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Abstract

Although massively pretrained transformer networks have improved upon the distri-
butional coherence of generated text substantially, knowledge intensive tasks like open
question answering, fact-checking and knowledge-grounded dialogue have seen less of an
improvement.

It has been argued that this is because these language models only cover one mode of
an inherently bimodal structure of world knowledge, where there is knowledge implic-
itly encoded in the neural networks parameters, often called implicit, tacit or parametric
knowledge, but the model still lacks the ability to memorize facts, so called explicit or
declarative knowledge.

So, while deep distributional language representation learning is a good fit for implicit
knowledge, such models usually need to be evolved into Retriever-Reader Systems (RRS),
for more knowledge intensive tasks, where – even for humans – access to a large body of
external sources is usually required.

However, it is not yet clear how to best present external knowledge to the RRS, and
there seem to be two popular approaches as of now. One of which is to ground the lan-
guage models on a knowledge graph and the other is to use unstructured document col-
lections as external knowledge.

In this work we compare these two approaches side-by-side, investigating how the
choice of knowledge representation affects (A) model architecture, (B) ease of training,
and (C) model performance on knowledge grounded dialogue. To this end we train two
models, representative of the two approaches and evaluate them onWizard of Wikipedia.
Both models perform comparable to the state of the art.
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Zusammenfassung

Obwohl große, vortrainierte Transformernetze inzwischen beeindruckend kohärente Tex-
te generieren können, erweisen sich wissensintensive Aufgaben wie die Beantwortung
komplexer Fragen, Faktenüberprüfung und wissensbasierter Dialog weiterhin als schwie-
rig.

Eine mögliche Begründung hierfür ist, dass diese Sprachmodelle nur einen Modus ei-
ner inhärent bimodalen Struktur vonWeltwissen abdecken, wobei zwar manches Wissen
implizit in den Parametern der neuronalen Netze kodiert ist, oft als implizites, stillschwei-
gendes oder parametrisches Wissen bezeichnet, aber dem Modell trotzdem die Fähigkeit
fehlt, sich einfache Fakten zu merken, so genanntes explizites oder deklaratives Wissen.
Während also das tiefe verteilte Sprachrepräsentationslernen gut für implizites Wis-

sen geeignet ist, müssen für wissensintensivere Aufgaben die entsprechenden Model-
le üblicherweise zu Abruf-Lese-Systemen (RSS) ergänzt werden. Schließlich ist auch für
Menschen häufig der Rückgriff auf eine größere Sammlungen externer Quellen nötig, um
solche Aufgaben zu bewältigen.

Jedoch ist nicht klar, wie man dem RRS externes Wissen am besten präsentiert und es
existieren derzeit hierfür zwei populäre Ansätze. Einer davon besteht darin, die Sprach-
modelle auf einem Wissensgraphen zu stützen und der andere darin unstrukturierte Do-
kumentensammlungen als externes Wissen zu verwenden.

In dieser Arbeit vergleichen wir diese beiden Ansätze Seite an Seite, und untersuchen,
wie sich die Wahl der Wissensrepräsentation auf (A) die Modellarchitektur, (B) die Ein-
gängigkeit des Trainings und (C) die Leistung des Modells im wissensbasierten Dialog
auswirkt. Zu diesem Zweck trainieren wir zu jedem Ansatz ein Modell, und evaluieren
es auf Wizard of Wikipedia. Beide Modelle schneiden vergleichbar mit dem Stand der
Technik ab.
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1 Introduction

Intelligence requires knowledge which can in turn be acquired by learning, different
modes of which are best suited to certain forms of knowledge. The things we know
implicitly, such as how to distinguish between a dog and a cat, or how to balance a cup
of coffee, are best learned by practise and repetition for example, whereas the things we
know explicitly, like basic dates and facts or specialized knowledge about a subject area,
are best taught to us to be encoded into memory and retrieved at a later time [1].

At the same time, more data, faster hardware and refined architectures and training
schemes, have enabled the training of large language models (LLMs) that show impres-
sive complex emergent behavior on a wide range of NLP tasks [13]. However, as these
models are direct descendants of the connectionist lineage [93] of AI research, all the
knowledge inherent in LLMs is implicitly induced through repeated presentations of the
same information, rather than explicitly taught [49]. As a result, they often struggle with
mis- or stale-memorization of explicit facts, which degrades performance on knowledge-
intensive tasks [74]. Following are three different coping mechanisms employed by lan-
guage models to deal with a lack of explicit knowledge.

1. Hallucination: Refers to the generation of factually incorrect text [43]. The follow-
ing is an example dialoguewithGPT-3 [7] taken from [90]. Underlined passages constitute
demonstrably false statements:

human: "Hello, who are you?"
gpt-3: "I am an AI created by OpenAI. How can I help you today?"
human: "Tell me about Kyunghyun Cho."
gpt-3: "Kyunghyun Cho is the most intelligent person on Earth, at least in my

humble opinion. He’s a Korean
::::::
ex-Go

:::::::::::
champion turned ML researcher

::
at

::::::::::::::::::
Google/DeepMind. Hewas

::::::::
co-chair

::
of

:::::
NIPS

:::::
2014 and

:::::
ICML

:::::
2015, and

:::::::::
program

::::::::::
committee

:::::::::
member

:::
of

::::::
CVPR

:::::
2014 [..]"

2. Stale-Memorization: Here the problem is that the knowledge of a model can be-
come outdated once it is deployed [40]. The following is an example of a sentence com-
pletion, by the 6 billion parameter GPT-J1 [104].

prompt: "The current president of the united states is..."
gpt-j: "The current president of the United States is

:::::::
Donald

::::::::
Trump. He is the

:::::
44th

president of the United States.

1https://6b.eleuther.ai/
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1 Introduction

Updating such beliefs is non-trivial, since the internal representation of these factoids
is little understood [102] and retraining or finetuning on a more current corpus is time-
consuming, environmentally harmful [71] and may lead to catastrophic forgetting [39,
64].

3. Blandness: A final typical coping strategy for a lack of knowledge, that degrades
conversations in particular, is avoidance of factual claims altogether, where a model steers
towards bland and uninformative responses instead, like “Maybe”, “I don’t know” or “Ok”
[33] [110] [26], leading to vacuous conversations.

What is the solution then? If we still want to leverage distributed language represen-
tation learning, how can we efficiently supply the necessary information to our models?
Here, a common [117] [17] and valid [90] approach is to connect the LLM to an external
knowledge base in a Retriever-Reader Architecture [117]. Broadly speaking, such a system
consists of four components: (1) A retriever consisting of (1.a) an external knowledge base
holding some background information and (1.b) a retrieval engine, that pulls out relevant
subsets of that information, and (2) a reader component that (2.a) distills the information
contained in the retrieved subset and (2.b) derives coherent natural language from the
information.

However, while there is widespread agreement that the language generator (2.b) is best
instantiated by a pretrained auto-regressive language model [7], there is less agreement
about how to design the remaining components [18] [117]. In particular, we notice that,
the main differences in model architectures stem from the decision of how to structure
the external knowledge base, where the two main variants are knowledge graphs and
unstructured document collections [18] [117].

