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Abstract

Neural Machine Translation (NMT) systems have achieved better translation performance

compared to the Statistical Machine Translation (SMT) systems in the recent years and

are perceived as the state-of-the-art solution in Machine Translation (MT). Nevertheless,

the translation quality of the NMT output is often poor for words occurring infrequently

in the training corpus or for words with multiple meanings due to their high ambiguity.

One group of such words are named entities (NEs). Their correct translation poses

a challenge for NMT systems. In general, conventional NMT systems are expected to

translate named entities by learning complex linguistic aspects and ambiguous terms from

the training corpus only. When faced with named entities, NMT systems are found to

be occasionally distorting location, organization or person names and even sometimes

ignoring low-frequency proper names altogether.

Recent approaches in NMT successfully enrich the source language sentences by adding

linguistic features into the neural network input with the use of source factors. Word level

factors may carry linguistic information (part-of-speech tags, lemmas or morphosyntactic

labels), yet may be also used to augment the source sentence with other types of informa-

tion, e.g. to denote named entities. The incorporation of word features into the neural

network input in the context of named entities is a promising approach. The tagging of

NEs in the source sentence may support the networks in capturing named entities better,

decreasing their ambiguity and thus enhancing their learning process. This thesis aims at

exploring its potential and studies methods incorporating Named Entity Recognition (NER)

into NMT with the aim to improve named entity translation. It proposes an annotation

method that integrates named entities and inside-outside-beginning (IOB) tagging into

the neural network input with the use of source factors.

In our experiments, we focus on three named entity classes: organization, location and

person. We investigate how the granularity of named entity class labels influences named

entity translation quality. Further, we execute an extensive evaluation of the MT output

assessing the influence of our annotation method on named entity translation. Finally, we

discuss our findings based on translation examples.

Our experiments on English→German and English→ Chinese show that just by includ-

ing different named entity classes and IOB tagging, we can increase the BLEU score by

around 1 point using the standard test set from WMT2019 and achieve up to 12% increase

in NE translation rates over a strong baseline. Furthermore, we also illustrate that our

annotation technique does not result in a poor translation performance in the scenario

where no named entities are present.
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Zusammenfassung

Neuronale maschinelle Übersetzungssysteme (NMT) haben eine bessere Übersetzungs-

leistung im Vergleich zum statistischen Ansatz in den letzten Jahren erzielt und werden

als die Lösung auf dem modernsten Stand der Technik in der maschinellen Übersetzung

wahrgenommen. Trotzdem ist die Übersetzungsqualität ihrer Ausgabe häufig mangelhaft

für Wörter, die selten im Trainingskorpus vorkommen oder für Wörter mit mehreren

Bedeutungen aufgrund ihrer hohen Mehrdeutigkeit.

Eigennamen machen eine Gruppe solcher Wörter aus. Ihre korrekte Übersetzung stellt

eine Herausforderung für die neuronale maschinelle Übersetzungssysteme dar. Im Allge-

meinen wird es von den konventionellen neuronalen maschinellen Übersetzungssystemen

erwartet, die Eigennamen zu übersetzen, indem sie komplexe sprachliche Aspekte und

mehrdeutige Begriffe nur aus den Trainingsdaten lernen. Wenn NMT-Systeme den Ei-

gennamen begegnen, stellt sich heraus, dass sie vereinzelt Standort-, Organisations- oder

Personennamen verzerren und gelegentlich sogar niederfrequente Eigennamen insgesamt

ignorieren.

In letzter Zeit konzentrieren sich die Ansätze im NMT Umfeld auf die Bereicherung

der Sätze aus der Quellsprache durch das Hinzufügen sprachlicher Merkmale in die Ein-

gabe eines neuronalen Netzwerks unter Zuhilfenahme von Source Factors, zu Deutsch

quellsprachlichen Faktoren. Faktoren auf Wortebene können sprachliche Informationen

enthalten (z.B. die Wortart (part-of-speech) Tags, Lemmas oder morphosyntaktische Mar-

kierungen), können jedoch auch dazu verwendet werden, um den Quellensatz mit anderen

Informationsarten zu ergänzen, z.B. um Eigennamen zu kennzeichnen. Die Einbeziehung

von Wortmerkmalen in die Eingabe eines neuronalen Netzwerks im Kontext von Eigenna-

men ist ein vielversprechender Ansatz. Durch das Tagging von Eigennamen im Quellensatz

können die Netzwerke dabei unterstützt werden, Eigennamen besser zu erfassen, ihre

Mehrdeutigkeit zu verringern und dadurch zur Verbesserung ihres Lernprozesses bei-

tragen. Diese Thesis setzt sich als Ziel dieses Potenzial zu erforschen und untersucht

Methoden, die Eigennamenerkennung mit dem Ziel, die Übersetzung von Eigennamen zu

verbessern, einbeziehen. Sie schlägt eine Annotationsmethode vor, die die Eigennamen

und Inside-Outside-Beginning (IOB) Tagging miteinander in die Eingabe eines neuronalen

Netzwerks unter Zuhilfenahme von quellsprachlichen Faktoren integriert.

In unseren Experimenten konzentrieren wir uns auf drei Eigennamenklassen: Organisa-

tion, Standort und Person. Wir untersuchen auch, wie die Granularität der Eigennamen-

klassen ihre Übersetzungsqualität beeinflusst. Darüber hinaus führen wir eine umfassende

Bewertung der Ausgabe aus dem Übersetzungssystem durch, um den Einfluss unserer

Annotationsmethode auf die Übersetzung von Eigennamen zu bewerten. Abschließend

diskutieren wir unsere Ergebnisse anhand von Übersetzungsbeispielen.

Unsere Experimente von Englisch→Deutsch und Englisch→Chinesisch zeigen, dass

wir den BLEU-Score um etwa 1 Punkt auf dem Standard WMT2019 Testdatensatz erhöhen
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können, indem wir verschiedene Eigennamenklassen und IOB-Tags miteinander kombi-

nieren. Wir erreichen bis zu 12% Verbesserung in Eigennamenübersetzungsraten über ein

starkes Basismodell. Darüber hinaus veranschaulichen wir auch, dass unsere Annotations-

methode im Szenario, wo keine Eigennamen auftreten, zu keinem Qualitätseinbußen in

der Übersetzungsleistung führt.
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1. Introduction

Thanks to the rise of World Wide Web-based technologies our world becomes more

and more interconnected. With an increasing level of digitization, there is an explosion

of information in the form of news, articles, social media posts, and others forms of

communication. Overall, the last decade has witnessed a massive explosion of information

in life science. The productivity of companies, regions and nations depends largely on

their ability to create and process knowledge-based information effectively.

As information becomes an omnipresent element of our lives, there is a stronger need

to communicate with one another across various nations. At the current time, there are

approx. 6,500 developed languages, 91 of which have more than 10 million active speakers

(Eberhard et al., 2020). A further intensification of international cooperation requires

overcoming language barriers. Inevitably, this requires the ability to understand multiple

languages. Regrettably, the human capabilities of learning multiple foreign languages are

constrained. This drives the need for automated translation solutions.

Interestingly, the need for translation is not limited to face-to-face interactions only

but also is required to translate unstructured documents such as, e.g., governmental

texts, product descriptions, business transactions texts and others. Reliable and on the fly

translation is necessary to promote cultural exchange, collaborative, intercultural research

and globalized trade. As a result, there is a high demand for fast, economical and reliable

machine translation systems to facilitate information exchange.

The research field of Machine Translation (MT) investigates the approaches to translat-

ing text from one natural human language (source language) into another (target language)

with no human translator involved. It may be categorized as a sub-field of computational

linguistics that takes from a broad spectrum of other disciplines such as linguistics, com-

puter science, information theory, artificial intelligence, and statistics.

In its early days, MT has been criticized for bad quality: lack of fluency and intelligibility,

low accuracy and inappropriate style. However, thanks to an intensive research in this

area, we have been witnessing great progress in MT quality. Its quality is still lower

than human translation, but it does not imply that no good practical uses exist. On the

contrary, MT is nowadays growing in popularity and its output is widely consumed by

the translation industry: in informal settings (e.g. offered as a plugin on a website or in a

messaging chat) and by professional translators. Depending on the scenario, a varying

level of translation accuracy is expected. In informal scenarios users wish to receive a fast,

somewhat accurate translation. In professional scenarios a very high quality is expected.

Currently MT systems do not provide such quality. Therefore, the output of a MT is

additionally revised by a human translator to ensure it. In some cases, with appropriate

controls on the language and the domain of the input texts, translations can be machine

translated that are of high quality requiring no revision. The urge to deliver such solutions

producing accurate and fluent translations drives the research in the area of MT.

1



1. Introduction

1.1. Motivation

Neural Machine Translation (NMT) has recently shown promising results, replacing

Statistical Machine Translation (SMT) as state-of-the-art approach to machine translation.

Technological advances, such as sequence-to-sequence (Sutskever et al., 2014), attention

mechanism (Luong et al., 2015) and Transformer networks (Vaswani et al., 2017) greatly

contributed to improving accuracy and fluency of machine translation. Within a few years

after its first introduction, NMT is at the current time used commercially in productive

systems (e.g. Crego et al., 2016).

In order to achieve the goal of creating an NMT systemwhich translates with an identical

quality as a human translator, the ongoing research focuses on the elimination of the

existing deficiencies of NMT. Koehn and Knowles (2017) outline six main challenges of

NMT. In their work, they state the following: “both SMT and NMT systems actually

have their worst performance on words that were observed a single time in the training

corpus, (...), even worse than for unobserved words. The most common categories across

both are named entity (including entity and location names) and nouns”. There is, in

fact, an intensive research ongoing which aims to improve the translation of named

entities in the context of NMT (e.g. Li et al., 2018b; Ugawa et al., 2018; Li et al., 2018a;

Yan et al., 2018, and others). Furthermore, there is a workshop series organized by the

Association of Computer Linguistics (ACL) specifically dedicated to the research in the

area of named entity translation.In light of this deficiency of NMT, this work conducts

research of methods which aim to improve the translation of named entities in NMT.

Named entities are the phrases in human languages that explicitly link notations in

languages to the entities existing in the real world (Wu et al., 2008). The concept of a

“named entity” has been first introduced in the 6
th
Message Understanding Conference

(MUC-6, Grishman and Sundheim (1996)). The aim of this conference was to recognize

and subsequently classify named entities into a category (e.g. their type). This task is

is referred to as Named Entity Recognition (NER). NER is a research field and focuses

on the automatic identification and classification of selected types of named entities in

unstructured documents (Nadeau and Sekine, 2007). NER systems are often adopted

as an early annotation step in many Natural Language Processing (NLP) pipelines for

applications such as question answering, information retrieval and machine translation.

The translation of named entities is challenging because new phrases in the form of

personal names, organizations, locations, product names, andmonetary expressions appear

on a daily basis and many named entities are domain specific, not to be found in bilingual

dictionaries. Additionally, the lexical and syntactic ambiguity of named entities creates

an obstacle during translation. For example, the word “France” (in English) may refer to

a name of a person or the name of a country and depending on the target language its

translation necessitates a different inflection.

Improving named entity translation is important due to a number of reasons. First, the

correct translation of named entities constitutes a key element to the correct interpretation

of scientific, corporate or governmental texts where homogeneous understanding of the

handled material is required. Moreover, translation systems and cross-language informa-

tion retrieval applications depend on their correct translation as a significant number of

users’ requests have been found to contain them (Jiang et al., 2007). Furthermore, named
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entities carry more semantic information than regular content or functional words and

have, therefore, a higher information utility. As a result, their mistranslation leads to a

higher information loss and impedes the correct understanding of translated texts more

severely than a mistranslation of a regular word (Huang, 2005). Finally, a majority of

out-of-vocabulary terms are named entities. Consequently, their incorrect or missing trans-

lation has a considerable impact on the information retrieval effectiveness and machine

translation quality (Wu et al., 2008).

Incorporation of word features into the source sentence Neural Machine Translation is

based on a sequence-to-sequence learning approach that interprets sentences as sequences

of generic tokens. As such, it does not explicitly exploit external sources providing poten-

tially beneficial linguistic information. Therefore, the question arises whether providing

such information, e.g. in form of word features, can help enhancing translation quality.

We analyze this matter in the context of named entity translation. Conventional Neural

Machine Translation systems (e.g. Yonghui et al., 2016; Zhou et al., 2016) are expected

to translate named entities by learning complex linguistic aspects and ambiguous terms

from the training corpus only. There is, however, no guarantee that a NMT system can

capture this information and produce a proper translation in all cases, especially for those

terms which do not occur very often in the training corpus or are ambiguous. When

faced with named entities, NMT systems are found to be occasionally distorting location,

organization or person names and even sometimes ignoring low-frequency proper names

altogether (Koehn and Knowles, 2017).

Recently Sennrich and Haddow (2016) successfully enriched the source language sen-

tences by adding linguistic features into the neural network input. They find that adding

morphological features, part-of-speech tags, and syntactic dependency labels as input

features improves translation quality. Their main innovation over the standard encoder-

decoder architecture is the ability to represent the encoder input as a combination of

features (source factors) which are subsequently concatenated or added to the embedding

vector.

