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Abstract. Neural sequence-to-sequence systems deliver state-of-the-art
performance for automatic speech recognition (ASR). When training
such systems, one often faces the situation where sufficient amounts of
training data for the language in question are available, however, with
only small amounts of data for the domain in question. This problem is
even bigger for end-to-end speech recognition systems that only accept
transcribed speech as training data, which is harder and more expensive
to obtain than text data. To alleviate this problem we supplement an
end-to-end ASR system with a Text-Encoder which injects text-only in-
put directly into the decoder. In addition, we compare the performance of
using text-only input with synthetic speech. Furthermore, we prove for a
specific domain that using a very small amount of transcribed speech and
a sufficient amount of text-only data from the target domain outperforms
adapting with a large amount of domain transcribed speech. Finally, we
improve with the Text-Encoder learning new words, e.g., named entities,
with no need for any context.
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1 Introduction

Lately, end-to-end approaches to automatic speech recognition (ASR) have
started to outperform traditional Bayes Classifier based approaches that used
neural networks to estimate the emission probabilities of Hidden Markov Models
for acoustic modeling and n-gram models for language modeling. The end-to-end
approaches can be roughly divided into CTC [8], RNN-T [7] and Sequence-to-
Sequence (S2S) [2] models. In this work we will focus on Sequence-to-Sequence
models.

S2S models can be adapted to a new domain, given large amounts of tran-
scribed speech data. If such data is not available in sufficient amounts, the
question arises how adaptation can be done anyway. One common case is the
availability of a small amount of transcribed speech and sufficient amounts of
text-only data for the target domain.
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In this paper we present experiments with a chosen domain where small
amounts of transcribed audio is insufficient for achieving a well-performing adap-
tation, as we will see in section 4.1. We use additional textual data from the
target domain either in conjunction with a multi speaker text-to-speech (TTS)
systems (section 3.3) or with a Text-Encoder (section 3.4). Furthermore, we
combine the textual domain data with the transcribed speech data from the tar-
get domain (section 4.3). Finally, we experiment with the Text-Encoder learning
new-words, e.g., named entities where no context is provided. We introduce the
method in section 4.3.

2 Related Work

In our previous work [10] we adapted an S2S ASR system with a small amount of
domain transcribed speech using a batch weighting scheme, in order to avoid the
the problem of catastrophic forgetting during adaptation. The amount of data
was sufficient to achieve satisfying results, however, applying the method for
other domains with wider language variability yielded insufficient performance.
Our work in this paper focuses on enhancing the adaption with text-only data
using a Text-Encoder. Several previous works used text input for speech recogni-
tion, however, the scenarios considered where different from ours. [11] used text
data for semi-supervised learning. The speech and Text-Encoder is shared and
supplied with a sub-sampling layer for speech to achieve a similar dimensionality
as text. In [4], a separate encoder for text is employed for low resource speech
recognition. Adversarial training is used to increase the similarity between speech
and text features . Other work employed synthetic audio, as in [21]. They show
that the method improves the recognition for utterances with out-of-vocabulary
(OOV) words. Other related works enhances the model by re-scoring the output
with a language model via two pass decoding. [16] incorporated a multi corpora
language model for second pass re-scoring, while [5] and [18] re-score with a
second model by attending to the audio or as in [9], in which the second model
attends to both the audio and the output using a deliberation model.

3 Method and Training

3.1 Baseline

As our baseline system we use a long short-term memory (LSTM) based
sequence-to-sequence model[14]. The encoder consists of six layers, the decoder
of two. Before the encoder, two convolutional neural network (CNN) layers with
32 filters and a stride of two are used to down-sample the audio features. The
LSTM-layers of the encoder and the decoder have a model dimension of 1024.
As output vocabulary, we use a byte-pair encoding (BPE) [20] with 4000 tokens
trained on the training data.
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3.2 Training and Domain Data

The baseline model is trained on the HOW2 [19] and TED [17] data sets (see
table 1). For the adaptation of the model we use the Wall Street Journal (WSJ)
data set [6,13]. As text-only data from the Wall Street Journal domain we use
[12] and refer to this data set as TXT-WSJ. It contains two million lines of text
data. The validation and test set for the baseline (HOW2+TED) and for the
target domain (WSJ) can be seen in table 1

3.3 Synthesized Speech

For the TTS system we use Flite [1]. We synthesized audio from the TXT-
WSJ data and refer to this as Synthetic TXT-WSJ. Thereby we select for each
sentence one of 16 different speakers to obtain speaker variability.