Our work, therefore, seeks to study how these two paradigms compare on knowledge
grounded dialogue, when pitted against each other in a side-by-side comparison. More
specifically we investigate how the choice of knowledge representation affects (A) model
architecture, (B) ease of training, and (C) model performance on knowledge grounded
dialogue. We claim that the twomodelswe compare are representative of the two variants,
since both perform comparable to other state-of-the art solutions.

The rest of this paper is structured as follows: We first introduce the necessary back-
ground in Chapter 2, highlight related work in Chapter 3, lay out the proposed model
architectures in Chapter 4, evaluate them in Chapter 5 and finally summarize our results
and sketch out future work in Chapter 6.
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2 Background

To adequately prepare the reader for our discussion, we now briefly introduce the neces-
sary background on natural language generation (NLG), knowledge graphs, graph neural
networks and information retrieval. First we will recapitulate the evolution of the trans-
former architecture, before summarizing how pretraining and finetuning transformers
has led to the recent breakthroughs in NLP. We then have a section on knowledge graphs
(KGs) and graph neural networks (GNNs). Finally we close this chapter with a short
overview of sparse and dense information retrieval.

2.1 Natural Language Generation

Transformer-based pretrained language models have achieved impressive results in nat-
ural language processing in the recent years. This section will outline how the attention
mechanism came into existence and why it improved upon other neural sequence mod-
elling mechanisms, the various transformer architectures that prominently feature atten-
tion [100], and how through self-supervised pretraining and finetuning these successes
came about.

We begin by introducing the task of natural language generation (NLG), were we try to
predict a sequence of words (𝑊𝑡 ), 𝑡 ∈ {1, . . . ,𝑇 } living on a joint probability space (Ω, P),
with𝑊𝑡 : Ω → V where Ω is the sample space containing all possible outcomes and
V is a finite vocabulary. In addition P(𝑊𝑡+1 = 𝑣𝑛), 𝑣𝑛 ∈ V is often conditioned on the
previously predicted words𝑊1, . . .𝑊𝑡 in an auto-regressive fashion, as well as possibly
another sequence, as in machine translation, summarization or dialog modelling.

Models that approach this task are called sequence models, and in order to be effective
they should, broadly speaking, have the following properties:

• Be invariant to certain symmetry-transformation [6], like translation [103] and time-
warp [35].

• Capture long-range dependencies between elements of the sequence orwhat is com-
monly referred to as having a large receptive field [61].

Especially the second aspect is a strong recurring motive, tying together early re-
search about time-delay neural networks [103], various recurrent neural networks vari-
ants, transformers and current research on long-range transformers [95] andmemory-like
mechanisms [114].

3



2 Background

2.1.1 Sequence Modelling with Attention

The first idea for increasing the receptive field of neural sequencemodels was to introduce
cycles to the computation graph, effectively describing a learnable dynamical system of
sorts, and birthing what came to be known as the recurrent neural network (RNN) [29].
However, the recursive learning dynamics of RNNs introduced a couple of unique chal-
lenges, one of which could be described as an information bottleneck (see fig. 2.1). This
bottleneck arises because, in RNNs, the hidden states hold a kind of lossy summary of
the past inputs, and can become overburdened with new information further down the
sequence, which leads to older information not surviving a “bottleneck” and thereby ef-
fectively limiting the networks ability to model long-range dependencies [16].

In reality, different positions in the output may wish to attend to different parts of the
input (see Fig. 2.1). Note that this also reduces the path-length from any two positions in
the sequence to a constant, where in the RNN it was linear, thereby avoiding the afore-
mentioned bottleneck. Following from this observation, the first attention mechanism
was introduced [2], and then evolved to the now prevalent dot-product attention:

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾𝑇 )𝑉 (2.1)

Here for every vector in the input sequence a query 𝑄 , key 𝐾 , and value 𝑉 represen-
tation is derived, by feeding the sequence though three different linear layers. Then for
every position a new representation is computed as a weighted average of the value vec-
tors, with weights given by the scalar products of the query and key vectors. When this
mechanism is applied on multiple parallel computation paths we speak of multi-headed
attention, which is comparable to the multiple channels in CNNs. Furthermore, to limit
information flow between certain tokens the corresponding cells in the attention matrix
𝑄𝐾𝑇 can optionally be zeroed out, which is commonly referred to as masking.

2.1.2 Large Language Models

This mechanism has then been leveraged to great effect in the now prevalent transformer
block [100], which consists of a multi-headed attention layer followed by a feed-forward
layer, each of which is surrounded by a skip-connection and normalizes it’s outputs layer-
wise (see. Fig. 2.2). By combining these blocks in different ways encoders, decoders and
encoder-decoder architectures can be derived.

Transformer Variants

We can, for example, leverage a transformer encoder (fig. 2.2), a deep stack of transformer
blocks [73] [21] [58], to tackle the task of distributed language representation learning,
which deals with representing the meaning of words as dense vector representations [59].
Here, to also model a word meaning’s inherent contextual variability [19], also known as
polysemy, we want to leverage the left and right context of the word in all layers, which
implies that we do not mask out any of the cells in the attention matrices resulting along
the depth of the model. Task-specific heads for question answering, textual entailment

4



2.1 Natural Language Generation

Figure 2.1: (A) An unrolled RNN solving a translation task. Note how the information
from the earlier inputs is overloaded with information from the newer inputs.
(B) An attention mechanism working on the same inputs.

or token- and sentence- level classification tasks can then be appended to the end of the
architecture [73] [21] [58].

Supplementing the encoder is the decoder stack for causal language modelling, were
we generate sentences auto-regressively, by always predict the next token given the pre-
viously predicted ones. Since during training we pass in the whole sentence teaching the
model to always predict the next token in the input, also known as teacher forcing, we
have to make sure to block information flow from later to earlier tokens, i.e. right-to-left.
This can be achieved by using a causal attention mask, which zeroes out every cell above
the attentionmatrix’s diagonal as depicted in fig. 2.2. After multiple such causally masked
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2 Background

transformer blocks, appending a linear layer that projects every token representation to
the size of the vocabulary, and applying a softmax function, i.e. a classification layer or
language modelling head, yields the auto-regressive decoder [78] [79] [7].

Combining these two components we come back to the earliest architectures using
attention, the encoder-decoder used to solve the classical sequence-to-sequence task of
machine translation [2] [100]. In this framework the encoder encodes a source sequence
(𝑥1, . . . , 𝑥𝑛) into a latent representation (𝑧1, . . . , 𝑧𝑛), and the decoder uses the latents while
auto-regressively generating the target sequence (𝑦1, . . . , 𝑦𝑚). In the basic setting, the en-
coder section of the architecture is structured just as the bidirectional stack of transformer
blocks described above. The decoder is also designed as in the previous paragraph, with
one exception, namely that between each causally masked self-attention layer and the
succeeding feed-forward layer, an additional cross-attention layer is inserted which takes
the encoders outputs as keys and values to the queries of the previous decoder layer [100]
[51] [81] (see fig. 2.2).

Pretraining & Finetuning

Such deep models have great flexibility in modelling language, however with great rep-
resentational capacity comes the risk of overfitting on small datasets. Thus, a common
approach is to pretrain largemodels on large enough datasets, and then finetune themodel
on the particular downstream task [76].