In general, a factor refers to “a type of additional word-level information” (Koehn and

Hoang, 2007). We define source factors as any type of additional word-level information

incorporated into the source sentence exclusively. Word level factors may carry linguistic

information, for instance, part of speech tags, lemmas or morphosyntactic labels as in the

work of Sennrich and Haddow (2016). However, they may be also used to augment the

source sentence with other types of information, e.g. to denote named entities. Generally

speaking, factors could be any kind of automatically derivable information that is rep-

resentable at the word level. External tools, such as e.g. a NER system, may be used to

incorporate the annotations into the training corpus and at inference time.

1.2. Research Objective

The incorporation of word features into the neural network input in the context of named

entities is a promising approach. This thesis aims at exploring its potential and studies

methods incorporating Named Entity Recognition (NER) into NMTwith the aim to improve
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named entity translation. The NER system acts as an external source of information and

its output is used to create word features.

This work explores an annotation method that integrates named entities and inside-

outside-beginning (IOB) (Ramshaw and Marcus, 1999) tagging into the neural network

input with the use of source factors. In our experiments, we focus on three most common

and well-researched named entity classes: Organization, Location and Person. We also

investigate how the granularity of named entity class labels influences named entity

translation quality. Further, we execute an extensive evaluation of the MT output assessing

the influence of our annotation method on named entity translation. Finally, we discuss

our findings based on translation examples.

Our experiments on English→German and English→Chinese show that by just includ-

ing different named entity classes and IOB tagging, we can increase the BLEU score by

around 1 point using the standard test set from WMT2019 and achieve up to 12% increase

in NE translation rates over a strong baseline. Furthermore, we also illustrate that our

annotation technique does not result in a poor translation performance in the scenario

where no named entities are present.

1.3. Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2, Theoretical Foundations. We first introduce the essential theoretical

foundations regarding this work in the context of NMT.

• Chapter 3, Related Work. This chapter outlines previous approaches to named

entity translation with a special focus on named entity transliteration as well as

statistical and Deep Learning approaches.

• Chapter 4, System Description. This chapter outlines the research questions this

thesis aims at resolving as well as provides a list of experiments executed in the

course of working on this thesis. Additionally, it presents algorithms developed to

generate the annotated data.

• Chapter 5, Selection of the Named Entity Recognition System. This chapter
focuses on outlining the decision process to determine the most suitable Named

Entity Recognition system, later used for data annotation.

• Chapter 6, Evaluation. This chapter illustrates the evaluation of the experiments

and provides answers to the research questions. In addition, it outlines the results

of the BLEU scores on different test sets as well as presents an extensive in-depth

analysis with the focus on the named entity translation quality. Furthermore, it

describes the results of a final human evaluation and provides translation examples.

• Chapter 7, Conclusion and outlook. This last chapter concludes this thesis by
summarizing its findings and proposes directions for further research in the area of

named entity translation.
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This chapter provides theoretical fundamentals on which the following work is based

on. It starts by outlining the fields of Natural Language Processing and Information

Extraction. Later, it continues, in Section 2.3, with providing information about Named

Entity Recognition. In detail, the definitions of named entities together with most common

NE categories are presented. In the second part of this section, approaches to recognize

named entities in texts and the methods to evaluate named entity recognition rates are

outlined.

Section 2.4 provides an extensive overview of Neural Machine Translation. It describes

word embeddings, encoder-decoder network architecture, the attention mechanism, the

training optimization function, the decoding problem and methods to handle large vocab-

ularies. As a next step, Recurrent Neural Machine Translation is presented. Section 2.7

illustrates the notion of self-attention and describes the architecture of the Transformer

network. Finally, source factors and the methods to evaluate Machine Translation output

are outlined.

2.1. Natural Language Processing

Natural Language Processing (NLP) is concerned with the use of computational methods

to process and analyze spoken or written form of free text which acts as a mode of

communication commonly used by humans (Assal et al., 2011; Singh, 2018). One of the

main goals of NLP is to derive a simpler representation (more computer-readable) of the

syntax and semantics from textual information (Collobert et al., 2011). NLP tasks can be

divided into two groups:

• syntactic: At this level, grammatical rules are applied to determine the basic building

blocks of the underlying text. Methods include the segmentation of words into

statements, word tokenization, assignment of labels to each token in the form of its

part of speech, also referred to as Part-of-speech-Tagging (POS-Tagging),

• semantic: At this level, the extraction of semantic information takes place to

derive a meaningful representation of words, phrases and sentences. This includes

the detection of named entities, identification of positive or negatives sentiments

(including negation and uncertainty), machine translation, relation extraction and

others (Nadkarni et al., 2011).
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2.2. Information Extraction

Information Extraction (IE) combines high and low level aspects of Natural Language

Processing. The objective of an IE system is to automatically extract structured information

(e.g. entities, relationships between entities, and attributes describing entities) from

unstructured sources intended for human use. Later, this information is converted into a

structured representation suitable for computer-based storage, processing, and retrieval

(Sarawagi et al., 2008; Wimalasuriya and Dou, 2010). The input to an IE system is a

collection of unstructured or semi-structured documents, although in general it can be

applied to other types such as images, audio recordings or videos as well.

The output and simultaneously the main objective of IE is to identify meaningful

pieces of information and to produce a computer-suitable representation of the relevant

information from the input document according to previously defined criteria. Such format

of data can be used to populate databases that require more structured input.

The most recent approaches (Singh, 2018) to successful extraction of information are:

• Pattern matching: This method focuses on checking if in a given sequence of

tokens certain extraction patterns occur. This is achieved with the use of regular

expressions. These patterns can be easily matched directly with the given input

text. As a result, a matched text, which corresponds to an occurrence of a particular

entity, is extracted. The drawback of this technique materializes when searching for

an entity e.g. name of a location, organization etc., which cannot be easily defined

by a regular expression. Despite its apparent limitations, this approach is widely

used in practice, e.g. in Muslea et al. (1999).

• Gazetteer-based approach: This approach proposes using an external knowledge

source (e.g. a pre-defined list) to match chunks of text onto names and entities. Such

lists are called a gazette or a gazetteer. Gazetteers also further provide a non-local

model for resolving multiple names to the same entity, provided that this entity has a

finite number of possible values. This approach requires either creating hand-crafted

name lexicons or obtaining a gazette from the corpus or another external source.

The limitations of this approach lie in preparing complete and accurate gazette.

• Machine Learning-based approach: In this approach, Machine Learning (ML)-

based algorithms learn the IE patterns directly from training data by generalizing

from a given set of examples, also referred to as ground truths. ML models are

created on augmented training data in which all occurrences of named entities of

interest are annotated. The use of syntactical linguistic features (POS tagging, word

position, capitalization) coupled with the correct placement of the corresponding

boundary tags is crucial to meaningful data annotation.

2.3. Named-Entity Recognition

Named Entity Recognition (NER) is a prominent subtask of Information Extraction. It

focuses on the automatic identification and classification of selected types of NEs in un-

structured documents (Simon, 2017). NER systems are often adopted as an early annotation
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step in many Natural Language Processing pipelines for applications such as question

answering, information retrieval or topic modeling.

Definitions of named entities

This paragraph presents different definitions of named entities (Nouvel et al., 2016):

• One of the earliest scientific definitions of NEs was coined during the 6
th
Message

Understanding Conference (MUC-6, Grishman and Sundheim (1996)), where NEs

were described as “proper names and quantities of interest. Person, organization,

and location names were marked as well as dates, times, percentages, and monetary

amounts” (Chinchor, 1998).

• During the Conference on Natural Language Learning (CoNLL) in 2003, NEs were

defined as: “phrases that contain the names of persons, organizations and locations”.

Additionally a “miscellaneous” class has been added to cover other NEs which do

not belong to the previous three categories (Sang and De Meulder, 2003).

• A more specific definition of NEs has been provided by Meur et al. (2004). In fact,

NEs were said to “constitute a particular type of lexical unit referring to a real-world

entity in certain specific domains, notably the human, social, political, economic

and geographic domains, and which have a name (typically a proper noun or an

acronym)”.

• A special sub-group of named entities are compound named entities. These are
named entities that consist of two or more elements (named entities) that exist on

their own. For example, componud named entities are: “George Washington Bridge”,

“Alaska State Troopers” or “Patrick Dwyer”.

Named Entity Categories

Although the categories of named entities are predefined, there is a varying understanding

of what categories should be perceived as named entities and how broad these categories

should become. Several conventions have emerged, and entities are frequently marked

up in accordance with the XML style format described in the Message Understanding

Conference (Grishman and Sundheim, 1996), where "ENAMEX" tags are used for names,

"NUMEX" tags are used for numerical entities, and "TIMEX" tags are used for temporal

entities. Table 2.1 presents named entity categories from the MUC conference.

Category Representatives

ENAMEX Person, Location, Organization

TIMEX Temporal Expressions (Date, Time)

NUMEX Number Expressions (Money, Percent)

MISC Product

Table 2.1.: Common named entity classes
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The categories selected for a particular NER project may be dependable on its require-

ments. If numerical classification plays a vital role to a particular field, then the categories

describing numerical data may need to be more refined. Similarly, if focus lies on the more

specific geographical classification, it may be reasonable to classify each location entity as

a particular type of location (Zaanen and Mollá, 2007).

Approaches to Named Entity Recognition

Named Entity Recognition can be defined as a word-level tagging problem where each

word in a sentence is either mapped to a named entity tag or is classified as a regular

common word (Yadav and Bethard, 2019). In the following, we outline the most common

approaches to named entity recognition (Li et al., 2020; Yadav and Bethard, 2018);

• Rule-based approaches

Early NER systemswere based on handcrafted pattern-based rules, lexicons, orthographic

features and ontologies (Callan and Mitamura, 2002; Sekine and Nobata, 2004). This

approach proposes to learn extraction rules that rely on linguistic, syntactic, or document

format patterns that are homogeneous and consistent across a group of documents. Rules

can be created based on syntactic-lexical patterns and domain-specific gazetteers. Rule-

based systems work very well provided the lexicon is exhaustive.

In general, precision tends to be generally high for rule-based NER systems because of

the lexicons, but recall may often be low due to domain and language-specific rules and

incomplete dictionaries. Another drawback of rule-based NER systems is the need of

domain experts for constructing and maintaining the knowledge resources and the fact

that system cannot be transferred to other domains (Yadav and Bethard, 2018).

• Unsupervised Learning Approaches

A typical approach of unsupervised learning is clustering. Clustering-based NER systems

extract named entities from the clustered groups based on context similarity (Nadeau

and Sekine, 2007). The primary concept is that lexical resources, lexical patterns, and

statistics computed on a large corpus can be used to infer occurrences of named entities.

Examples of studies using unsupervised algorithms for named entity classification are

Collins and Singer (1999) and Etzioni et al. (2005).

• Feature-based Supervised Learning Approaches

Supervised machine learning models learn directly from the training data and can be

used to replace human-curated rules. This data must be labeled, which implies that to

each input there is an expected output defined. The application of supervised learning

necessitates feature engineering. Based on these features, many machine learning

algorithms have been applied in supervised NER, including Hidden Markov Models,

Decision Trees, Maximum Entropy Models, Support Vector Machines and Conditional

Random Fields (Li et al., 2020).

Such systems propose applying a rule system over features vectors, which were defined

on the word-level (related to the character makeup of words). They specifically describe
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Figure 2.1.: Word-level LSTM-based architecture for NER, from Yadav and Bethard (2018)

word case, punctuation, numerical value and special characters. Additionally, resources

in the form of gazetteers, lexicons and dictionaries (referred to as “privileged features”)

were fed to the classifier to enable lookup techniques.

• Deep Learning (DL) techniques for NER

In recent years, DL-based NER models have become the most prevailing approach to

recognize named entities. In comparison to feature-based approaches, deep learning

is beneficial in discovering hidden features automatically and thus delivering state-of-

the-art results. Deep learning is one of the fields of machine learning that uses the

growing volume and availability of data to train models effectively by using increased

computational processing power. It focuses on training artificial neural networks which

compose of multiple processing layers and learn representations of data with multiple

levels of abstraction.

Contemporary neural architectures for NER can be predominantly classified into cate-

gories which depend on their representation of the words in a sentence. For instance,

the form of representation may be based on words, characters, other sub-word units or

any aggregate of these.

– Word level architectures

In this architecture, the words of a sentence are given as input to a Recurrent Neural

Network (RNN) and each word is represented by its word embedding. Huang et al.

(2015) experiment with a variety of Long Short-Term Memory (LSTM) based models

for sequence tagging. They present a word LSTM model (Figure 2.1) and showed

that adding a Conditional Random Fields (CRF) layer to the top of the word LSTM

improved performance, achieving 84.26% F1-score on the English CoNLL 2003 data

set.

Collobert et al. (2011) use a similar architecture to the one shown in Figure 2.1, but

a convolution layer is introduced instead of the bidirectional LSTM layer and the

output of the convolution layer was forwarded to a CRF layer for the final prediction.

The authors achieved 89.59% F1-score on English CoNLL 2003 data set.

– Character level architectures

In the character level architecture, a sentence is perceived to be a sequence of char-

acters. This sequence is passed through a RNN, predicting labels for each character

(Figure 2.2). Character labels are transformed intoword labels during a post-processing
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Figure 2.2.: Character-level LSTM-based architecture for NER, from Yadav and Bethard

(2018)

step. Character-level representation has been discovered to be effective for exploiting

explicit sub-word-level information such as prefix and suffix. Another advantage of

character-level representation is that it handles the out-of-vocabulary problem well

due to its intrinsic properties. Thus character-based model is capable of inferring rep-

resentations for unseen words and share information of morpheme-level regularities

(Li et al., 2020).