Table 1. Summary of the English speech data-sets

Corpus Speech data Utterances

How2+Ted training set 789 h 473K
How2+Ted validation set 18.3 h 11K

WSJ training set 80 h 36k
WSJ validation set 3.2 h 1421

Synthetic TXT-WSJ training set 4500 h 2M

Ted test set 2.6 h 1155
WSJ test set 1.1 h 503

3.4 Text-Encoder

In the following sections we describe the Text-Encoder model as well as the
training process for the domain adaptation or learning new words with no con-
text.

Model Architecture While in [11] one encoder is used for both text and
speech, we use a separate encoder for each input as figure 1 shows. We take the
speech encoder and the decoder from our pre-trained baseline ASR model. The
Text-Encoder has a simple architecture consisting of an LSTM-layer followed by
a deconvolution layer [15] followed again by an LSTM-layer. Since the length
of the text token sequence is much shorter than the speech feature sequence
length, we use a deconvolution layer to up-sample the input features. The up-
sampling maps the text token sequence to a higher dimensionality similar in
length to the speech feature sequence. Thereby, we aim to produce a similar
features presentation to the one generated by the speech encoder.
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Fig. 1. Model architecture. Left: Baseline ASR model. Right: Text-Encoder architec-
ture in detail.
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Training of the Text-Encoder for Domain Adaptation We alternate the
training between two cases:

– In the first case, the Text-Encoder is trained with frozen decoder until sat-
uration. We input noised text sequences from a large text corpus to the
Text-Encoder and reconstruct the clean sequences by the frozen decoder.
The noise we use is applied by masking tokens (substitute them with the
masking token) with a probability of 0.2 (similar to [3]).

– In the second case, we train the Text-Encoder and the decoder on both
text and speech inputs. In this case we freeze the speech encoder. We apply
one pass from the Text-Encoder and one pass from the speech encoder,
accumulate the gradient and update the parameters after reaching about
12000 input text tokens.

The reason for freezing the speech encoder in the second case is that we
noticed degradation in the performance as the decoder was trying to adapt the
speech encoder to generate similar features as the Text-Encoder. Our baseline
speech encoder was already trained thoroughly and reached a satisfying level of
abstraction for speech features. Therefore, compromises with the Text-Encoder
do not benefit the model, instead harm the general performance of it. Besides,
using a discriminator for adversarial training as in [4] for motivating the speech
encoder to generate a similar output to Text-Encoder was not of advantage
in our case. Our suggestion is that we have a different case than in [4]. They
train a system for low-resourced-language i.e very few transcribed speech data
are available to reach a well trained speech encoder. In our case we have enough
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speech data and could reach a very good performing baseline as mentioned above.
Our speech encoder is able to reach a sufficient abstraction on general domain.

Training of the Text-Encoder for New-Word Learning We try to use the
Text-Encoder to approach the problem of the new words or words not seen during
the training (also known as Out-of-Vocabulary Problem OOV). We assume that
we neither have context nor audio for those word.

We take the parallel training set which we used for training the baseline.
From this set we take only the text. In each text utterance, we insert a word
from the new-word list in a random place. We avoid to place the tokens of new
words between tokens of a single word in the training utterance. Thereafter, we
train the model using this text data with the Text-Encoder. Each time we insert
the words in a new random location in order to avoid harming the language
model learned by the decoder with fixed not real contexts.
Similar to the training for domain adaption above, we noise the text input of
the Text-Encoder. The difference here is that the text is supplied with randomly
inserted new words we want to recognize. We noticed here that adding more
noise yields better results. Therefore, We mask with the probability 0.3 instead
of 0.2 and insert random tokens to the input with the probability of 0.3 within
tokens of the training text.
It is worth to mention that we employ here only the transcription of the training
set and not big text corpora, to study the effect of our method without adding
additional information.

4 Results

4.1 Basic Adaptation Methods

To examine our methods of domain adaptation using text data or synthetic data,
we first employ the conventional adapting methods, such as, fine-tuning and
batch-weighting [10]. Fine-tuning yields good performance on the new domain
but the model suffers from catastrophic forgetting (table 2). For the rest of the
experiments we use batch-weighting with ratio 0.9 for the original training data
and 0.1 for the new domain data. From table 2 we notice that adapting with 80
hours of data (experiment Batch-Weighting-80) obviously outperforms adapting
with only two hours (experiment Batch-Weighting-02).

