we report sev-
eral standard machine translation metrics as done in previ-
ous work [44]. This includes BLEU-4 [26], METEOR [17],
ROUGE-L (f-score) [23].

6.2. Experimental Settings

For the open-sourced JustAsk and HCRN models, we
use the code and settings as provided by the authors, solely
changing the learning rate for JustAsk to 10−4. For all other
models, we use PyTorch Lightning5 to train each on the
train set of QAEGO4D with the Adam [15] optimizer with-
out weight decay and automatically select the learning rate
for each experiment using Auto LR Tuning [31]. All exper-
iments use a fixed random seed and an effective batch size
of 32 samples (taking multi-GPU training and gradient ac-
cumulation into account). Early stopping based on the val-
idation language modeling loss with a patience of ten vali-
dation steps is used, and the checkpoint from the best epoch
on the validation set is selected. When there are multiple
configurations for one architecture, we use the one with the
higher validation ROUGE score as produced by the selected
checkpoint. Final results are reported on the test set.

6.3. Results

VideoQA Tab. 3 shows the results of evaluating the
VideoQA models on the QAEGO4D test set. It can be seen
that the general level of performance is quite low, as the
dataset is extremely challenging considering the length of
the videos (8 min. on avg.) and the diversity of the depicted
scenarios and questions. This level of challenge is expected
when looking at the NLVL baseline results of Grauman et
al. on the Ego4D NLQ dataset we build QAEGO4D upon
[9, Tab. 11]. Since JustAsk and HCRN have a restricted

5
https://github.com/PyTorchLightning/pytorch-lightning
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#e Acc. BLEU METEOR ROUGE

DNC [10] 16 9.7 3.4 17.9 27.0

STM [18] 1 9.4 5.8 17.6 26.2

LT-CT [28] 377 10.5 5.3 18.5 27.5

RM [45] 16 9.9 4.5 17.7 26.6

Table 4. EMQA results on the QAEGO4D test set. #e measures
the number of 768-dimensional vectors constituting the episodic
memory vector, i.e. |e| = #e · 768.

answer vocabulary, they have a general advantage with re-
spect to the other models which honor the more realistic
generative VideoQA conditions when comparing the plain
accuracy. Furthermore, both these models use architectures
specialized for VideoQA. The additional advantage of be-
ing pretrained on larger (non-egocentric) VideoQA datasets
does not pay off significantly for JustAsk, as it outperforms
HCRN on METEOR and ROUGE, but is worse than HCRN
in plain accuracy and BLEU score.

While the SimpleVQA model performs only slightly bet-
ter than the guessing baseline, an improvement on all met-
rics except for BLEU from training with NLVL loss (Sim-
pleVQA+) can be observed. Despite the extremely poor
overall performance of Longformer, the same observation
can be made when comparing with Longformer+. This in-
dicates that utilizing the temporal window annotations in
QAEGO4D indeed provides useful additional supervision
to the VideoQA task, which should be further utilized in
future work.

EMQA The results of evaluating the EMQA models can
be seen in Tab. 4. For a fair EMQA comparison, however, it
is crucial to look at the size of the episodic memory used in
a model. Since all our models use a memory vector hidden
size of 768 (to align with the hidden size of the t5-base
decoder), we report the number of memory vectors #e in-
stead of the number of floating point entries |e| = #e · 768
in Tab. 4. STM uses only one hidden vector in our sim-
ple implementation (the output of the last time step), while
DNC and RM both use 16 memory cells in our experiments.
Thus, the low performance of STM is reasonable. RM and
DNC share the same |e|, however, there is no model clearly
beating the other one, as both outperform each other in two
of the metrics.

In contrast, LT-CT uses all its queued hidden states as
well as the LSTM cell states as episodic memory, which
results in a total of 377 vectors in our configuration. As
EMQA is a more restrictive setting than VideoQA, the per-
formance is generally expected lower. Nevertheless, LT-CT
beats the other EMQA baselines as well as the VideoQA
models in most metrics. Likewise, RM and DNC perform
on a similar level as most of the VideoQA baselines. This

might indicate that constraining the memory could poten-
tially be useful for handling long inputs as it forces the
model to select relevant information appropriately. Future
work should further investigate this issue.

Despite these observations, the overall performance on
both VideoQA and EMQA is still very low and close to
guessing, as the distance to the blind baseline is rather small
even for the top-performing models. Future work will need
to come up with more effective strategies for analyzing very
long videos as well as representing a video with constant
size constraints without knowing the question in advance.

7. Conclusion

We present the QAEGO4D dataset, featuring egocentric
videos annotated with questions, answers and relevant tem-
poral windows. Moreover, we propose to use this data not
only for VideoQA, but also for EMQA, where a model is
constrained to keep only a constant amount of memory of
an arbitrarily long input video, and then reason solely based
on this memory afterwards. Finally, we present various
memory-augmented baseline models to tackle the EMQA
task, and compare them by presenting extensive experi-
ments on the new dataset. The results both on unconstrained
VideoQA as well as EMQA highlight the extremely chal-
lenging nature of QAEGO4D and provide a baseline to im-
prove upon by future work.
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