Kuru et al. (2016) propose CharNER, a character-level tagger for language independent

NER. CharNER regards a sentence to be a sequence of characters and uses LSTMs

to extract meaningful character-level representations. It outputs a tag distribution

for each character instead of each word. As a next step, word-level tags are acquired

from the character-level tags. Their results demonstrate that taking characters as the

primary representation is superior to using words as the basic input unit.

Evaluation of NER systems

The aim of a NER system is to correctly identify a boundary of a named entity and correctly

classify its type, simultaneously. The outputs of NER systems are usually evaluated by

comparing them against human annotations, also referred to as “ground truths”. A True

Positive (TP) occurs when a NER system returns an entity which also appears in the

ground truth. (Nadeau and Sekine, 2007) present four types of errors which a NER system

can produce:

• False Positive (FP) – token which does not appear in the ground truth but is recog-

nized by the NER system (a token has been erroneously classified as an entity)

• False Negative (FN) – entity that is not returned by a NER system but appears in the

ground truth (an entity has not been recognized by the system)

• correct type, wrong boundaries – an entity is recognized with the correct type, but

its boundaries are wrongly set

• incorrect type and boundaries – both the span and the class of an entity are incorrect

In the following, we discuss the most common evaluation metrics used to assess the

quality of NER systems.
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.1)

Precision is defined as the percentage of the system results which are correctly recog-

nized. Recall calculates the percentage of total entities correctly recognized by your system

(Li et al., 2020). A measure that integrates precision and recall at once is the harmonic

mean of precision and recall, the traditional F-measure or the balanced F-score. Should

beta be set to one, the precision and recall are equally important.

𝐹𝛽 = (1 + 𝛽2) ∗
𝑃 ∗ 𝑅

𝛽2 ∗ 𝑃 + 𝑅 (2.2)

In order to rank multiple NER systems by their quality of annotation the following two

metrics may be used:

• macro-averaged F-score – calculates independently the F-score on different entity

types, then takes the harmonic mean of the F-scores

• micro-averaged F-score – sums up the respective false negatives, false positives and

true positives across all entity types then applies them to calculate the F-score

The latter can be significantly skewed by the quality of recognizing entities in large

classes in the corpus.

2.4. Neural Machine Translation

Neural Machine Translation (NMT) is a fairly recently proposed approach to Machine

Translation (MT). In contrast to the Statistical Machine Translation (SMT), which builds

a phrase-based translation system, e.g. Koehn (2009), composing of many small sub-

components that are tuned separately, NMT attempts to build and train a single, large

artificial neural network that reads a sentence and outputs a correct translation (Stahlberg,

2019).

From a probabilistic point of view, neural machine translation seeks for a parametric

model that calculates a conditional probability 𝑃 (𝑦 |𝑥) for a target sentence 𝑦 given a

source sentence 𝑥 . This goal is common to SMT. Brown et al. (1992) define a frequentist

interpretation of 𝑃 (𝑦 |𝑥) as the probability that a human translator would translate x to y.

The general translation problem can be described as finding the most likely target

language sentence y given a source language sentence x = (𝑥1, 𝑥2, ..., 𝑥𝐼 ) of length 𝐼
(Bahdanau et al., 2015). Using a maximum likelihood approach, y can be found by solving

Equation 2.3. Thanks to the use of the chain rule of conditional probabilities (Goodfellow

et al., 2016), the target sentence can be built up incrementally.

𝑃 (y|x) Chain rule

=

𝐽∏
𝑗=1

𝑃 (𝑦 𝑗 |𝑦 𝑗−1
1
, x) (2.3)

𝑃 (y|x) computes for each target position 𝑗 the conditional probability 𝑃 (𝑦 𝑗 |𝑦1: 𝑗−1, x) of
the target word 𝑦 𝑗 occurring in the translation at position 𝑗 , given the preceding target

words 𝑦1: 𝑗−1 and the source sentence x (Kalchbrenner and Blunsom, 2013).
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2.4.1. Word embeddings

Artificial Neural Networks (ANNs) are designed to learn from numerical data. There is,

therefore, a need to represent words in a special input representation which is suitable for

the ANNs to be consumed. For this purpose, word embeddings are learned. In essence,

they are models that are created to map a set of words or phrases in a vocabulary to vectors

of numerical values. They are described in more detail in the second part of this section.

The input unit to a neural network in the area of NMT are words or sub-words. Words

are discrete tokens, which can be portrayed by their index in the respective source or target

vocabulary (Bengio et al., 2003). In order for neural networks to differentiate between

different words, these vectors must be unambiguous and mathematically truly independent

in terms of vector distances. One-hot encoding is used to achieved this.

One-hot encoding The aim of One-hot encoding is to represent each word from a vo-

cabulary𝑊 by a |𝑊 |-dimensional vector 𝑣 with almost all entries set to zero. There are

separate vocabularies used for the source and target language, e.g.𝑊𝑠𝑜𝑢𝑟𝑐𝑒 or𝑊𝑡𝑎𝑟𝑔𝑒𝑡 . Only

a single position 𝑘 in the vector 𝑣 is set to one. It identifies the 𝑘𝑡ℎ word 𝑤𝑘 ∈ 𝑊 from

the vocabulary. The length of the vector 𝑣 corresponds with the vocabulary size |𝑊 |. The
ordering of words in the vocabulary must be defined once and remain unchanged during

training and inference but is otherwise arbitrary. One-hot encoded vectors are usually

the word input for the neuronal networks in NMT. We will denote the one-hot vector of a

word index 𝑥 ∈𝑊 as ℎ(𝑥).

Embeddingmatrices Numerical operations with such one-hot encoded vectors for these

words would be very inefficient because most values in the one-hot vector are equal 0. As

a result, the matrix calculation occurring between the one-hot vector and the first hidden

layer will result in an output having mostly 0 values. Therefore, an embedding layer is

introduced to greatly improve the efficiency of the network. Embeddings are just like a

fully-connected layer with small differences. In detail, its activation functions are linear

and a bias vector is usually not used. The dimension of the embedding layer is usually

configured to be significantly smaller than the size of the respective input word vocabulary.

To compute the embedding layer, the input vector in One-hot encoding, representing the

𝑘𝑡ℎ vocabulary word, is projected linearly by an embedding matrix 𝐸:

𝑒 (𝑥) = 𝐸 · ℎ(𝑥), 𝐸 ∈ R𝑑×|𝑊 | (2.4)

One of the benefits of using dense and low-dimensional vectors 𝑒 (𝑥) is computational:

a great number of neural network toolkits do not operate well on very high-dimensional,

sparse vectors. The main benefit of the dense representations is the generalization power:

as certain features may provide similar clues, it is beneficial to provide a representation

that is able to capture these similarities (Goldberg, 2016). Learned continuous word

representations have the potential of capturing semantic similarity across words as well

as their morphological and syntactic features (Collobert and Weston, 2008).

In NMT, embedding matrices are usually trained jointly with the rest of the network

using backpropagation and stochastic gradient descent (Rumelhart et al., 1986). In other
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Figure 2.3.: The encoder-decoder architecture of Sutskever et al. (2014). The color coding

indicates weight sharing, from Stahlberg (2019).

areas of NLP, pre-trained word embeddings, such as e.g. word2vec (Mikolov et al., 2013),

trained on unlabelled text have become popular (Collobert et al., 2011).

2.4.2. Encoder-Decoder Networks with Fixed Length Sentence Encodings

Kalchbrenner and Blunsom (2013) developed recurrent continuous translation models

(RCTM) I and II. RCTMs map, without a loss of generality, a fixed-length representation of

the source sentence to a probability distribution over the sentences in the target language.

The development of RCTMs laid the foundation to the rise of to a new family of the

so-called encoder-decoder networks. This type of architecture is nowadays the most

common in NMT (Stahlberg, 2019). In the current state-of-the art both, encoder and

decoder are either based on Recurrent Neural Networks (RNNs) (described in Section 2.5),

Convolutional Neural Networks (CNNs) (described in Section 2.6), or on self-attention

mechanism (described in Section 2.7).

Encoder-decoder networks are subdivided into an encoder network which reads and

encodes a source sentence into a fixed-length vector 𝑐 (x), and a decoder network which

outputs a translation from the encoded vector. Figure 2.3 shows the architecture of an

encoder-decoder network developed by Sutskever et al. (2014). First, the source sentence

x is encoded by the encoder network into an internal representation. This representation

is later passed to the decoder network. At each time step, the decoder generates a target

sentence symbol 𝑦 𝑗 based on the output 𝑦 𝑗−1 and the decoder’s hidden state. The algorithm

terminates when the network produces the end-of-sentence symbol </s>.

Sutskever et al. (2014) presented one of the first working NMT system operating fully

on its own and not relying on any SMT baseline. The main advantage of this approach

is the fact that no highly engineered features are used to train the MT system. On the

contrary, the architecture is rather simple and the system makes no assumptions on the

sequence structure (Stahlberg, 2019).

2.4.3. Attention

One of the challenges for the NMTmodels, in comparison to the SMT, is the poor translation

of longer sentences (Koehn and Knowles, 2017). Sountsov and Sarawagi (2016) refer to it

as the “length bias problem”. Cho et al. (2014a) suggested that this deficiency is due to the

fixed-length source sentence encoding. Sentences with varying length convey different
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Figure 2.4.: Depiction of the attention paid to the relevant parts of the source sentence for

each generated word of a translation example; dark shades of blue indicate

high attention weights, from Ghader and Monz (2017)

amounts of information. The longer the sentence, the more information must be stored in

the fixed-length context vector. As a result, a fixed-length vector “does not have enough

capacity to encode a long sentence with complicated structure and meaning” (Cho et al.,

2014a).

Bahdanau et al. (2015) proposed the concept of attention to avoid having a fixed-length

source sentence representation. In detail, the encoder does not encode all information

in the source sentence into a fixed-length context vector 𝑐 (𝑥) any more. By contrast,

thanks to the attention mechanism, the attentional decoder can pay attention only to the

parts of the source sentence which are relevant to produce the next token. The constant

context vector 𝑐 (𝑥) is, as a result, replaced by a series of context vectors 𝑐 𝑗 (𝑥); one for
each time step 𝑗 . With this novel approach the information can be spread throughout the

sequence of annotations, which can be selectively retrieved by the decoder as required.

In general, the attention mechanism improves the prediction process by deciding which

portion of the source sentence to emphasize at a time (Luong et al., 2015). Nowadays the

standard state-of-the-art NMT system consists of an encoder, a decoder and an attention

mechanism, which are all trained with maximum likelihood in an sequence-to-sequence

fashion (Bahdanau et al., 2015).

Figure 2.6 shows an example of how attention uses the most related source words to

produce a target word at each step of the translation.

2.4.4. Training objective

In general, the paramount training objective is to identify optimal parameters values, e.g.

the weight of matrices and biases, which minimize a certain error function. Each output

of the neural network is compared with the corresponding expected output value from
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the training data set (supervised learning). As a next step, the difference between the two

before-mentioned values is calculated with the use of the error function formulated for the

learning problem at hand. Further, a stochastic gradient descent based algorithm together

with back-propagation is used to back-propagate the error (cf. Goodfellow et al. (2016)).

The back-propagation is most effective if the objective function is well-differentiable.

Cho et al. (2014b) formulate the training problem in NMT as maximizing the conditional

log-likelihood (Equation 2.5). 𝜃 denotes the model parameters, e.g., the weight of matrices

and biases and each (𝑦𝑛, 𝑥𝑛) represents a pair of input/output tokens from a sentence pair

in the training set.

max

𝜃

1

𝑁

𝑁∑
𝑛=1

log𝑝𝜃 (y𝑛 |x𝑛) (2.5)

Maximizing Equation 2.5 is equal to minimizing the cross-entropy, which is proportional

to the negative log-likelihood of the otherwise alike equation.

ANNs are trained on Graphical Processing Unit (GPUs) for acceleration purposes. GPUs

posses a high bandwidth main memory and deep pipelines and are, therefore, well-adapted

to efficiently calculate numerous matrix multiplications in parallel.

2.4.5. Neural Machine Translation Decoding

In the beginning of Section 2.4 we describe the translation probability (Equation 2.3).

However, the probability 𝑃 (y|x) does not provide a method for finding the most probable

translation. The task of finding the most probable translation ỹ for a given source sentence

x is referred to as the decoding or inference problem:

ỹ = argmax

y∈𝑊𝑡𝑟𝑔

𝑃 (y|x), (2.6)

where𝑊𝑡𝑟𝑔 denotes the target language vocabulary.

NMT decoding is a complex task. The search space is wide in range and grows exponen-

tially with the sequence length. Secondly, decoding strategies are searching for the most

probable translation. This does not, unfortunately, imply that the best translation can be

found at all times (Stahlberg, 2019). Surprisingly , more exhaustive searches may lead to

worse translations (Stahlberg and Byrne, 2019). The following strategies to decoding are

used in practice: word sampling from the probability distribution over the target vocabu-

lary at each decoding step, also referred to as “stochastic sampling”, greedy decoding and

beam search (Gu et al., 2017).

Greedy and beam search are based on the left-to-right factorization of NMT, with partial

translation prefixes being scored using the conditional probability: 𝑃 (𝑦 𝑗 |𝑦1: 𝑗−1, x). This
implies that both approaches work in a time synchronous fashion. In each step 𝑗 partial

hypotheses of (up to) length 𝑗 are compared against one another, and a subset of them is

selected for further analysis in the next time step, the rest is pruned. Selection process is

dependent on the traversing technique.
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Figure 2.5.: Greedy search (highlighted in green) and beam search (highlighted in orange)

with beam size 𝐾 = 2, from Stahlberg (2019)

Greedy search selects the most likely target word 𝑦 𝑗 generated in each decoding step.