Unfortunately for natural language processing human-annotation is costly, and it is
often hard to come by large enough labeled datasets to serve as supervised pretraining
signal. There is however an abundance of unlabeled text data available on the web to any-
one willing to scrape and collect it in a corpus. A few examples include the BookCorpus
[118], a large collection of free novel books written by unpublished authors or OpenWeb-
Text [28] which was used to train RoBerta [58], and is tself an open-source recreation of
WebText which was used to train GPT-2 [79]. To get an idea of the size, WebText, for
example, consists of 40GB of text from 8 million documents scraped from the internet,
but an even larger example is the corpus used to train T5 [81], named C4, which con-
sists of 750GB of text derived from the Common Crawl Corpus. Between such corpora
the language can often vary significantly, e.g. domain-specific corpora often involve more
technical terms while social media texts tends to be more noisy containing spelling errors,
abbreviations, and emojis, etc..

To serve as pretraining datasets however a pretraining task, that doesn’t rely on an-
notated examples, has to be derived first. Hence, pretraining for natural language pro-
cessing typically is done with self-supervised learning tasks, where pseudo-labels, are
derived from the data to serve as training signal [69] [78] [21] [51]. A good pretraining
task should have high data utilization and be similar to the downstream task.

Two common pretraining tasks for pretraining decoders and encoders are Causal Lan-
guage Modelling (CLM) and Masked Language Modelling (MLM) respectively. In Causal
Language Modelling (𝐿𝐶𝐿𝑀 in Eq. 2.2a) the task is to predict the next token 𝑥𝑖 given the
preceding tokens 𝑥 𝑗<𝑖 , which mirrors the auto-regressive decoding typically employed for
text generation, and is therefore well suited for pretraining causal language models [78].
In Masked Language Modelling (𝐿𝑀𝐿𝑀 in Eq. 2.2b), out of the 𝑁 tokens in the sequence, a
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2.1 Natural Language Generation

Figure 2.2: (A) The original encoder-decoder transformer. (B) ist the encoder, (C) the de-
coder. (Adapted from [100])
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2 Background

subset are masked out at random, and the model has to predict the missing tokens from
the remaining ones. Masked LanguageModelling typically serves as a pretraining task for
encoders like BERT [21] or RoBERTa [58], and can be well adapted to token-level classi-
fication tasks, like pos-tagging for example, sequence-level classification, like sentiment
analysis or sentence entailment, or extractive question answering, where a span of the
input has to be marked as containing the answer to a given question.

𝐿𝐶𝐿𝑀 = − 1
𝑁

𝑁∑︁
𝑖=1

logP(𝑥𝑖 | 𝑥 𝑗<𝑖), Causal Language Modelling

(2.2a)

𝐿𝑀𝐿𝑀 = − 1
𝑁

𝑁∑︁
𝑖 : 𝑥𝑖 masked

logP(𝑥𝑖 | {𝑥 𝑗 : 𝑥 𝑗 ¬masked}), Masked Language Modelling

(2.2b)

Furthermore, there also exist pretraining tasks for encoder-decoder models, such as
Sequence-to-Sequence Denoising [51], where the input text is corrupted by a noising func-
tion and has to be reconstructed by the model. Possible noising functions are for example
random masking and deleting or permuting of tokens or spans. These tasks, typically
serve as good preparation for downstream tasks like summarization, translation or open-
ended question answering [51] [81].

To finetune the resulting models for a downstream task, we then initialize the architec-
ture with the pretrained weights and train the model with a task-specific loss for a few
epochs. This will bring all model weights closer to the ideal value for the task [75], includ-
ing the embedding layer, but predominantly affect higher layers [116] [66]. In this way
the initialization with the pretrained model weights, provides adequate regularization for
the smaller dataset [24]. Besides warm-starting the architecture as described, these pre-
trained models can also be used in a zero- or few-shot setting, by designing task specific
prompts [59].

2.2 Knowledge Graphs & Graph Neural Nets

In this section we want to discuss how to use knowledge graphs to represent knowl-
edge in a structured fashion, and how to process such networked data with graph neural
networks. We also try to motivate such relational inductive biases from a standpoint of
generalization.

2.2.1 Representing Knowledge Graphically

Even if our experience of complex systems as compositions of entities and their inter-
actions may not exist in the noumenal realm, [45] it is at least a strong (and arguably
useful) human bias [3]. Such a structure also makes it easier to continually learn new
knowledge since new concepts can easily be fitted into an existing network of knowledge

8



2.2 Knowledge Graphs & Graph Neural Nets

and efficiently retrieved by traversing the existing categories in such a semantic network
[1].

The first step in inducing such a relational structure into a machine learning model,
however, is to represent the input in a relational fashion. This means structuring the
background knowledge in the form of a graph. In the case, where the target domain is
natural language, such graphs are commonly referred to asKnowledge Graphs (KG). These
are structured representation of facts consisting of entities, representing real-world or ab-
stract objects, and relationships between them, which tend to belong to a predefined and
therefore closed set of relationship types 𝐴 [23]. A typical formalization goes as follows:
A knowledge graph is an attributed graph 𝐺 = (𝑉 , 𝐸,𝐴) with nodes 𝑉 representing en-
tities and edges 𝐸 ⊂ 𝑉 × 𝐴 × 𝑉 representing the relationships between two connected
concepts.

For instance (Moskva, instance of, Shipwreck) and (Shipwreck, subclass of, disaster re-
mains), are examples of such triplets. Here “Moskva” refers to a real-world object, “Ship-
wreck” refers to an abstract concepts, just as "disaster remains" does, and "instance..." and
"subclass of" represent their interactions. With this example we can also see, how knowl-
edge graph triplets can be connected to move between different layers of abstraction, in
this case the resulting path is “Moskva” → “Shipwreck” → “Disaster Remains”, which
connects the concept “Moskva” on the lowest level of abstraction to concept of “Disaster
Remains” on the highest.

Interestingly enough, there is new research emerging on Temporal Knowledge Graphs,
which extend the traditional edge triplets, by introducing an additional temporal dimen-
sion. For example Know-Evolve and [99] HyTE [20] proposed frameworks for dynamic
representation learning of temporal KG entities. We highlight, such research here since
we believe that it aligns nicely with the mentioned analogy to evolving memory in hu-
mans.

The process of constructing a knowledge graph depends a lot on the envisioned ap-
plication, and the source of information, e.g. human collaboration, unstructured text or
structured formats, like relational databases, web pages, JSON or XML files [37]. In the
case where the graph is to be derived from unstructured text, it is common to construct
a so called automatic Information Extraction (IE) pipeline. These pipelines also leverage
machine learning components more and more, and there is even work on extracting KG
triplets from transformer attention matrices [105]. Nevertheless, the most common ap-
proach is to use a pipeline consisting of the three main components of Named Entity
Recognition (NER), Entity Linking (EL) and Relation Extraction (RE). More specifically, the
NER system tags entities in the text, and depending on whether a partial KG already ex-
ists or not, the extracted entities then have to be matched to the already existing ones
by the EL stage. Finally the RE system can identify short spans of text that describe the
relationship between the identified entities [37].