4.2 Comparison Synthetic Speech and Text-Encoder

Using the Synthetic TXT-WSJ dataset to adapt the model (experiment Batch-
Weighting (Synthesis)) improves over the baseline as well as over the approach
using only texts from new domain (experiment Batch-Weighting (Text-Encoder)).
Another Experiment (Batch-Weighting (Synthesis+Text-Encoder)) shows com-
parable results. Despite the slight improvement of the above mentioned methods,
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we are still far from the results of using additional trancribed audio (section 4.1
and 4.3).

We also tried to use a separate encoder for the synthetic audio initialized
with the encoder of the baseline. However, these experiments did not show im-
provements over using one encoder for both the synthetic and the real audio.

4.3 Results with Text-Encoder

Result for Domain Adaption Remarkably, the results of using two hours (ex-
periment Batch-Weighting-02 (Text-Encoder)) and 80 hours (experiment Batch-
Weighting-80 (Text-Encoder)) WSJ are comparable in the case of injecting the
decoder with the additional large new domain texts from TXT-WSJ using Text-
Encoder (section 3.3). Our interpretation is that only little amount of data is
needed for the speech encoder to capture and adapt towards speech features of
the new domain. Such features might be the recording channel characteristics
or the speaking style. Moreover, the decoder adaptation needs language charac-
teristics of the new domain, which is achievable only with a large text data set,
such as, the two million lines TXT-WSJ.

Table 2. Summary of the results.

Method Additional data WER Ted WER WSJ

Baseline – 7.40 12.60

Fine-tuning WSJ-80h 10.27 5.55

Batch-Weighting-80 WSJ-80h 7.33 5.51

Batch-Weighting-02 WSJ-2h 7.80 8.54

Batch-Weighting (Synthesis) Synthetic TXT-WSJ 7.35 9.51

Batch-Weighting (Text-Encoder) TXT-WSJ 7.48 11.34

(Synthesis +Text-Encoder)
Batch-Weighting

+ TXT-WSJ
Synthetic TXT-WSJ

7.54 9.22

Batch-Weighting-80 (Synthesis)
+ Synthetic TXT-WSJ

WSJ-80h
7.21 4.74

Batch-Weighting-80 (Text-Encoder) WSJ-80h + TXT-WSJ 6.98 4.89

Batch-Weighting-02 (Text-Encoder) WSJ-2h + TXT-WSJ 6.83 4.85

Result for new words We experimented the Text-Encoder for learning new
words problems as described in section 4.3. A set of 69 words containing mainly
named entities. For the test we put the names in a context and recorded them.
The baseline model recognizes only 15.9% percent of the new words. After train-
ing with the Text-Encoder we obtain 43.5% accuracy of the new word. The WER
of the baseline 32.1% is also reduced by the Text-Encoder to 27.1%. Further-
more, the model does not loose the generality as the WER on the TED test-set
remains the same.
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5 Conclusion

In this work we extend our previous work on domain adaptation with batch-
weighting to domains with language variability that need larger amounts of
transcribed speech from the target domain. We examined using textual data
directly either with a supplemented Text-Encoder or after synthesizing it with
a multi-speakers TTS system. We obtain better results with synthesizing text
if we do not employ transcribed data from the target domain. However, the
results are comparable when using only a small amount of transcribed speech
from the target domain. Furthermore, we notice that the performance equalizes
when using small or large amount of transcribed speech data as long as we use
enough amounts of textual data. The reason might be that the system is able to
capture sufficient information from a small amount of transcribed data related to
the audio and speaking characteristics. However, the system looks for language
modeling information in the large amount textual data. In addition, we were able
to improve the recognition of OOV without using additional context. In future
works, we will focus on the training mechanism and the model structure of the
Text-Encoder to achieve at least the performance of multi-speaker synthesis in
scenarios in which no transcribed speech data is available. Furthermore, we will
experiment to extract the audio and speaking characteristics with even smaller
amounts of transcribed speech from the target domain. For the OOV problem,
we will experiment to insert the words in large text corpus or generate contexts
for the new-words.
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