This simple approach is vulnerable to the so-called garden-path problem (Koehn, 2017).

In certain cases a sequence of words is selected and only later on shall it be realized that

initially less probable words suit the context of the full output better. Unfortunately, greedy

decoding cannot correct this error later once it is committed to a certain path.

Beam search, on the other hand, considers 𝐾 most probable translation prefixes to the

next time step. In this way, the risk of missing out on the globally most probable translation

can be minimized. The 𝐾 active hypotheses are scored by probability. As a next step, each

of these words in the beam is used in the conditioning context for the next word. Due to

this conditioning, different word predictions are made for each hypothesis. Later, the score

for the partial translation is multiplied with the probabilities from its word predictions.

The highest scoring word pairs is selected for the next beam. At each time step only 𝐾

most probable hypotheses are considered, the rest is pruned. Once the end of sentence

sign is reached, the search terminates and the most probable hypothesis is chosen. Usually

parameter 𝐾 is set to 5. Figure 2.5 presents the different in the search strategy between

the greedy and beam searches.

Beam search does not guarantee that a translation with higher or equal overall proba-

bility than predicted by the greedy search is always found. Beam search is also susceptible

to the garden-path problem, although less than the greedy search. Stahlberg and Byrne

(2019) state that the beam search may also suffer from a high number of search errors.

2.4.6. Large Vocabularies: Byte Pair Encoding (BPE)

According to Zipf’s law (Zipf, 1946) words in a language follow a very unevenly distribution.

New words and phrases emerge in the language on a daily basis, e.g. in the form of newly

invented words (“website”, “retweeting” etc.) and named entities (e.g. names of newly

established organizations) (Koehn, 2009).
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On the other hand, neural networks are not designed to handle infinitely large vocabu-

laries. Full-blown vocabularies do not fit into the memory of GPUs (García-Martínez et al.,

2016). Moreover, a large softmax output layer, calculating a probability distribution over

all output words, is computationally very expensive. Therefore, there is an urgent need to

reduce the vocabulary size to e.g. between 20.000 to 80.000 words (Koehn, 2009).

One solution to this problem, has been presented by Sennrich et al. (2016). They propose

splitting up rare words into subword units allowing thus open-vocabulary translation.

Their algorithm uses the logic from Byte Pair Encoding (BPE) compression algorithm

(Gage, 1994). BPE is a simple data compression technique, the purpose of which is to

replace the most frequent pair of bytes in a sequence with a single, not previously used

byte in an iterative fashion. The same logic is applied in the work of Sennrich et al. (2016)

to perform word segmentation. In the following, we describe their approach of creating

sub-words:

First, eachword in the training corpus is split into characters. Original spaces are denoted

with a special space character. This is required as no merges should occur between word

boundaries. As a next step, most frequent pairs of characters are merged together (e.g.

“t” and “h” would be merged to “th” in English). This step is repeated a fixed number of

times. Each merge operation results in a new symbol which represents a character n-gram

(Sennrich et al., 2016). The number of merge operations 𝑘 is a hyper-parameter of the

algorithm. The final symbol vocabulary size is the sum of the size of the initial vocabulary

plus the number of merge operations (Sennrich et al., 2016). The algorithm terminates

once 𝑘 merge operations have been applied.

Languages which share an alphabet (e.g. English and German) benefit from learning BPE

while concatenating the involved languages. In this case, applying BPE segmentation to

source and target language is called “joint BPE”. When BPE is learned jointly (if applicable),

the consistency of segmentation increases. Additionally, jointly applied BPE alleviates

partially the problem of random character insertion/deletion when transliterating named

entities as the vocabularies of the languages are shared.

2.5. Recurrent Neural Machine Translation

The first NMT models using attention are based on RNNs. In Equation 2.3 we defined the

conditional probability 𝑃 (y|x) of a target sentence y = 𝑦
𝐽

1
given a source sentence x = 𝑥 𝐼

1
.

RNNs model this probability as follows (Bahdanau et al., 2015):

𝑃 (y|x) Chain rule

=

𝐽∏
𝑗=1

𝑃 (𝑦 𝑗 |𝑦 𝑗−1
1
, x) =

𝐽∏
𝑗=1

𝑔(𝑦 𝑗 |𝑦 𝑗−1, 𝑠 𝑗 , 𝑐 𝑗 (x)), (2.7)

where the function𝑔(·)models the functionality of the decoder networkwhich calculates

the distribution for the next target token 𝑦 𝑗 given the last produced token 𝑦 𝑗−1, the RNN
decoder state 𝑠 𝑗 ∈ R𝑛 , and the context vector 𝑐 𝑗 (x) ∈ R𝑚 . The size of the encoder hidden
layer is denoted with𝑚, whereas the size of decoder hidden layers with 𝑛. The context

vector 𝑐 𝑗 (x) is a distributed representation of the relevant parts of the source sentence (cf.

Section 2.4.3).
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Encoder: Bidirectional RNN

The encoder network reads the source sentence x and converts it to a sequence of source

sentence annotations h = (ℎ1, ..., ℎ𝐼 ). Each annotation ℎ𝑖 ∈ R𝑚 encodes information about

the entire source sentence x with a special focus on the parts surrounding the 𝑖𝑡ℎ word of

the input sequence.

(Bahdanau et al., 2015) propose a bidirectional RNN (BiRNN, Schuster and Paliwal (1997))

to generate the annotations. A BiRNN consists of two independent RNNs. The forward

RNN
®𝑓 reads x in the original order (from 𝑥1 to 𝑥𝐼 ) and calculates a sequence of forward

hidden states

−→
ℎ = (−→ℎ1, ...,

−→
ℎ𝐼 ). The backward RNN

←−
𝑓 consumes x in reversed order (from

𝑥𝐼 to 𝑥1) resulting in a sequence of backward hidden states

←−
ℎ = (←−ℎ1, ...,

←−
ℎ𝐼 ). The next

hidden state is computed in the following way:

−→
ℎ 𝑖 =

−→
𝑓 (𝑥𝑖,

−→
ℎ 𝑖−1) (2.8)

←−
ℎ 𝑖 =

←−
𝑓 (𝑥𝑖,

←−
ℎ 𝑖−1) (2.9)

The RNNs

−→
𝑓 (·) and←−𝑓 (·) are usually Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997a) or Gated Recurrent Unit (GRU) (Cho et al., 2014b) cells. The

main advantage of LSTMs and GRUs over RNNs is the fact that they alleviate the van-

ishing gradient problem (Kolen and Kremer, 2001) and are able to capture long-range

dependencies.

The annotation ℎ𝑖 is the concatenation of the hidden states

−→
ℎ 𝑖 and

←−
ℎ 𝑖 :

ℎ𝑖 = [
−→
ℎ𝑇𝑖 ;
←−
ℎ𝑇𝑖 ]

T

(2.10)

In this way, the annotation ℎ𝑖 contains the summaries of both the preceding words and

the following words.

Alignment model

This sequence of annotations is used by the decoder and the alignment model later to

compute the context vector (Bahdanau et al., 2015). The context vector 𝑐𝑖 is, then, computed

as a weighted sum of these annotations ℎ𝑖 :

𝑐 𝑗 (x) =
𝐼∑
𝑖=1

𝛼 𝑗,𝑖ℎ𝑖 (2.11)

The weights 𝛼 𝑗,𝑖 are determined by the alignment model 𝑎(·) which scores how well

the inputs around position 𝑗 and the output at position 𝑖 match:

𝛼 𝑗,𝑖 =
exp(𝑎(𝑠 𝑗−1, ℎ𝑖))∑𝐼
𝑘=1

exp(𝑎(𝑠 𝑗−1, ℎ𝑘))
(2.12)

where 𝑎(𝑠 𝑗−1, ℎ𝑖) is a feed-forward neural network which estimates the importance of

annotation ℎ𝑖 for producing the 𝑗𝑡ℎ target token given the current decoder state 𝑠 𝑗−1 ∈ R𝑛 .
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2.5. Recurrent Neural Machine Translation

Figure 2.6.: The architecture of the Recurrent Neural Network developed by Bahdanau

et al. (2015). Model generates the 𝑦 𝑗 word given the input sequence x, from
Stahlberg (2019)

Decoder

The decoder is also a RNN and it constitutes a Neural Language Model (NLM) for the

target language. In Equation 2.7 we stated that 𝑔(·) models the functionality of the decoder

network and 𝑠 𝑗 denotes the decoder’s state. More specifically, 𝑠 𝑗 is computed in the

following way:

𝑠 𝑗 = 𝑓 (𝑠 𝑗−1, 𝑦 𝑗−1, 𝑐 𝑗 ) (2.13)

where 𝑓 (·) is modeled by a GRU or LSTM cell. In contrast to the encoder–decoder approach

from Section 2.4.2, here the probability is conditioned on a distinct context vector 𝑐 𝑗 for

each target word 𝑦 𝑗 . Function 𝑓 may be defined with e.g. the hyperbolic tangent activation

function. Its input vectors are projected linearly using the matrices U
dec,Wdec

, and 𝐶 .

𝑠 𝑗 = 𝑓 (𝑠 𝑗−1, 𝑦 𝑗−1, 𝑐 𝑗 )
e.g.

= tanh(𝑈 dec𝑠 𝑗−1 +𝑊 dec𝐸𝑦 𝑗−1 +𝐶𝑐 𝑗 ), (2.14)

where 𝐸 is a target language embedding projection. Using the hidden state 𝑠 𝑗 , an

intermediate representation for the current target word 𝑦𝑡 can be computed as follows:

y 𝑗 = 𝜙 (s 𝑗 , 𝑦𝑡−1, 𝑐 𝑗 )
e.g.

= tanh(Qss 𝑗 + Qy𝐸𝑦𝑡−1 + Qcc 𝑗 ) (2.15)

Finally, the output vector 𝑜 𝑗 representing a probability distribution over all possible target

words for the decoder step 𝑗 can be computed using the following equation:

𝑜 𝑗 = 𝑔(y 𝑗 )
e.g.

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Oy 𝑗 ) (2.16)
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2.6. Convolutional Neural Machine Translation

Convolutional Neural Networks (CNNs) (LeCun and Bengio, 1995) and Time-Delay Neural

Networks (TDNNs) (Waibel et al., 1989) are a special variation of feed-forward neural

networks which can effectively handle variable-length (time-shifted) sequences and, as a

result, capture long-distance dependencies within them. TDNN was the first architecture

to achieve shift invariance by sharing weights along temporal dimension. Shift-invariant

classification implies that the classifier does not require explicit segmentation prior to

classification. This property makes TDNNs suitable for speech processing. For example,

TDNNs achieve high performance when applied to far distance speech recognition tasks

(e.g. Lang et al., 1990; Dellaert et al., 1996; Peddinti et al., 2015).

In Machine Translation, convolutions are usually one dimensional since MT systems

are learning sequences rather than two dimensional images as in computer vision. Using

convolutions has some benefits for training NMT models. It reduces sequential computa-

tion and CNNs are therefore easier parallelizable on GPUs. Secondly, their hierarchical

structure connects distant words via a shorter path than sequential topologies which eases

the learning process (Hochreiter et al., 2001). Examples of fully convolutional NMT models

(both the encoder and the decoder are convolutional) are ConvS2S (Gehring et al., 2017b)

and SliceNet (Kaiser et al., 2017).

2.7. Self-attention-based Neural Machine Translation

In Equation 2.7 we define the conditional probability 𝑃 (y|x) with the dependency on the

target words 𝑦
𝑗−1
1

until the position 𝑗 − 1. In Section 2.5 this dependency is modeled via a

recurrent connection which transfers the decoder state back to the next time step. Another

possibility to model this dependency is with self-attention. Self-attention shortens paths

between distant words and decreases the amount of sequential computation (Stahlberg,

2019).

Vaswani et al. (2017) presented a first example of a self-attention network: The Trans-

former. The Transformer uses attention (cf. Section 2.4.3) in three areas:

1. within the encoder to allow context-sensitive word representations which depend

on the whole structure of the source sentence,

2. between the encoder and the decoder, similarly to RNNs (Section 2.5)

3. within the decoder to “remember” the recent translation history.

Lakew et al. (2018) and Vaswani et al. (2017) show that the Transformer networks

outperform RNNs in NMT. The reason behind it is that thanks to self-attention, it becomes

easier to capture long-distance interdependent features in a given sentence. RNNs, on the

other hand, require multiple time steps to accumulate necessary information before it can

be linked. With longer distances, it becomes more challenging to capture the information

effectively. Finally, Tang et al. (2018) state that the shorter paths are beneficial for learning

strong semantic feature extractors and help decrease word sense ambiguity.

In the following, we present the Transformer network as developed by Vaswani et al.

(2017).
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Figure 2.7.: The Transformer - model architecture, from Vaswani et al. (2017)

Positional encoding

As Transformer networks do not use any recurrence or convolution, positional encoding

is introduced. Its aim is to provide necessary information about the order of the source

sequence. From the input tokens, learned embeddings of dimension 𝑑model are generated.