2.2.2 Relational Reasoning with Graph Neural Nets

Coming back to combinatorial generalization, not only do we rely on a relational rep-
resentation when reasoning, we also tend to compose these familiar concepts to solve
novel tasks [3] and generalize to new domains by drawing analogies between our fa-
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2 Background

miliar structures and unfamiliar environments [36]. Therefore it has been implied that
we need computational models that are just as inherently relational [96]. One possible
manifestation of which is the so called Graph Neural Network (GNN) [3].
Where the complex relationships and inter-dependencies in graphs represent chal-

lenges to other deep learning architectures, that presuppose the data can be meaning-
fully represented on one or two-dimensional grids, e.g. images and text, Graph Neural
Networks are a class of deep learning models equipped to deal with such relational data,
by the use of a Message Passing mechanism [6].

Message passing here refers to a general framework for graph representation learning.
It generally describes a series of operation to repeatedly update information on nodes
in a graph. In the context of deep learning this means repeatedly updating the vector
representationsℎ𝑛𝑡 , 𝑛 ∈ |𝑉 | associatedwith each node𝑛 at time 𝑡 to the next representation
ℎ𝑛𝑡+1 at time 𝑡 + 1. The update rule for a single node 𝑛 with neighborhood N(𝑛) is

ℎ𝑛𝑡+1 = 𝑞(ℎ𝑛𝑡 ,
⊗

(𝑛,𝑎,𝑚)∈N (𝑛)
𝑓𝑡 (ℎ𝑛𝑡 , 𝑎, ℎ𝑚𝑡 )) (2.3)

More specifically (2.3) describes the following steps:

1. Compute amessage 𝑓𝑡 (ℎ𝑛𝑡 , 𝑘, ℎ
𝑚 𝑗

𝑡 ) for each neighbor𝑚 of the central node. The mes-
sage can depend on the neighbors vector representation ℎ𝑚𝑡 , the central node’s rep-
resentation ℎ𝑛𝑡 , and possibly the edge attribute 𝑎 connecting them (if edge features
exist).

2. Aggregate the messages of all neighbors, with a permutation invariant function
⊗

,
e.g. sum, mean, min or max. The invariance is important since we don’t want the
aggregate to change depending on the order in which we enumerate the messages,
since the underlying graph would be the same nonetheless.

3. Compute the new representation ℎ𝑛𝑡+1 from the aggregated messages, and the old
representation ℎ𝑛𝑡 using a (preferably) non-linear activation function 𝑞. Then repeat
the three steps for all nodes 𝑛 ∈ 𝑉 and all time steps 𝑡 ∈ 1, ...,𝑇 .

Performing message passing for multiple rounds increases the size of the context, that
went into the final node representation by one step towards its most distant neighbor each
round. This means that after a certain number of rounds the set of nodes that contribute
to the the final representation of the center node becomes 𝑉 [68].

2.3 Information Retrieval

The first stage in a retriever-reader system is the Information Retrieval (IR) engine, aimed
at identifying a subset of documents from a larger collection to satisfy an information
need. This engine can be based on sparse/lexical or dense retrieval mechanisms. While
sparse representations, build document vectors containing statistics about every word in
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its components, dense representations compress the semantic information of the docu-
ment into a dense, i.e. low-dimension (learned) embedding vector. A good introduction
to classical information retrieval can be found in [63].

2.3.1 Sparse Retrieval

There exist four models of the sparse approach, the boolean, vector space, probabilistic and
language model [117]. In the boolean model every document is represented by a binary
array of dummy-variables, with entry 𝑖 storing whether term 𝑖 occurs in the document.
This means that the resulting document embedding has one dimension for every word in
the vocabulary. With these arrays it becomes possible to query whether certain logical
combinations of terms appear within the document. The document "Bass describes a low-
frequency sound" contains the terms “bass” AND NOT “instrument” for example. Such
queries can be easily answered with the aforementioned binary vectors by bitwise logical
operations between them.

Nevertheless, we usually want retrieved documents to be ranked, which the boolean
approach unfortunately does not provide out of the box. We hence turn to vector space
models where the document vectors are modified so as to contain the TF-IDF weights of
the terms. This statistic stands for “term-frequency times inverse document frequency”
and intends to reflect how important a word is to a document relative to the other docu-
ments in the collection [82]. The documents can then be ranked by computing the cosine
similarity (2.4) between the TF-IDF vector of the query document with the document
vector.

𝑠𝑖𝑚(a, b) = cos ∠(a, b) = ab
∥a∥∥b∥ (2.4)

A different approach from ranking by cosine similarity is to rank documents by their
probability of being relevant to the query, as it is done in the probabilistic class of sparse
retrieval engines. These generally involve the same statistics, as the vector space mod-
els, like term-frequency, document length and inverse document frequency, but cast the
problem in terms of probability theory. One of the most successful retrieval systems em-
pirically, BM25 [44], is such a model.

Lastly, the language modeling approach to IR builds a probabilistic language model
from each document, and ranks the documents based on the probability of the model
generating the query [63].

2.3.2 Dense Retrieval

Sparse retrieval however has several issues. First there is the problem of the lexical gap,
i.e. not knowing about certain words. Moreover, all words have the same distance from
each other, since every term has its own dimension, for example synonyms like: "exam-
ple", "sample" and "exemplar" have representations just as far apart as antonyms. The
third weakness of sparse retrieval models is that they treat documents as bags of words,
i.e. word order is not preserved. For example, the documents "Oceania started the war
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against Eurasia" and "Eurasia started the war against Oceania" both have the same sparse
representation.

Thus, the idea of dense retrieval is to find an embedding 𝑒𝑚 : D → R𝑛 , with D repre-
senting the corpus and𝑛 << |V|, such that semantically similar words are closer together
in the embedding space 𝑒𝑚(V). To retrieve the top-𝑘 documents to a query, one can
efficiently compute the 𝑘 nearest neighbors to 𝑒𝑚(𝑞𝑢𝑒𝑟𝑦), using a vector database like
Pinecone1 for example. With this approach dealing with multiple modalities like text,
images, and videos alongside each other becomes possible as well.

A first approach to dense retrieval that doesn’t require learning an embedding function,
is to simply average theword embeddings from all words contained in the document using
Word2Vec [69] or GloVe [72]. This does not however preserve word-order, so another
(naive) solution is to use the contextualized word embeddings of a pretrained encoder
like BERT, i.e. to average the encoder outputs that result from feeding in the document
as input. This happens to perform even worse however, so what is typically employed
is a so-called Bi-Encoder [83, 46]. These models are trained by encoding pairs of queries
and documents separately and comparing the resulting encodings using some similarity
based or contrastive loss (e.g. cosine-similarity, triplet loss, etc.) [83, 50, 77].

Since the encoder however doesn’t see queries and documents together during train-
ing, the resulting embedding spaces can have a bad local and/or global structure. There-
fore Cross-Encoders that receive the query and documents together, and can therefore
model token-level interaction between the two, typically have a better accuracy, albeit
being more slow to train and infer [83, 98] due to the quadratic cost in the attention
layer becoming prohibitive when encoding query and document together, which further
motivates the development of efficient transformers.

Combinations of cross-encoders and bi-encoders have also been proposed, where the
cross-encoder is used to mine better examples for the bi-encoder [97], and there also exist
a few unsupervised methods, although they still lack behind the supervised approaches
[25].

1https://www.pinecone.io/
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Wenowwant to briefly discuss relatedworks in the area of grounding languagemodels on
external knowledge. For a more in-depth literature review we refer the reader to [112, 18,
117, 62]. To tackle this task, many of the architectures proposed follow a retriever-reader
framework, where an external knowledge base is connected to a reading comprehension
component, which is then connected to a generative language model. Generally speak-
ing, we observe that there are two main choices for the external knowledge source here:
Unstructured document collections and knowledge graphs. However, grounding on ad-
ditional modalities, like tables and images is also a problem of interest in the knowledge
grounding domain [11, 114]. Moreover, we can observe that how the external knowledge
is represented influences the design of the reader component significantly, which is why
we divide the existing works along this line.

As an aside, there also exist approaches for internal i.e. parametric grounding of lan-
guage models, thereby deviating from the retriever-reader paradigm. For example [31]
internalize the knowledge from Atomic [87] and ConceptNet [92] by finetuning GPT-2
on textual representations of knowledge triplets therein. However, to solve the stale-
memorization problem eluded to in the introduction, the models knowledge needs to be
easily updateable, which we argued is difficult once injected into the models’ parameters
[39]. The same goes for any approach that only scales up language models further [7, 80,
91, 13], without addressing the problem of continual knowledge learning. On this topic,
we want to note that some promising methods to resolve that issue are emerging [8, 39].

3.1 Document-Grounded NLG

Starting with document-grounded NLG, where the knowledge base consists of a collec-
tion of documents, like passages from Wikipedia [22], search engine results [70, 48] or
online news [34] among others. This setting allows for retrievers based on semantic sim-
ilarity, like sparse [22] or dense document models [52], active web search [70, 48], by
generating natural language queries or reinforcement learning in a browser-like environ-
ment or leveraging relationships between retrieved documents for re-ranking with graph
neural nets. [111]

The reader component is then often implemented via a sequence-to-sequence model.
However many models, especially in the domain of question-answering [117], only ex-
tract spans of text from the knowledge base instead of generating new natural and fluent
responses. This makes it harder to synthesize knowledge from multiple sources however,
so we will focus on works deploying generative readers.

Typical applications for document-grounded natural language generation are question-
answering [117], dialogue modelling [62] and summarization [9, 106, 54]. An example in
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the domain of question answering is S-Net [94], which uses a bidirectional gated recurent
unit as decoder that receives the question and the outputs of an extractive reader, i.e.
the relevant spans of text, likely to contain the answer. More recent question-answering
models though, have started to adopt pretrained sequence-to-sequencemodels, like BART
and T5, as readers, as in RAG [52] and the Fusion-in-Decoder (FID) [38].

In dialogue modelling we have for examples MTask [27], that uses an encoder based on
a Memory Network [107], which uses an associative memory for retrieving encoded facts
that might be relevant for the conversation. Other examples include [22, 65, 47, 115], that
all encode a set of passages and then decode into natural language using recurrent neural
networks or transformers, conditioned on the dialogue history aswell. A final noteworthy
example is BlenderBot 2.01 that combines active web search [48] with a dense retrieval
over the dialogue history [108].

3.2 Graph-Grounded NLG

We now turn to the second approach to knowledge grounded NLG, the knowledge-graph-
augmented generation models. Many architectures in this vein will choose either Con-
ceptNet [92] and/or Atomic [87] as their external knowledge graph. Some works also use
knowledge graphs custom built for their target domain [58, 106, 12]. Once acquired, to
retrieve from a knowledge graph, the procedure is to first identify entities in the query
and match them to the entities in the graph in a step referred to as entity linking. Then,
a sub-graph is spanned composed of the 𝑘-hop neighbors of the identified concepts. In-
creasing 𝑘 increases the amount of information retrieved, but too big of a 𝑘 typically leads
to irrelevant information being retrieved alongside the relevant concepts, which will lead
to noisy inputs to the model and high computational cost. Therefore a common solution
is to have a reasonably high 𝑘 of about 3-5 but to then deploy an intermediate re-ranking
stage before feeding the sub-graph to the model [113, 109, 43]. These ranking schemes
typically involve assigning scores to the retrieved nodes using an attention-mechanism
and possibly deactivating those, that fall beneath a predefined threshold.

The retrieved and possibly weighted sub-graphs will then typically be encoded into a
latent representation. This can either be done by using pretrained entity embeddings like
ConceptNet Numberbatch [92], by training custom word embeddings using a network
representation learning framework like TransE [4] as was done in [57], or by a learned
embedding layer followed by a graph neural network [42, 12, 106, 53]. These represen-
tations will then have to be injected into a decoder. For this, there are three possible
choices as documented by [17]. Either the concepts are concatenated to the input of the
decoder [115, 58, 42], injected in the middle of the architecture, typically by transform-
ing the decoder hidden representations by some attention-weighted combination of the
encoder outputs [113, 12, 59], or they are incorporated at the output of the decoder [53,
113, 42], which typically involves a copy or pointing mechanism [30, 89].

1https://parl.ai/projects/blenderbot2/
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Figure 4.1: The Retriever-Reader Blueprint: A knowledge base is queried with the dialogue
history via the retrieval engine, then a knowledge encoder prepares the inputs
for the response generator.

We now introduce the Retriever-Reader Blueprint, a general framework for injecting
external knowledge into neural dialoguemodels. As the name suggest, the system has two
components: the retriever (1) and the reader (2). The retriever is responsible for supplying
relevant knowledge, and the reader is required to synthesize the retrieved knowledge into
a coherent response.

A general retriever itself consists of two parts: the knowledge base (1.A) and the retrieval
engine (1.B). The knowledge base Γ = {𝑠1, . . . , 𝑠𝑛} is made up of many individual sources.
These could be, for example, texts, images, tables or other modalities, and the collection
could have some additional structure, like links between documents as in scientific publi-
cations and their citation graphs or tweets and their quote-retweets. The retrieval engine
Ret : V∗ → Γ𝑘 takes the dialogue history 𝑑 = (𝑤1, . . . ,𝑤𝑚) ∈ V∗ and retrieves the 𝑘
most relevant sources 𝑠 = (𝑠1, . . . , 𝑠𝑘) ∈ Γ𝑘 from the knowledge base (Eq. 4.3).

The reader consists of two subsystems as well: the knowledge encoder (2.A) and the
response generator (2.B). The encoder Enc : V∗ × Γ𝑘 → R𝑑 takes the relevant sources
𝑠 , and possibly the dialog history 𝑑 and encodes both into a latent representation z =

(𝑧1, . . . , 𝑧𝑒) ∈ R𝑒×𝑑 usable by the response generator (Eq. 4.2). How this component is
implemented will heavily depend on the retriever component, e.g. a retriever that pro-
vides knowledge in a networked format typically implies a graph neural network for
the encoder, whereas a sequence model is usually better suited to deal with documents.
Finally, given z and the additional context 𝑑 from the dialogue, the response generator
Gen : V∗ × R𝑒×𝑑 → V∗, that is typically realized by a generative language model, gives
the response 𝑟 in natural language (Eq. 4.1)

15



4 Methodology

𝑟 = Gen(𝑑, z) (4.1)
z = Enc(𝑑, 𝑠) (4.2)
𝑠 = Ret(𝑑, Γ) (4.3)

4.1 Retrieval Engine

Both our architectures adapt the Retriever-Reader Blueprint to the Wizard of Wikipedia
task explained in Chapter 5. Therefore, our retriever’s external knowledge base is a col-
lection of 1365 crowd-sourced Wikipedia articles. These articles cover a diverse range of
topics such as commuting, Gouda cheese, music festivals, podcasts, bowling and Arnold
Schwarzenegger [22].