Vaswani et al. (2017) use additive encoding which is defined in the following way:

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖) = sin(𝑝𝑜𝑠/100002𝑖/𝑑model) (2.17)

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖 + 1) = cos(𝑝𝑜𝑠/100002𝑖/𝑑model) (2.18)

where 𝑝𝑜𝑠 is the position of a token in the sentence and 𝑖 is the dimension of the vector.

Encoder and Decoder Stacks

Transformer networks follow the encoder-decoder architecture using stacked self-attention

(multi-head attention) followed by a fully-connected feed forward network. Figure 2.7

displays their architecture.
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Figure 2.8.: (left) ) Scaled Dot-Product Attention. (right) Multi-Head Attention; ℎ denotes

the number of attention layers running in parallel, from Vaswani et al. (2017)

Encoder The encoded word embeddings (with positional encoding) are used as the input

to the encoder which consists of 𝑁 = 6 layers each containing two sub-layers:

• a multi-head attention mechanism

• a position-wise fully connected feed-forward network

There are residual connection (He et al., 2016) employed around each of the two sub-

layers to allow for a more effective gradient flow. Each sub-layer is subsequently normal-

ized.

Decoder The decoder also consists of a stack of 𝑁 = 6 identical layers. When looking

at Transformer’s architecture in Figure 2.7, we see that the decoder has an additional

sub-layer performing multi-head attention over the output of the encoder stack. There

are residual connections between each sub-layer, similarly to the encoder. The aim of the

component “masked multi-head attention” is to only allow predictions for the position 𝑖

which depend on the translated outputs at positions less than 𝑖 .

Scaled Dot-Product Attention

Both the encoder and the decoder possesses a sub-layer called “multi-head attention”. This

component builds upon scaled dot-product attention, which operates on a query 𝑄 , key

𝐾 and a value 𝑉 . This attention function maps a query and a set of key-value pairs to

an output. The output is computed as a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function (depends on the attention

mechanism) of the query with the corresponding key. Query, keys, values, and output are

all vectors. Figure 2.8 (left) presents the scales dot-product attention:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑𝑘
)𝑉 , (2.19)
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where 𝑑𝑘 is the dimension of the key. The scaling factor
1√
𝑑𝑘

improves computational

speed and numerical stability (high values imply small gradients of the softmax function

and, as a result, ineffective back-propagation of the error).

Multi-head attentionmechanism

Vaswani et al. (2017) found it advantageous to linearly project the queries, keys and values

ℎ times with different, learned linear projections to 𝑑𝑘 , 𝑑𝑘 and 𝑑𝑣 dimensions, respectively.

Multi-head attention mechanisms obtain ℎ different representations of (𝑄,𝐾,𝑉 ), calculate
scaled dot-product attention for each representation in parallel, yielding 𝑑𝑣 -dimensional

output values. As a next step, the results are concatenated and projected with a feed-

forward layer. Figure 2.8 (right) presents multi-head attention mechanism.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (head1, ..., headh)𝑊 𝑂 , (2.20)

where headi = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 ), (2.21)

where the projections are parameter matrices𝑊
𝑄

𝑖
∈ R𝑑mode

,×𝑑𝑘 ,𝑊 𝐾
𝑖 ∈ R𝑑mode

,×𝑑𝑘 ,𝑊 𝑉
𝑖
∈

R𝑑mode
,×𝑑𝑣

and𝑊 𝑂 ∈ Rℎ𝑑𝑣×𝑑model
. Matrices𝑊𝑖 and𝑊

𝑂
are projection matrices the weights

of which are learned. The benefit of multi-head attention is that the model can jointly

attend to the information from different sub-spaces at different positions. Vaswani et al.

(2017) extecuted their experiments with ℎ = 8 parallel attention layers.

All experiments presented in Section 4.2 are executed using a Transformer architecture.

A complete list of the parameters used to train the networks is presented in Section 4.7.

2.8. Source Factors

Sennrich and Haddow (2016) propose encoding linguistic features (e.g. morphological

features, part-of-speech tags and syntactic dependency labels) into the neural network

input in the form of source factors. They find that their incorporation provides further

improvements in performance of MT models.

In our work, we explore incorporating NE information to signal NE occurrence us-

ing identical technique: source factors. As such, we wish to outline the way they are

incorporated into the neural network input in more detail.

Source factors provide additional word-level information, are applied to the source

language only, and take form of supplementary embeddings that are either added or

concatenated to the word embeddings. This is illustrated with the following formula:

𝐸 · 𝑥 =
⊕

𝑓 ∈𝐹 𝐸 𝑓 · 𝑥𝑖 𝑓 (2.22)

where

⊕
∈ {∑, ∥}, (·) denotes a matrix-vector multiplication, 𝐸 𝑓 is a feature embedding

matrix, 𝑥𝑖 is the 𝑖-th word from the source sentence, and 𝐹 is a finite, arbitrary set of

word features. If source factors are added to the word embeddings, their size remains

unchanged. In the concatenation event, the size of embedding matrix increases by the size

of the concatenation vector.
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Figure 2.9.: An example of a NMT architecture allowing the integration of additional

linguistic information as word features, directly into the input of the neural

network, from Ha et al. (2017)

Figure 2.9 presents a NMT reference architecture where source factors are merged into

the input. To each input token 𝑥𝑖 an additional series of source factors 𝑥
𝑓𝑗
𝑖
is concatenated.

When comparing the architecture from Figure 2.9 with the Equation 2.22, we state that

the size of the feature set 𝐹 equals to 3 (one regular input token and two word features).

2.9. Machine translation evaluation

As the popularity of MT grows, there is an increasing number of scientific groups research-

ing new MT systems and neural architectures. The output of each of the new system must

be evaluated and compared to the existing ones to be able to state whether it translates an

identical input text better than previous approaches.

There are two possibilities of evaluating MT output: the manual and the automatic. The

first one, also referred to as the human evaluation, is conducted by experts in translation

and linguistics. This kind of evaluation is time-consuming and expensive. At the same

time, it is inherently subjective, as on many occasions there does not exist only one fluent

and accurate reference translation (Maučec and Donaj, 2019).

The alternative form of evaluation is the automatic approach. Its metrics are cost-

free alternatives to the human evaluation. Furthermore, it is capable of estimating the

improvement of a given MT system under development. The automatic evaluation relies

on the availability of a human reference translation. It evaluates the output of MT systems

by comparing it to the reference translation and aims to calculate some sort of similarity

coefficient. As mentioned earlier, there is a great variability even in human translation.
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Therefore, it is beneficial to provide more than one human reference translations for each

of the machine translated sentence to be evaluated (Maučec and Donaj, 2019).

BLEU Evaluation Metric

There are several automatic evaluation metrics acknowledged by the MT community:

BLEU (Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Banerjee and Lavie,

2005), WER, TER (Maučec and Donaj, 2019) and others. In this work, we use BLEU as one

of the evaluation metrics. As such, we present this metric in more detail.

The bilingual evaluation understudy (BLEU) score calculates similarity to a human

translation and has been proposed by Papineni et al. (2002). More specifically, it counts the

number of overlapping words between the hypothesis and reference translations. BLEU

score ranges from 0-100. In general, the higher the score, the more accurate and fluent the

translation is in comparison to the human translation.

As previously outlined, there may exist more than one appropriate reference translation.

BLEU addresses this problem by allowing multiple reference translations for every source

sentence. In order to achieve this, BLEU introduces the modified n-gram precision. An

n-gram is a sequence of 𝑛 subsequent words. BLEU measures the proportion of n-grams

in the hypothesis (MT output) that also appear in the reference (human translation).

To address the problem of over-generation of frequent words, BLEU uses an alternative

form of precision (modified precision). It only accepts as many occurrences of a word as

actually appear in some reference text. A modified n-gram precision score 𝑝𝑛, already

appropriately averaged over the entire test set 𝔗, is computed as follows:

𝑝𝑛 := precision
mod

𝑛 (𝔗) =

∑
(𝐻,ℜ)∈𝔗

∑
n-gram∈𝐻

countclipped(n-gram, 𝐻,ℜ)∑
(𝐻, ℜ)∈𝔗

∑
𝑛−gram∈𝐻

count(n-gram, 𝐻 ) , (2.23)

where

countclipped(n-gram, 𝐻,ℜ) = min(𝑐𝑜𝑢𝑛𝑡 (n-gram, 𝐻 ),max

𝑅∈ℜ
(𝑐𝑜𝑢𝑛𝑡 (n-gram, 𝑅))), (2.24)

𝐻 denotes a hypothesis sentence, 𝑐𝑜𝑢𝑛𝑡 (n-gram, 𝐻 ) is the number of occurrences of a

specific n-gram in the hypothesis string 𝐻 and ℜ is the set of references (Papineni et al.,

2002). The aim of the term 𝑐𝑜𝑢𝑛𝑡clipped is to penalize the over-generation of words in the

hypothesis. According to Papineni et al. (2002), shorter 𝑛-grams shall account for correct

word choice (adequacy), longer 𝑛-grams for word order (fluency).

As precision favors shorter hypotheses, hypothesis sentences longer than their refer-

ences are already punished by the modified n-gram precision measure. Consequently, a

brevity penalty (BP) factor is introduced to penalize hypotheses that are too short. Let 𝑐

be the length of the candidate sentence and 𝑟 be the effective reference corpus length. The

brevity penalty is computed as follows:

𝐵𝑃 =

{
1 if 𝑐 > 𝑟

𝑒 (1−𝑟/𝑐) if 𝑐 ≤ 𝑟 (2.25)
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2. Theoretical Foundations

The final BLEU score is calculated as follows:

𝐵𝑙𝐸𝑈 = 𝐵𝑃 · 𝑒𝑥𝑝 (
𝑁∑
𝑛=1

𝑤𝑛 log𝑝𝑛) (2.26)

where𝑤𝑛 are positive weights summing to one.

The BLEU score is widely acknowledged by the scientific community (Koehn, 2009). It

is fast, simple to implement as well as language and domain independent. Furthermore, it

does not necessitate additional resources nor adaptations required by a given specific task.

Finally, it correlates well with the human judgment. Unfortunately, the BLEU score is not

free from shortcomings. Certain researchers criticize BLEU for not being representative at

the sentence level (scores rather have to be averaged over a large test set). Moreover, BLEU

does not recognize similar phrasings or synonyms and, if present, scores them accordingly

(Koehn, 2009).
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This chapter presents the related works focusing on the improvement of Named Entity

(NE) translation in Machine Translation (MT). It starts by outlining early approaches to

address this issue and continues by outlining transliteration methods. In Section 3.3 Deep

Learning (DL) approaches to named entity translation are discussed.

3.1. Early approaches to named entity translation

The problem of named entity translation has been studied for a long time. Conventionally,

dictionaries have been found useful for a dictionary-based machine translation. The

weakness of this approach emerges in the scenario when a specific term is not included in

the dictionary list. The “out-of-dictionary” terms concern names, such as people, places,

companies and products especially (Dale et al., 2000).

Newmark (1981) observes that in human translation certain type of named entities are

left untranslated and are copied into the target language. Based on this argument, Babych

and Hartley (2003) propose creating “do-not-translate lists” with named entities, with

special focus on the organizations’ names, which should be kept verbatim in the translated

text. For this purpose, they use a Named Entity Recognition (NER) system to recognize

named entities in the text and create the aforementioned lists. They achieve significant

performance improvements and conclude that “combining present-day MT systems with

specific IE modules has a beneficial effect on the overall MT quality”.

3.2. Transliteration approaches to named entity translation

Depending on the type of a named entity, MT systems decide if they should be meaning-

translated or phoneme-transliterated (Al-Onaizan and Knight, 2002). Typically this relies

upon the type of the named entity. For instance, personal names tend to be transliterated.

Transliteration is concerned with replacing words in the source language with their

approximate phonetic or spelling equivalents in the target language (Shaalan, 2014). It

originated in the early 2000s as part of machine translation to deal with proper nouns and

technical terms that are translated with preserved pronunciation (Karimi et al., 2011).

Statistical Machine Translation (SMT)

Knight and Graehl (1998) research this topic with the transliteration approach using cas-

caded probabilistic finite-state transducers. In their work, they implement transformation

rules for back-transliteration from Japanese to English. For this purpose, they build a
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weighted finite-state automaton modeling the empirically estimated probability distribu-

tions for back-transliterating English words written in katakana into their original English

form.

Haizhou et al. (2004) indicate the limitations of the previous approach and state that

phoneme-based approaches must be more language-specific as different languages have

varying phonic rules. They propose a framework allowing a direct orthographical mapping

between two different languages without intermediate phonemic representation.

Motivated by the out-of-vocabulary problem, occurring especially when transcribing

named entities, Freitag and Khadivi (2007) develop a a technique which combines conven-

tional MT methods with a single layer perceptron. They present a discriminatively trained

sequence alignment which exploits arbitrary features of the input strings.

Hermjakob et al. (2008) investigate the problem of when transliteration is the most

promising and integrate named entity translation into traditional MT systems. In detail,

they use a tagger to identify good candidates for transliteration and add transliterations to

the Statistical Machine Translation (SMT) phrase table dynamically. During decoding time

these new translation candidates can directly compete with translations during decoding.

Rama and Gali (2009) view the process of transliteration as a process of translation at

the character level, without re-ordering. From this perspective, it is possible to directly

apply a phrase-based SMT system to address the task of transliteration. In their work,

they evaluate several techniques for sequence-pair extraction for transliteration.