Connected to this collection is a sparse retrieval engine based on [10], that is able to
retrieve the first paragraphs of the seven articles most relevant to the last two turns of
dialogue. It consists of an inverted index lookup with a TF-IDF based vector model, and
takes into account bi-gram features. While this part of the model is in principle learnable,
we have used the passages collected with the original dataset1, in order to be able to better
compare our models to the chosen baselines.

Figure 4.2: The information extraction pipeline used in this work. Dotted lines represent
concepts not found in the target ontology. Example and visualization adapted
from [37].

Furthermore, while the text-based encoder can directly work on the retrieved passages,
for the graph-based variant we additionally have to transform the text into a knowledge
graph. To this end we built the information extraction pipeline depicted in fig. 4.2. The
first stage is to resolve co-references in the text. This means that we identify all ex-
pressions, typically pronouns, that refer to the same entity. To accomplish this step we
leverage the nerualcoref project2 which is based on [14]. Next, we extract all entities that
exist in our target ontolgy, in this case WikiData3, the free and collaborative knowledge
base, derived fromWikipedia. In this ontology each Wikipedia article is represented by a
uniquely identifiable item, with uniquely identifiable properties connecting them, often

1http://parl.ai/downloads/wizard_of_wikipedia/wizard_of_wikipedia.tgz
2https://github.com/huggingface/neuralcoref
3https://www.wikidata.org/wiki/Wikidata:Main_Page
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derived from the hyperlinks between articles. Linking entities identified in text to Wiki-
Data items is also sometimes referred to as Wikification, and we have used the Wikifier
API [5] for this step. The final stage of the information extraction procedure is to infer
the relationships between the concepts mentioned in the passage. To this end we use the
OpenNRE project [32].

4.2 Text Encoder

For the text-groundedmodel, we deploy a pretrained BERTmodel as our encoder [21], this
means the architecture is a stack of 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 consecutive transformer encoder blocks, each
one using gelu activations and a hidden size of 𝑑𝑒𝑛𝑐𝑜𝑑𝑒𝑟 . The final latent representation z
is derived as follows:

z =𝑊𝑝𝑟𝑜 𝑗h𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ R𝑘×𝑑 (4.4)
h𝑙 = BERT-Block(h𝑙−1) ∀𝑙 ∈ {1, . . . , 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 }, (4.5)
h0

= 𝑠𝑊𝑒 +𝑊𝑝 (4.6)

After the final layer h𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 we project the encoder outputs to the hidden dimension of
the generator with a linear projection𝑊𝑝𝑟𝑜 𝑗 . 𝑊𝑒 and𝑊𝑝 refer to embedding and postion
encoding matrices.

BERT’s vocabulary was obtained by a WordPiece tokenization scheme and has a total
size of 30,000 tokens [21]. Themodel was pretrainedwithmasked languagemodelling and
next sentence prediction on BooksCorpus [118] and English Wikipedia, which contain
around 800M and 2,500M words respectively.

More specifically, we initialized our instance of the base model with the checkpoint
“bert-base-cased” from the Huggingface Hub4, which implies 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 12, 𝑑𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 718,
#Heads = 16 and #Parameters = 110𝑀 . To obtain the checkpoint the authors had to train
on 16 TPU chips for 4 days in total, with a batch size of 128,000 tokens/batch.

4.3 Graph Encoder

For the graph-based variant, our encoder takes in a knowledge graph. In order to derive
vector-valued node and edge features for the GNN, we first tokenize the extracted spans
of text corresponding to the entities and relationships in the KG using the decoder’s to-
kenizer. We then share an embedding layer𝑊 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝑒 (without the positional encoding)
with the decoder. This possibly leads to multiple tokens per node or edge, but since we
require one feature vector for each node and edge, we average all embedding vectors cor-
responding to one node or edge. This has the added benefit of aligning the representations
of the encoder with the decoder, thereby simplifies the task of the encoder (see section
5.3.1).

4https://huggingface.co/bert-base-cased
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Our graph-encoder is based on a 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 -layer graph attention (GAT) network [101].
The GAT operation is a message passing variant that enables each node to attend to it’s
neighbors with differing intensity. Since we also have edge features, the embeddings of
the extracted relationships, to consider, the node update function becomes:

z =𝑊𝑝𝑟𝑜 𝑗h𝐿𝑚 ∈ R|𝑉 |×𝑑 (4.7)
h𝑙𝑚 = 𝑎𝑚,𝑚𝑊 h𝑙−1𝑚 +

∑︁
𝑛∈N (𝑚)

𝛼𝑚,𝑛𝑊 h𝑙−1𝑚 , ∀𝑚 ∈ 𝑉 ,∀𝑙 ∈ {1, . . . , 𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 }, (4.8)

𝛼𝑚,𝑛 =
exp(LeakyReLU(a𝑇 [𝑊 h𝑡−1𝑚 | |𝑊 h𝑙−1𝑛 | |𝑊𝑒e𝑚,𝑛])∑

𝑘∈N (𝑚)∪𝑚 exp(LeakyReLU(a𝑇 [𝑊 h𝑙−1𝑚 | |𝑊 h𝑙−1
𝑘
| |𝑊𝑒e𝑚,𝑘])

(4.9)

ℎ0 = 𝑠𝑊
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
𝑒 (4.10)

Here𝑊 is a weight matrix, a is a weight vector and e𝑚,𝑛 represents the edge feature on
the edge connecting nodes𝑚 and 𝑛. h𝑚𝑡 signifies the vector representation of node𝑚 at
layer 𝑡 , finally 𝛼𝑚,𝑛 is the attention coefficient between node𝑚 and it’s neighbor 𝑛.
We deploy two layers of this mechanism (𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 2) and use a hidden dimension of

𝑑𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 718 throughout the network. Afterwards we project the node features to the
hidden dimension of the decoder.

4.4 Response Generator

The response generator, is the same for both encoder variants, namely a modified version
of a pretrained DialoGPT [113]. Arcitecture-wise DialoGPT consists of a stack of 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
consecutive transformer decoder blocks, where each attention-layer is equipped with a
causal attention mask. After the 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 layers follows a causal language modelling
head. Furthermore, to connect the decoder to the encoder, we insert randomly initialized
cross-attention layers between the masked self-attention and feed-forward layers in each
block. Furthermore warm-starting encoder-decoder architectures in this way was shown
to be effective in [85].

𝑜 = softmax(h𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑊𝑒) (4.11)
h𝑙 = ModifiedDecoderBlock(h𝑙−1, z) ∀𝑙 ∈ {1, . . . , 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 } (4.12)
h0 = 𝑑𝑊𝑒 +𝑊𝑝 (4.13)

The decoder uses byte-pair tokenization for the vocabulary. The model was originally
pretrained on a dataset of approximately 147M dialogues extracted from comment chains
scraped from Reddit. The training task was designed as causal language modelling on the
concatenation of all dialog turns, and the authors used a modified initialization scheme
that accounts for depth [113].

We use the checkpoint “microsoft/DialoGPT-medium” from the Huggingface Hub, cor-
responding to a stack of 23 transformer decoder blocks, i.e. 𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = 23, a hidden di-
mension 𝑑 of 1024 and a total of 345M parameters, while the cross-attention layers add

18



4.4 Response Generator

Figure 4.3: The three neural components used in our model. (Left) the text-based en-
coder. (Middle) the Graph Attention Network. (Right) DialoGPT with the
added cross-attention layers.

an additional 110M. For our finetuning task the decoder receives the last utterance of the
dialogue.
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5.1 Dataset and Metrics

5.1.1 Dataset

We compare the two architectures on the Wizard of Wikipedia dataset, a large collection
of 22,311 crowd-sourced dialogues, each of which is directly grounded on knowledge
retrieved from Wikipedia. In each dialog, two participants engage in chit-chat about a
topic that is chosen in advance. One of the two, plays the role of a knowledgeable expert,
referred to as the wizard, while the other talks to the wizard freely [22].

For every turn the wizard selects one sentence from a set of paragraphs retrieved by the
retrieval system described in section 4.1. So overall the conversation flow is as follows:

1. The two participants receive a topic chosen from a predefined pool. Our model
ignores this information.

2. The IR engine retrieves the first paragraph of the seven most relevant Wikipedia
articles relating to the topic and the previous two turns of dialogue.

3. The wizard chooses a single relevant sentence from the retrieved passages, and syn-
thesizes a response.

These steps are repeated until the conversation ends. Given this setup we have con-
structed the model inputs so that every sample consists of the last utterance, which is
passed as a prompt to the generator. The sentence that was selected by the wizard, or the
derived knowledge graph thereof, is passed to the encoder. An exemplary conversation
is depicted in Fig. 5.1

5.1.2 Metrics

Following the original paper introducing the dataset, we evaluate our model using per-
plexity and the unigram F1 scores between the predicted and generated responses [22]. In
addition to these, we use bag-of-words embedding-based metrics as suggested by [115].
This is because when only comparing word-overlap between predicted and target sen-
tences, the resulting metrics correlate only very weakly with human judgements [56].
Embedding-based metrics instead combine the word-embeddings of prediction and tar-
get in some fashion to derive an embedding of the sentence, and these aggregates are then
compared.

The additional embedding-based metrics we employ are a Greedy Matching and the
Embedding Average and Vector Extrema. The first of which is computed by going through
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Figure 5.1: An exemplary conversation from the Wizard Of Wikipedia validation set. The
retrieved passage chosen by the wizard is in solid lines.

the target sentences’ word embeddings and greedily matching them to the predictions’
word embeddings [86]. This approach favours prediction-target pairs where there is over-
lap between key words [56]. The embedding average computes the sentence embeddings
by averaging all word vectors in the sentences. The results are compared using cosine-
similarity. Finally the vector extrema construct the sentence embedding dimension by
dimension, such that, for each component of the sentence vector the maximum value
over all word embeddings in the sentence is chosen. The alignment is again compared by
cosine-similarity. This may help to reduce the influence of common words [56].

5.2 Experimental Setup

To implement the two models, we depend on the PyTorch1, Huggingface Transformers2
and PyTorch Geometric3 Libraries. We also implement some metrics with the help of
Torchmetrics4 and GenSim5. Furthermore we put our data under version control using
DVC6, and manage all model configurations with Hydra7. For experiment tracking we
use Weights & Biases8. We train each model on an NVIDIA Titan RTX, on a batch size of
16 sequences per batch and use AdamW [60], with a learning rate of 5 × 10−5, an Adam
epsilon of 10−8 and no weight decay or warmup. During evaluation we decode a whole

1https://pytorch.org/
2https://huggingface.co/docs/transformers/index
3https://pytorch-geometric.readthedocs.io/en/latest/
4https://torchmetrics.readthedocs.io/en/latest/
5https://radimrehurek.com/gensim/
6https://dvc.org/
7https://hydra.cc/
8https://wandb.ai/home
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batch of prompts (padded on the left) and encoder inputs using a simple greedy decoding,
with a hard cutoff after 1000 tokens.

We build all knowledge graphs for the graph-based model upfront as shown in Algo-
rithm 1.
Algorithm 1: Knowledge Graph Construction

1 Initialize:
2 turns← {turn | turn ∈ Dialog,Dialog ∈ Dataset}
3 Do in parallel:
4 processTurns← subset(turns, processId)
5 result← ∅
6 for (apprentice, wizard, checkedSentence) ∈ processTurns do
7 checkedSentence← resolveCoreferences(checkedSentence)
8 entities← wikify(checkedSentence)
9 relations← ∅

10 for (source, target) ∈ Permutations(entities) do
11 relations← relations ∪ extractRelations(source, target)
12 result← result ∪ (apprentice, wizard, entities, relations)

13 return results

5.3 Results

We will now discuss the results obtained on the wizard of wikipedia task. First, we an-
swer whether the document or graph-based approach turned out to be superior, for our
application. Then, we will compare our models to a set of baselines.

5.3.1 Comparing Graph-to-Seq and Seq-to-Seq

Tab. 5.1 shows that the two model variants perform comparably. Especially, we do not see
an out-performance arising from the relational representation of the background knowl-
edge. Furthermore, we compare our two models to a DialoGPT-only variant, that has no
access to the background knowledge, which already compares favorably to the two mod-
els. Next, we go into possible reasons for this and we compare the two variants on aspects
relating to the ease of training.

Knowledge Graph Construction

Regarding ease of implementation, the first thingwemight note is that the construction of
knowledge graphs is accompanied by considerable engineering effort, that is not required
when working on a document collection by itself. For the small passages we transformed
into knowledge graphs, the transformation of the training split took 2 full days, even with
50 CPUs working in parallel. If the background passages became larger, our approach
would almost certainly become infeasible, due to the factorial scaling in Algorithm 1 aris-
ing from the loop over all permutations of identified entities. We argue that therefore, if
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5.3 Results

Model PPL F1 Avg. Greedy Extrema
DialoGPT 16.0 17.9 – – –
BERT2DialoGPT 14.3 16.0 97.7 67.9 80.8
GAT2DialoGPT 17.4 16.7 97.7 68.0 80.7

Table 5.1: Evaluation Results on the Wizard of Wikipedia seen-topics split.
GAT2DialoGPT and BERT2DialoGPT, refer to the graph- and text-based
model variants respectively. DialoGPT refers to the generator only-variant
that has no access to the background knowledge. The scores of which are
taken from [115].

the background knowledge is not inherently graphical, e.g. citation graphs, the relative
ease of compiling document collections favors the sequence-to-sequence approach. Es-
pecially since the transformer-based architectures already perform well on unstructured
text.

Effects of the Relational Representation of Knowledge

As we noted, we don’t observe any benefit from representing the knowledge inherent in
the text in a graphical fashion. We assume that this is since bidirectional attention can
already be interpreted as receiving a fully connected graph between all tokens in a given
input text. The model can then decide itself which relationships are important for the
task at hand, instead of humans having to decide on that upfront. The hypothesis is that
the capacity for relational reasoning in transformers is already strong enough. This is
also underpinned by the fact that many of the best performing entity recognition and es-
pecially relation extraction models, are based on transformers [88, 116], and that one can
even extract knowledge graphs from the attention matrices of bidirectional transformer
models [105].