Neural Machine Translation (NMT)

Deselaers et al. (2009) use deep belief networks for machine transliteration. Their work

did not deliver competitive results (at the time), yet is demonstrated one of the early

applications of deep belief networks to transliterate named entities. In detail, no finite-

state machines or phrase-based techniques are used. The system is not dependent on word

alignments and beam-search decoding. Furthermore, their analysis includes an evaluation

of the optimal network structure and size as well as demonstrates reordering capabilities

and the creation of multiple hypotheses.

Kundu et al. (2018) experiment with different deep learning architectures for ma-

chine transliteration. Specifically, they train a encoder-decoder RNN and a convolutional

sequence-to-sequence (Conv Seq2Seq) network. This is the first attempt to use a convo-

lutional Seq2Seq approach in transliteration of named entities. In their work, they also

present a novel ensemble method based on counting the frequencies of hypotheses and

creating a voting classifier based on the output. Their framework has been submitted to

the 2018 NEWS Shared Task on Transliteration and achieved top performance for the

En–Pe and Pe–En language pairs and comparable results for other tracks.

Finally, Grundkiewicz and Heafield (2018) present a modern day approach to NE translit-

eration. They train a deep attentional RNN encoder-decoder network and apply state-of-

the-art techniques from NMT, such as dropout regularization (prevents overfitting), model

ensembling, rescoring with right-to-left models, and back-translation. Their submission

to the NEWS 2018 Shared Task on Named Entity Transliteration achieved best results in

several tracks.
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Figure 3.1.: System architecture incorporating an external named entity translation com-

ponent, from Li et al. (2018a)

3.3. Deep Learning approaches to named entity translation

Neural Machine Translation (NMT) has recently shown promising results, replacing

Statistical Machine Translation (SMT) as state-of-the-art approach to machine translation.

Technological advances, such as sequence-to-sequence (Sutskever et al., 2014), attention

mechanism (Luong et al., 2015) and Transformer networks (Vaswani et al., 2017) greatly

contributed to improving accuracy and fluency of machine translation.

Several research groups propose translating named entities prior to the translation of

the whole sentence by an external named entity translation model. Li et al. (2018a), Yan

et al. (2018), and Wang et al. (2017) follow the “tag-replace” training method using an

external MT model. Figure 3.1 presents their architecture in detail. During the training

phase, first a character-level sequence-to-sequence model is trained on an external named

entity list (e.g. from Wikipedia titles and Chinese-English named entity lists v1.0 in this

particular case). This list may be adjusted according to the category information. As a

next step, such trained NE translator and NE recognizer are used to create aligned NE

pairs based on the training corpus for the task at hand. This step results in a list of NE

pairs which is, subsequently, combined with the externally trained NE translator to further

improve its performance. Similar to Luong et al. (2014), the aligned NE pairs are then

replaced with their NE class symbols, resulting in sentence pairs as shown in Figure 3.2.

Finally, such tagged data is used to train the MT model.

Figure 3.2.: Tag-replace training method, from Li et al. (2018a)

During inference, all named entities in the source sentence are replaced by a respective

tag. After the model has translated the sentence, a post-processing step is employed to

recover the translation of the replaced NEs. In this scenario, the NE translation module

is used. While these works achieve successful results in named entity translation, the

drawbacks of the "tag-replace" method include the necessity to train a second translation
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model, alignment errors and the loss of context information while translating named

entities, which e.g. impedes morphological adaptation.

Li et al. (2018b) explores a different approach, namely inserting inline annotations into

the data providing information about named entity features. Such annotations are inserted

into the source sentence in form of XML tags, consisting of XML boundary tags and NE

class labels. Figure 3.3 presents the inline annotation technique of Li et al. (2018b).

Figure 3.3.: Inline annotation applied to a source sentence after tokenization and sub-words

splitting, from Li et al. (2018b)

Section 4.1.3 presents the approach of Li et al. (2018b) in more detail. Both of these

approaches (the inline annotation approach and the tag-replace approach) do not modify

the original sequence-to-sequence NMT architecture and the network can learn by just an

augmentation of the training data.

Recently, researchers have shown the benefit of explicitly encoding linguistic features,

in form of source factors (described in Section 2.8), into NMT (Sennrich and Haddow, 2016;

García-Martínez et al., 2016). Sennrich and Haddow (2016) find that adding morphological

features, part-of-speech tags, and syntactic dependency labels as input features improves

translation quality. Their main innovation over the standard encoder-decoder architecture

is the ability to represent encoder input as a combination of features (source factors) which

are subsequently concatenated or added to the embedding vector. Dinu et al. (2019) use

source factors successfully to enforce terminology.

The use of encoding linguistic features in form of source factors to improve named

entity translation has been performed by Ugawa et al. (2018). The work of Ugawa et al.

(2018) is similar to ours, in the way that they also incorporate NE tags with the use of

source factors into the NMT model to improve named entity translation. They, however,

introduce an additional chunk-level long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997b) layer over a word-level LSTM layer into the encoder to better handle

compound named entities. Additionally, they use a different network architecture (LSTM),

and apply a different annotation technique (IO tagging) than we explore (IOB tagging).

Furthermore, the work of Ugawa et al. (2018) lacks a fair assessment of the quality of

named entity translation. In detail, they based their conclusions on inconsistent BLEU

improvements across three language pairs. Hermjakob et al. (2008) state that “general

MT metrics such as BLEU, TER, METEOR are not suitable for evaluating named entity

translation and transliteration, because they are not focused on named entities”. In this

thesis, we provide an extensive evaluation of the NE quality translation (Section 6.3),

including a human assessment (Section 6.4).

Our approach is outlined in full detail in Sections 4.1 and 4.2.
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This chapter starts by outlining the research questions which this thesis aims at resolving.

Further, it describes the conducted experiments and outlines the language pairs based on

which they are executed. As a next step, Section 4.4 illustrates data pre-processing with

regard to tokenization and data formatting.

The chapter later continues with the analysis of the properties of the training data sets.

Moreover, it present two algorithms: Generate Source Factors and Generate Inline

Annotations both of which are used to annotate named entities in the data. Finally, the

functionality of the Sockeye NMT toolkit is presented together with its configurations and

training parameters which are used to execute the experiments.

4.1. Research questions

This thesis contributes to the area of named entity translation. We explore incorporating

named entity information as additional parallel streams with the use of source factors

(described in Section 2.8) to signal named entity occurrence. In the upcoming examples

source factors are represented as indices. Our experiments focus on annotating named

entities in the source sentence only. No annotation is done on the target side. This section

outlines the research questions and presents studied annotation techniques.

4.1.1. Influence of the granularity of named entity classes

The thesis aims at examining whether the differentiation between different types of named

entities is beneficial to the NMT systems, and whether narrower and more detailed classes

could produce better NE translation. In other words, we explore whether the NE class

granularity may influence translation quality and help decrease word ambiguity. To assess

it, we define two cases:

• a “fine-grained” case – Here we use specific NE class labels (e.g. person, location,

organization) to denote named entities in the source sentence. Value (0) is used for

a regular sub-word (default), (1) for NE class Person, (2) for NE class Location, (3) for
NE class Organization.

• a “coarse-grained” case – Here we use two source factor values only: (0) as default

and (1) to denote a named entity in a generic manner.

We annotate source sentences with an external NER system. Examples for the different

annotation strategies (that we experiment with) are presented in Table 4.1. Each sub-word

is assigned an index denoting its corresponding source factor value
1
.

1
Theway how source factors are being incorporated into the neural network input is described in Section 2.8.
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Language Variant Sentence

English BPE only Belfast - Gi@@ ants won thanks to Patri@@ ck D@@

w@@ yer

English fine-grained Belfast2 -0 Gi@@3 ants3 won0 thanks0 to0 Patri@@1 ck1

D@@1 w@@1 yer1

English coarse-grained Belfast1 -0 Gi@@1 ants1 won0 thanks0 to0 Patri@@1 ck1

D@@1 w@@1 yer1

Table 4.1.: Annotation to assess the influence of named entity labels’ granularity; i. fine-

grained: (0) for a regular sub-word (default), (1) for NE class Person, (2) for NE
class Location, (3) for NE class Organization ii. coarse-grained: (0) default, (1) to

denote a NE

In the “fine-grained” case: Belfast is classified by an NER system as location, therefore

its source factor value is (2), Giants as an organization and receives the value (3) and

finally Patrick Dwyer is recognized as a person and is assigned the value (1). In the

coarse-grained case all named entities are marked with value (1).

A model trained with no external annotation is called a baseline. We refer to the models

which are trained with source factors as “annotated” models. Based on this nomenclature,

we define the following research questions:

Research Question 1 Do annotated models achieve a better named entity translation rate
in comparison to the baseline? Is named entity annotation in the form of source factors
helpful?

Research Question 2 Is there a difference between fine-grained and coarse-grained an-
notation? Do specific named entity class labels contribute to an improved named entity
translation?

4.1.2. Inside-outside-beginning (IOB) tagging

Additionally, we investigate whether inside–outside–beginning (IOB) tagging (Ramshaw

and Marcus, 1999) used to signalize where a NE begins and ends as a second input feature

may guide models to translate compound named entities better. In IOB tagging, (B)

indicates the beginning, (I) the inside and (O) the outside of a NE (a regular word). Thanks

to the IOB tagging, the network receives a signal which words belong together, after

having been split by the BPE algorithm (described in Section 2.4.6). The same logic applies

to compound named entities. Table 4.2 displays an example of the IOB annotation method.

Language Variant Sentence

English IOB tagging BelfastB -O Gi@@B antsI wonO thanksO toO Patri@@B ckI

D@@I w@@I yerI

Table 4.2.: IOB annotation denoting compound named entities; (B) indicates the beginning,

(I) the inside and (O) the outside of a NE (a regular word)
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Research Question 3 Is IOB tagging helpful to translate compound named entities?

4.1.3. Inline Annotation

As our goal resembles that of Li et al. (2018b) (their work is described in Section 3.3), we

compare approaches from Sections 4.1.1 and 4.1.2 against their inline model annotation

method with XML boundary tags. Inline annotations are inserted directly into the source

sentence. No additional input streams are provided. Each named entity is encompassed

with an XML boundary tag denoting the start and end of this named entity. The XML tag

content marks the named entity class.

Li et al. (2018b) use specific NE class labels, which correspond to the “fine-grained” case

in our work. We refer to their approach as “Inline Ann. (fine-grained)” and present this

annotation method in Table 4.3.

Language Variant Sentence

English Inline Ann.

(fine-

grained)

<LOC> Belfast </LOC> - <ORG> Gi@@ ants </ORG> won

thanks to <PER> Patri@@ ck D@@ w@@ yer </PER>

Table 4.3.: Inline annotation: XML markup shows the begin and the end of each named

entity

Research Question 4 How does inline annotation perform in comparison to named entity
annotation with source factors?

4.1.4. Source factors combinationmethods

As outlined in Section 2.8 linguistic features (source factors) can be either added or con-

catenated to the word embeddings. We would like to investigate whether one method

is superior to the other. As such, we formulate the question which vector combination

method performs better.

Research Question 5 Does vector concatenation perform better than vector addition? Can
a clear recommendation be defined for any given language pair?

4.2. Experiments

Based on the research question presented in Section 4.1, we define the following experi-

ments:
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Model no. Label type Variant IOB

1. fine-grained sum no

2. fine-grained concat 8 yes

3. fine-grained sum yes

4. coarse-grained concat 8 yes

5. coarse-grained sum yes

6. Inline Ann. (fine-grained) no

B Baseline no

Table 4.4.: Experimental setup – named entity annotation configurations

Table 4.4 displays the experiments. Column “Model no.” provides the model id; column

“Label type” denotes whether specific (“fine-grained”) or generic (“coarse-grained”) NE

labels are used; column “Variant” describes whether source factors are added (“sum”) or

concatenated (“concat”) to the word embeddings; column “IOB” describes whether IOB

tagging is used as a second source factor stream. We use the source factor embedding of

size 8 for the concatenation case (“concat 8”).

Each of the planned experiments is designed to help in answering one or more research

questions from Section 4.1. The following list explains how we intend to address them:

• Research Question 1 – Compare the performance of models (1-5) with the baseline

(B).

• Research Question 2 – Compare the performance of models (2) and (3) with models

(4) and (5).

• Research Question 3 – Compare the performance of model (1) and with models (2-5)

and the baseline (B).

• Research Question 4 – Compare the performance of models (6) and with the rest of

the models and the baseline (B).

• Research Question 5 – Compare the performance of models (2-5).

Terms, such as “model performance” or “model comparison”, are explained in Chapter 6.

Sections 6.3.2 and 6.4.3 provide scientific findings based on which we answer the research

questions.

4.3. Language pairs and training data

This section outlines the language pairs as well as the training and validation data used to

train the models from Section 4.2.
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4.3.1. Training and validation data

The findings of this master thesis will be based on the following language pairs:

• English-German (En-De)

• English-Chinese (En-Zh)

We train NMT systems for English→German and English→Chinese on the news trans-

lation task data provided for the fourth Conference on Machine Translation (WMT2019).

All corpora are available on the official WMT2019 website
2
and are merged into a parallel

training data set.

Language pair: En-De For the translation from English to German the following data sets

are chosen:

• europarl (v9), Koehn (2005) – The Europarl parallel corpus is extracted from the

proceedings of the European Parliament. It includes versions in approx. 21 European

languages.