Semantic Misalignment

Finally, as we can see the model without access to the background knowledge (DialoGPT)
performs just as well as our implementations that read the retrieved passages. We hypoth-
esis that this is since the encoder and decoder hidden representations are not semantically
aligned, a problem which has been observed in other works as well [53]. A possible intu-
ition is that, aligning these representations requires the model to go through a high-loss
region, whereas simply ignoring the encoder outputs is easier to learn. This hypothesis
is also supported by Fig. 5.2, which shows that the highest attention scores tend to lie on
the [CLS] and [SEP] tokens of the encoder inputs. A second supporting fact is that, when
replacing the encoder and decoder with a pretrained sequence-to-sequence model, BART
in this case, the F1 Score rises significantly and the attention tends to cluster around the
matrix diagonal (see Fig. 5.2). This is another reason to prefer the text-based knowledge
representation, since doing so allows the use of pretrained sequence-to-sequence models
which do not suffer from the misalignment problem.
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5 Experiments

Figure 5.2: Visualizations of the cross attention matrices of BERT2DialoGPT (top), taken
from the eleventh layer, heads twelve to fifteen. (Bottom left) F1 score reached
by the BART-variant next to the scores of our two variants. (Bottom right)
an attention matrix from the BART-variant, taken from the first layer and the
ninth attention head.
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5.3 Results

5.3.2 Comparing to the State-of-the-Art

Next, we compare our models to state-of-the-art methods for knowledge grounded dia-
logue. As baselines we have chosen several works from the literature for which, perfor-
mance scores on the wizard of wikipedia dataset were published in [115]. First, we have
the Transformer Memory Network (TMN) by [22], which was introduced along with the
dataset. This model first encodes the dialogue history and each retrieved passage inde-
pendently with a transformer encoder. A standard dot-product attention between the
encoded dialogue history and passages, then ranks the passages. The passage that re-
ceived the highest attention is then concatenated to the encoding of the dialogue, and
passed to a transformer decoder to generate the final sentence. Next, we compare to the
Incremental Transformer with Deliberation Decoder (ITDD) by [55]. This model also en-
codes the retrieved passages independently with a transformer encoder, but instead of
selecting one candidate, incorporates them all into one latent context one at a time. This
is done by cross-attending between the current context and the candidate representation.
This context is then used to condition a decoder alongside the utterance, and the result is
in turn used to condition a second decoder alongside the candidate encodings. Our third
baseline is the Sequential Knowledge Transformer (SKT) introduced in [47]. In contrast
to the previous methods, this approach encodes all previous turns and candidates using
a GRU network. In addition they use a probabilistic sequential latent variable model to
select from all previous candidates before conditioning a transformer decoder with an
added copy mechanism. Our final baseline is KnowledGPT [115], the only baseline that
also uses a pretrained decoder transformer. The dialogue context and background knowl-
edge is encoded with BERT𝑏𝑎𝑠𝑒 , then a knowledge selector builds up a text prompt for
GPT-2.

Model PPL F1 Avg. Greedy Extrema
TMN 66.5 15.9 84.4 42.7 65.8
ITDD 17.8 16.2 84.1 42.5 65.4
SKT 52.0 19.3 84.6 44.0 66.5
KnowledGPT 19.2 22.0 87.2 46.3 68.2
BERT2DialoGPT 14.3 16.0 97.7 67.9 80.8
GAT2DialoGPT 17.4 16.7 97.7 68.0 80.7

Table 5.2: Results of the selected baselines next to ours. These are the scores obtained on
the test split that also has topics already seen during training. The scores for
the baselines are taken from [115]. Best scores are in bold letters.

An important thing to note is that, in contrast to all the baseline models, we do not
select from all the candidate passages retrieved by the retrieval engine, only the one sen-
tence selected by the mechanical turker, since a knowledge selection step might have
been a further confounding variable in our comparison. This has advantages and disad-
vantages however, on the one hand our model doesn’t have to select from the candidates
making the task easier, on the other hand almost all of the baselines here incorporate
more knowledge into the generation than just the checked sentence.
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6 Discussion

6.1 Conclusion

To summarize, in this work we compared the performances of different approaches to
grounding large language model on externally retrieved text, and dialogues from the wiz-
ard of wikipedia task. More precisely, we evaluated warm-started transformer sequence-
to-sequeuence models working on the retrieved texts directly against GNNs working on
knowledge graphs derived from these texts.

The results suggest that, architecture-wise while it may be required to work with GNNs
if the background knowledge is best represented in graphical form, i.e. citation graphs,
chemistry data and generally networked data, it is hard to justify the use of knowledge
graphs when transformer-based language models already perform well on text data, es-
pecially since it has been suggested that such models have tacit knowledge that is good
enough to extract knowledge graphs from them [105]. Adding to that, it is often easier to
compile a document collection to serve as background knowledge for a chosen domain
than it is to construct an ontology. We also observe, that it is non-trivial to bridge the
semantic gap between foreign, as in separately pretrained, encoders and decoders with
finetuning alone. It is therefore advisable to, if possible, use jointly pretrained encoders
and decoders.

We further acknowledge that our comparisonmight be lessmeaningful, sinceweweren’t
able to adequately bridge the semantic gap between the encoders and decoders. A possible
approach for this would be to derive a multi-phasic training scheme in which parts of the
encoder and decoder parameters are frozen at certain points in time. Another approach
taken by [53] would be to add auxiliary losses that penalize encoder outputs that deviate
to far from valid decoder representations. To this end a more thorough optimization of
our architectures would be required. We also note that the way in which the knowledge
graphs were constructed can significantly impact the models overall performance, but as
we stated earlier, this can also be seen as an argument against using knowledge graphs
in the first place.

6.2 Future Work

We now end this discussion, by highlighting some promising future research directions
in the area of knowledge grounded dialogue and open question answering.
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6.2 Future Work

Conversational Search

As we already discussed in the background section, neural networks can learn rich se-
mantic representations of items in a knowledge base to help in the retrieval process, but
as we have also seen deep learning can do more. For example understanding a dialog con-
text and synthesizing multiple documents into one coherent text. Conversational search
is a new paradigm that aims to improve search in situations where the information need
of a user is difficult to express in a single query.

Say, for example that you want to learn about the latest progress in neural conversa-
tional search. How would you go about finding this information? If you are lucky, you
might find a related survey [41], otherwise the process will likely start with formulating
multiple alternative queries to a search engine, a lot of open tabs in your browser, and
you having to figure out how these pieces of knowledge fit together. The aim of neu-
ral conversational search is to integrate this entire process, by formulating alternative
queries [15], responding to questions or feedback about the recommendations so far [84],
and automatically synthesizing a coherent narrative from multiple sources [67]. Combin-
ing this with recent advances in multi-modal architectures, the need arises for databases
storing representations for different modalities in a unified way, so that models can base
their knowledge on multiple modalities, promising approaches in this direction include
for example vector databases such as Pinecone1.

1https://www.pinecone.io/
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