• news-commentary (v14), Tiedemann (2012) – The corpus was created as training

data resource for the First Conference on Machine Translation (WMT2016) and

consists of political and economic commentary crawled from the web site Project

Syndicate.
3

Language pair: En-Zh For the translation from English to Chinese the following data sets

are chosen:

• news-commentary (v14), Tiedemann (2012) – (as described above)

• United Nations Parallel Corpus v1.0, Ziemski et al. (2016) – The UN corpus is

composed of the official records and other parliamentary documents of the United

Nations manually translated between 1990 and 2014, and offers six official languages

of the UNs.

In this work, this data set is shortened to match the size of the training data set for

English→German by using the newest data from the end of the corpus for training,

see also Table 4.5.

Validation/Development data We use newstest2018 validation data from the WMT2019

news translation challenge. This validation data was used as a test set for the challenge

from the previous year and has been proved by human translators.

2http://www.statmt.org/wmt19/translation-task.html#download
3https://www.project-syndicate.org/
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4.3.2. Training data statistics

It is imperative to ensure that training data has enough named entities which are recognized

by the spaCy NER system
4
. Should there be not sufficient named entities in the training

data set, the NMT models may not be able to learn the semantics behind the source factors.

Data suitability is evaluated by counting the number of named entities and setting their

amount in relation to the overall number of tokens and to the number of sentences in the

corpus.

Metrics En-De En-Zh

Number of tokens in corpus 58,877,917 51,230,838

Number of NE 1,846,171 2,333,623

Relation: NE to all words ≈ 3.14 % ≈ 4.55%

Number of sentences 2,146,644 2,128,234

Number of sentences without NE 744,758 560,722

Number of sentences with other NE classes
5

319,013 423,967

Number of sentences with NE 1,082,873 1,153,545

Percentage of sentences with NE ≈ 50.44% ≈ 53.95%

Table 4.5.: Number of named entities in WMT2019 training data sets: En-De and En-Zh
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Figure 4.1.: Categorization of named entities in training data sets: En-De and En-Zh, in %

Table 4.5 displays the number of named entities occurring in the training data as

recognized by spaCy NER. There is an almost equal percentage of sentences in both corpora

which contain named entities, 50.44% and 53.95% for En-De and En-Zh respectively, as

well as similar number of overall sentences, approx. 2.1 million. The same findings hold

true for validation/development data (its statistics are available in Appendix A.1).

Figure 4.1 displays the percentage categorization of available named entities among

three classes: Organization, Location and Person. There occurs almost identical division

4
The selection process of this NER system is presented in Chapter 5.

5
A full list of NE classes recognized by spaCy NER is outlined in Appendix A.2.
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among named entity classes across three categories (around 55% for NE label Organization,
35% for NE label Location, 10% for NE label Person). As such, the properties of training
data for both language pairs are very similar.

4.4. Data pre-processing

This section describes the pre-processing steps applied to the training data from Section 4.3.

The pre-processing pipeline applied to the raw training data aims at bringing it into the

format conventionally used to train NMT models. Sections 4.4.1 and 4.4.2 present the

detailed pre-processing steps applied to the training data for the respective language pair

(during the inference time identical pre-processing steps are applied). Data pre-processed

in this way is used to train the experiments described in Section 4.2.

4.4.1. English-German

This subsection presents the exact tools used to pre-process the training corpus for trans-

lating from English to German.

• Tokenization – The source and the target side of the corpus are tokenized using

the Spacy Tokenizer
6
. It is a rather simplistic rule-based tokenizer. First, it splits the

sentence on whitespace characters, then it performs two checks on each token by

going through them from left to right:

1. Check if a substring matches an exception rule, e.g. don’t does not contain

whitespace, but should be split into two tokens, do and n’t, while U.K. should

always remain one token.

2. Check if prefix, suffix or infix should be split off on punctuation marks like

commas, periods, hyphens or quotes, e.g. three-year-old, is split to 5 tokens

(= at each hyphen).

A detailed description of the way Spacy Tokenizer functions can be found on the

spaCy official website
7
. This tokenizer was chosen to match the Named Entity

Recognition system selected in Chapter 5.

• Byte-Pair Encoding (BPE) – (described in Section 2.4.6) A joint source and target

BPE encoding was performed using 32k merge operations. We used the implemen-

tation
8
developed by Sennrich et al. (2016).

4.4.2. English-Chinese

This subsection presents the exact tools used to pre-process the training corpus for trans-

lating from English to Chinese.

First, we start by outlining the tools for the English side of the corpus:

6https://spacy.io/api/tokenizer
7https://spacy.io/usage/linguistic-features#how-tokenizer-works
8https://github.com/rsennrich/subword-nmt
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4. System Description

• Tokenization – The English side of the corpus is tokenized using the spaCy Tok-

enizer.

• Byte-Pair Encoding (BPE) – An independent BPE encoding was learned and

applied using 32k merge operations.

Two possibilities to pre-process the Chinese side of the training corpus are considered:

• word-level Chinese, as described in Bawden et al. (2019) – This approach uses a

simple tokenization tool
9
(mode “conservative”) which splits only at punctuation

marks, and leaves continuous Chinese character strings untouched). On top of the

tokenized data set, BPE (described in Section 2.4.6) is applied.

• character-level Chinese – According to Emerson (2005) a Chinese word contains

on average 1.6 characters. Bawden et al. (2019) states that using raw Chinese

characters in tokenized text makes sense as they form natural subword units (=

words). Their approach segments all Chinese sentences into characters, but keeps

non-Chinese signs unsegmented in order to allow for English words and numbers

to be kept together as individual units. The segmentation strategy of Bawden et al.

(2019) has been found successful for translating into Chinese, however produces

significantly worse results when translating from Chinese into English.

Finally, the first (word-level Chinese) approach was chosen, using OpenNMT (mode

conservative) as tokenizer. As a next step, an independent BPE encoding was learned and

applied using 32k merge operations.

4.5. Data annotation

The previous section (4.4) outlined how the training corpora are pre-processed to be

consumed by the NMT toolkit. This section focuses on describing the process of named

entity annotation in the training data (at inference time identical pre-processing is applied

as well). It describes the mechanisms to generate source factors (Sections 4.5.2 and 4.5.3)

as well as to insert inline annotations (XML markup) (Section 4.5.4) into source sentences.

4.5.1. Process Overview

This subsection provides preliminary information about the annotated models (trained

with source factors).

AnnotatedModels The annotated models (described in Subsection 4.1.1) and models with

IOB tagging (described in Subsection 4.1.2) require named entity annotation. We use spaCy

Named Entity Recognition (NER) system
10
to recognize and classify named entities in the

source sentences. For every source sentence in the training data (after applying BPE), we

generate two lines with source factors:

9https://github.com/OpenNMT/Tokenizer
10
The selection process of this NER system is presented in Chapter 5.
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(i) marking named entities (either the coarse-grained or the fine-grained case),

(ii) marking IOB tagging.

The baseline model is trained with no external annotation. This implies that there are

no additional source factor files generated to train the baseline.

4.5.2. Annotation of named entity classes with source factors

This subsection describes the process of source factor generation in more detail. It focuses

on outlining the algorithm which generates source factor text files which are later one of

the input sources for the NMT toolkit.

The aim of the Algorithm Generate Source Factors (Algorithm 1) is to assign a source

factor value to each of the sub-words in any given sentence. The source factor value

depends on whether the fine-grained or coarse-grained case is processed.

Algorithm 1 Generate Source Factors

For every source sentence 𝑖 (in the BPE encoded form) in the corpus, we do the following:

1. We create a duplicate of the sentence 𝑖 and remove all signs ’@@ ’ from it. By doing so,

we receive the original sentence (still tokenized) from the corpus and call it 𝑜 (which

stands for the “original sentence”). Let us illustrate this based on the following

example:

Sentence 𝑖: Belfast - Gi@@ ants won thanks to Patri@@ ck D@@ w@@ yer .

Sentence 𝑜 : Belfast - Giants won thanks to Patrick Dwyer .

The generation of sentence 𝑜 from sentence 𝑖

2. We annotate sentence 𝑜 with spaCy NER. SpaCy provides the start and end positions

of each named entity. We generate a source factor string according to the words in

the sentence 𝑜 and named entity positions (recognized by spaCy’s). When doing it,

we differentiate between the fine-grained and coarse-grained cases.

Sentence 𝑜 : Belfast - Giants won thanks to Patrick Dwyer

Fine-grained 2 0 3 0 0 0 1 1

Coarse-grained 1 0 1 0 0 0 1 1

The annotation of each word with its source factor value

Thanks to step 2, we have an assignment between each word in sentence 𝑜 to its

source factor value. Now, we translate this assignment to match the length of

sentence 𝑖 , which is in BPE form.
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Algorithm 1 Generate Source Factors - cont.

3. This step describes the extension of the source factors string to the sub-word level.

We loop over each sub-word from sentence 𝑖 (in BPE form). We recognize words

which were split by the BPE algorithm as they contain the sign @@ and count the

number of sub-words each word was split into.

Let 𝑛 denote the number of sub-words the word𝑤 was split into. For each word𝑤 ,

we insert a source factor value (which we know from previous step) 𝑛 times into the

source factor string.

For example, word Giants was split into two sub-words (𝑛 = 2). Therefore, value (3)

is inserted into the final source factor value two times (or value (1) if coarse-grained

case is processed).

Belfast - Gi@@ ants won thanks to Patri@@ ck D@@ w@@ yer

2 0 3 3 0 0 0 1 1 1 1 1

1 0 1 1 0 0 0 1 1 1 1 1

Insertion 𝑛 number of times of the corresponding source factor value

4. Finally, we continue with sentence 𝑖 + 1. Each source factor string is stored in a

separate text file in the same order as sentences appear in the training corpus. This

format is required by Sockeye, our NMT toolkit (described in Section 4.6). Values

are split by a single space sign.

We generate the source factors, based on the pre-processed data. The fact that data is

pre-processed implies that sentences are tokenized and that the BPE algorithm has already

been applied. BPE splits words into sub-words and uses the sign @@ to mark the position

where the division took place
11
.

4.5.3. Annotation of named entity boundaries with source factors

Research question 3 intends to determine whether Inside-Outside-Beginning (IOB) tagging

helps the networks to recognize compound named entities and, as a result, translate them

with less errors.

The algorithm Generate IOB Tagging which generates IOB tags is similar to Algo-

rithm 1. The difference lies in Step 3. Here, instead of inserting the source factor value

denoting the named entity class, either (B) or (I) are inserted depending on the number of

sub-words the word𝑤 was split into. If the sub-words of word𝑤 contain the sign @@, (B)

and (I) will be used (as in Giants case). If word 𝑤 was not split (𝑛 = 1), then only (B) is

inserted (as in Belfast case).

11
This symbol is used as a separator in the implementation by Sennrich et al. (2016).
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Belfast - Gi@@ ants won thanks to Patri@@ ck D@@ w@@ yer

B O B I O O O B I I I I

The generation of (B), (I) and (O) tags according to the position of sub-words in the sentence

4.5.4. Inline Annotation with XMLmarkup

Research question 4 intends to determine whether inline annotation (described in Sec-

tion 4.1.3) performs better than the annotated models.

The aim of the Algorithm Generate Inline Annotations (Algorithm 2) is to insert

inline annotations into every source sentence in the corpus.

Algorithm 2 Generate Inline Annotations

For every source sentence 𝑖 (in the BPE form) in the corpus, we do the following:

1. We remove all signs @@ from sentence 𝑖 and create, thus, sentence 𝑜 (the original

sentence from the corpus).

2. We loop over each sub-word in sentence 𝑖 and create a function 𝑓 mapping words

from the original sentence 𝑜 onto a list of its sub-words generated by the BPE

algorithm. Function 𝑓 has as many arguments as there are words in the original

sentence.

For example, the following mappings are created:

𝑓 (𝐵𝑒𝑙 𝑓 𝑎𝑠𝑡) = [′𝐵𝑒𝑙 𝑓 𝑎𝑠𝑡 ′]
𝑓 (𝐺𝑖𝑎𝑛𝑡𝑠) = [′𝐺𝑖@@

′, ′𝑎𝑛𝑡𝑠′]
𝑓 (𝑡ℎ𝑎𝑛𝑘𝑠) = [′𝑡ℎ𝑎𝑛𝑘𝑠′]
𝑓 (𝐷𝑤𝑦𝑒𝑟 ) = [′𝐷@@

′, ′𝑤@@
′, ′𝑦𝑒𝑟 ′]

3. We run spaCy NER over sentence 𝑜 and receive a list of recognized and classified

named entities in this sentence together with their positions.

4. We insert XML boundary tags according to the positions from previous step into

sentence 𝑜 .

5. We replace each word in sentence 𝑜 with its BPE sub-words with the use of function

𝑓 .

4.6. Sockeye: The NMT toolkit

This section presents the NMT toolkit which is used to conduct the experiments from

Section 4.2.
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4. System Description

We use the Sockeye machine translation framework (Hieber et al., 2017) for our experi-

ments
12
. Sockeye is a sequence-to-sequence framework for Neural Machine Translation

based on Apache MXNet Incubating
13
. It implements the well-known encoder-decoder

architecture with attention.

Sockeye supports a number of up-to-date features, such as:

• multiple model architectures: Encoder-Decoder (Wu et al., 2016), Convolutional

(Gehring et al., 2017a), Transformer (Vaswani et al., 2017)

• multiple supported attention mechanisms (dot, mlp, bilinear, multihead-dot, encoder

last state, location)

• cross-entropy label smoothing, e.g. Pereyra et al. (2017)

• layer normalization (Ba et al., 2016)

The Sockeye toolkit is free software released under the Apache 2.0 license.

4.7. NMT architecture

This section describes the NMT architecture used to execute the experiments from Sec-

tion 4.2.

We train our models with a Transformer (Base) network (Vaswani et al., 2017) archi-

tecture
14
. While we use a state-of-the-art encoder-decoder Transformer network, our

approach does not modify the standard NMT model architecture, thus can be applied to

any sequence-to-sequence NMT model. Tables 4.6 and 4.7 present training configurations

and training parameters. Each model is trained with configurations presented in these

tables.

Parameter name Value

encoder type transformer

decoder type transformer

no. of encoding layers 6

no. of decoding layers 6

no. of hidden units in transformer layer 512

no. of heads for all self-attention 8

no. of hidden units in transformers feed forward layers 2048

activation function in feed forward layers relu

Table 4.6.: The architecture of the Transformer network used across all experiments

12https://awslabs.github.io/sockeye/index.html
13http://mxnet.incubator.apache.org/
14
A detailed description of the Transformer architecture is outlined in Section 2.7.
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4.7. NMT architecture

Parameter name Value

optimizer for SGD update rule Adam

batch size 4096 tokens

word embedding size 512

evaluation metric on validation data perplexity

dropout probability for multi-head attention 0.1

maximum sequence length 100 tokens

source factor embedding size
15

8

random seed 13

Table 4.7.: NMT Sockeye training parameters (used across all experiments)

Experimental setup Each model is trained on 1 GPU Tesla T4. Training finishes if there

is no improvement for 32 consecutive checkpoints on the validation data newstest2018
(validation data from the WMT2019 news translation task).

Baseline and Inline Annotation models The baseline model and the Inline Annotation

models (model 6 in Table 4.4) are trained with no source factors.

Annotatedmodels The annotated models are trained with some additional parameters

with which Sockeye train commands are started. Table 4.8 presents their values.

Parameter name Value

source-factors-combine sum/concat

source-factors-num-embed 8

Table 4.8.: NMT Sockeye training parameters for the annotated models

15
only for the concatenation case

43





5. Selection of the Named Entity
Recognition system

This chapter focuses primarily on outlining the decision process taking place to determine

which Named Entity Recognition (NER) system to use for annotating named entities to

execute the experiments from Section 4.2. Tested systems are investigated by examining

their recognition quality (Section 5.3) and annotation performance (Section 5.4). The aim

of these analyses is to assess the suitability of NER system candidates and to choose the

best available system. Additionally, this chapter provides a list of researched named entity

classes which are annotated in the training data and at inference time, outlines reasons

for their selection and provides their examples (Section 5.2).

The language chosen for the analyses in this section is determined as follows: According

to the research questions (Section 4.1) and the experiments’ list (Section 4.2) named entities

on the source side of the corpus are annotated. As stated in Section 4.3, English is the

source language for all executed experiments. As such, English models of NER system

candidates are examined.

5.1. NER system candidates

The following three NER systems have been considered for the work at hand. They seem

to be commonly used within the NLP community. Table 5.1 outlines the training data used

to train their pre-trained models.

• spaCy NER1
– is an open-source library for advanced Natural Language Processing

in Python. The spaCy NER system is Deep Learning-based and contains a word

embedding strategy using sub-word features and “Bloom” embeddings, a deep

convolutional neural network with residual connections, and a novel transition-

based approach to named entity parsing
2
. The default model identifies a variety of

named and numeric entities.

spaCy NER provides three pre-trained English models which differ in model size and

F1-scores. We decided to select the middle-sized model (en_core_web_md) for the

following reasons. First, the large model is almost 9 times larger and has, therefore,

longer loading times. Secondly, according to the official spaCy’s documentation,

both models have almost identical accuracy on the same test set (around 85%)
3
. The

name of the test set is not specified in the documentation.

1https://spacy.io/usage/linguistic-features#named-entities
2https://spacy.io/universe/project/video-spacys-ner-model
3https://spacy.io/models/en
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5. Selection of the Named Entity Recognition system

• NLTK NER4
(Natural Language Toolkit) – NLTK is a leading platform for building

Python programs to work with human language data. It contains a feature-based

NER system. The Chunker and the NER modules are trained on the ACE corpus

with a Maximum Entropy model (Loper and Bird, 2002).

• Stanford NER5
(Finkel et al., 2005) – is a feature-based Named Entity Recognizer

implemented in Java. The software provides a general implementation of (arbitrary

order) linear chain Conditional Random Fields (CRF) sequence models. The system

is trained on local word features such as the spellings of the current and surrounding

words. In addition, distributional similarity features are included, which provide

information on where the considered word tends to appear in the corpus (Manning

et al., 2014). The Viterbi algorithm (Forney, 1973) is used for decoding, e.g. to

determine the best sequence of tags.

The English model with 3 classes is selected. It is trained on the largest amount of

training data and has, therefore, the highest potential for good performance.

The above NER candidates are investigated by examining their quality of recognition

(Section 5.3) and annotation performance (Section 5.4).

5.2. Researched Named Entity Classes

This section focuses on outlining the researched named entity classes and provides reasons

for their choice.

As NE Recognition is an active research field and the search for the best recognition

methods continues, the quality of NER systemsmay vary under different research scenarios

and domains (Goyal et al., 2018). Incorrect NE annotation in the data may influence the

results of this work negatively. Table 5.1 presents NE classes recognized by studied NER

systems.

NER system Recognized classes Trained on

spaCy NER Person, Organization, Location and

others
6

OntoNotes5,

Common Crawl

NLTK NER Person, Organization, Location,

Geo-Political Entity, Date, Time,

Money, Percent, Facility (Infrastruc-

ture)

ACE 2004 Multilingual

Training Corpus
7

(numerous corpora and

trained models available
8
)

Stanford NER Location, Person, Organization

(model with 3 classes)

CoNLL-2003,

MUC-6, MUC-7,

ACE 2002 Multilingual Train-

ing Corpus

Table 5.1.: List of supported NE classes by examined NER systems

4https://www.nltk.org/book/ch07.html (Section 5)

5https://nlp.stanford.edu/software/CRF-NER.html
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5.3. Quality Analysis

Each NER system is trained using different training datasets and may have different

definitions of the same NE class. It may prove to be challenging to unify the definitions

and ensure a fair evaluation of multiple NER systems.

With the above observations in mind, we focus on three most established and well-

researched NE classes. These are: Person, Location and Organization. We limit, thus, the

possibility of incorrect annotation and inaccurate evaluation. Examples of different named

entity instances are presented below:

• Person – Kim Jong-il, Robert Fogel, Reagan, Abu Ghraib, Sarkozy, Patrick Dwyer,

Franziskus Beauvillier, Walid al-Moualem

• Organization – The United Nations, World Bank, IMF, NATO, The Islamic State, The

European Trading Scheme

• Location – East Asia, Europe, The Korean Peninsula, Silicon Valley, West Pacific,

Baltics, The Baltic Sea, Harlem

All above examples are taken from the training data in Section 4.3.1.

5.3. Quality Analysis

The aim of the quality analysis is to assess the precision and recall values of each of the

NER system candidates. Based on the results, we are able to select the most accurate NER

system. This helps us to minimize the amount of incorrectly annotated named entities

while executing the experiments from Section 4.2.

The analysis is executed on three independent test sets. Their statistics and properties

are described in Subsection 5.3.1. Subsection 5.3.2 explains how the quality analysis is

executed. Finally, the results together with factors influencing the evaluation are presented

in Subsection 5.3.3.

5.3.1. Description of the test data sets

The evaluation is conducted on the following test sets:

• CoNLL-2003 Shared Task eng.testb test set (Sang and De Meulder, 2003) – This test

set was created at the University of Antwerp. It was used during the CoNLL-2003

Shared Task: Language-Independent Named Entity Recognition challenge. The

English data was taken from the Reuters Corpus
9
.

6
The entire list is presented in Appendix A.2.

7
Corpus is available in the NLTK Downloader Explorer and here: https://catalog.ldc.upenn.edu/

LDC2005T09.
8
The full list is available at: http://www.nltk.org/nltk_data/.

9https://trec.nist.gov/data/reuters/reuters.html
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5. Selection of the Named Entity Recognition system

• Wikipedia Gold Standard (Balasuriya et al., 2009) – This test set consists of 149

articles manually annotated articles from the May 22nd, 2008 dump of English

Wikipedia. The articles describing named entities were selected at random, with a

roughly equal proportion of article topics from each of the four CoNLL-03 classes

(LOC, MISC, ORG, PER).

• Groningen Meaning Bank (GMB) Corpus
10
(Bos et al., 2017) – consists of public do-

main English texts with corresponding syntactic and semantic representations. The

GMB corpus is developed at the University of Groningen. The corpus was initially

annotated with external language technology tools (for segmentation, part-of-speech

tagging, named entity tagging etc.), however, thanks to the collaborative editing

by experts (“people with the required linguistic knowledge”) incorrect annotations

have been eliminated.

3000 sentences have been randomly selected from this data set for the purpose of

the quality analysis.

Properties of the test sets

This subsection provides statistics about the used test sets and discusses their properties

influencing the evaluation and the results of the quality analysis.

NER system Sentences LOC PER ORG Total

CoNLL-2003 3,684 1668 (34%) 1617 (33%) 1661 (33%) 4946

Wikipedia Gold Standard 1841 1013 (36%) 934 (33%) 895 (31%) 2842

Groningen Meaning Bank 3000 1312 (55%) 512 (21%) 583 (24%) 2407

Table 5.2.: Quality analysis: Properties of the test sets

Table 5.2 outlines the number of sentences as well as the number of named entities

(together with their percentage shares) of each test set.

5.3.2. Quality Analysis Description

This section describes the execution process of the quality analysis. For each sentence 𝑖 in

the test set we do the following:

1. Based on the named entity annotations provided with each test set, we create a list

of named entities together with named entity class labels for the sentence 𝑖 . We call

this list a reference list, as it contains the universal truth about NE labels.

2. We run the candidate NER system over sentence 𝑖 and receive, thus, a list with

hypothetical named entities together with their class labels recognized by the tested

NER system.

10https://gmb.let.rug.nl
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3. We calculate the precision and recall values for sentence 𝑖 by comparing whether

all named entities in the reference list are in the same form (string-based) in the

hypothesis list. We check if named entity boundaries and class type match.

Each hit is called a “true postitive” (TP). If a named entity is present in the reference

list, but missing in the hypothesis list we call this a “false negative” (FN); if a named

entity is present in the hypothesis list, but missing in the reference list we call this a

“false positive” (FP). We calculate the precision and recall values with the formulas

presented in Section 2.3.

4. Finally, we calculate the F-score with the formula presented in Section 2.3. In the

F-score, we set beta to be one, as precision and recall are equally important and call

it the F1-score in the later part of this work.

Labelmapping Table 5.1 provides a list of named entity class labels recognized by each of

the NER system candidates. As we decided to focus on Person, Location and Organization

classes only, we filter out other labels. There are, however, labels, e.g. Geo-Political Entity,

instances of which fall under one of the three chosen categories. In such case, they are

mapped onto their hypernym (from the three chosen classes).

Such mapping is only made for spaCy’s class GPE (Geo-Political Entity). This class is

mapped onto Location.

5.3.3. Evaluation

This subsection presents the results of the quality analysis as well as outlines their inter-

pretation.

Test set NER system Precision Recall F1-Score

CoNLL-2003

spaCy NER 73.57% 45.26% 56.04%

NLTK NER 55.73% 46.05% 50.43%

Stanford NER 92.42% 69.15% 79.11%

Wikipedia Gold Standard

spaCy NER 62.57% 46.64% 53.44%

NLTK NER 50.00% 53.80% 51.83%

Stanford NER 81.14% 57.84% 67.54%

Groningen Meaning Bank

spaCy NER 75.82% 54.23% 63.23%
NLTK NER 64.64% 56.01% 60.02%

Stanford NER 71.24% 50.32% 58.98%

Table 5.3.: Results of the quality analysis: Precision, Recall and F1-Score of tested NER

systems

Factors influencing the interpretation of the results

The following facts about the tests sets may influence the interpretation of the results of

the quality analysis:
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1. Stanford NER has been largely trained on the CoNLL-2003 training corpus. This

corpus was developed in 2003 and contains named entities which may no longer

be up-to-date (new named entities emerge on a daily basis). Training data used

for experiments in this work comes from the WMT news translation task from

2019 (compare with Section 4.3) and contains current proper names of people and

organizations. As such, Stanford NER may have a decent quality on CoNLL-2003

test set, yet still under-perform while annotating WMT2019 news translation task

data.

2. All three test sets are out-of-domain for spaCy and NLTK NER systems. However,

Stanford NER has largely been trained on the CoNLL-2003 training corpus. Naturally,

certain amount of named entities in the CoNLL-2003 eng.testb test set have already

been seen by Stanford NER in the training data. This is a not zero-shot test set.

Fu et al. (2014) confirm this observation about Stanford NER (English model). Stan-

ford NER does not perform well on test sets, which have some difference from the

training data. For example, its performance drops to 64.30% F1-Score on the Wall

Street Journal test set.

3. The Groningen Meaning Bank corpus is not a manually created test set. However, it

has been scrutinized, reviewed and corrected by the scientific community.

Interpretation of the results

Based on the results from Table 5.3, we draw the following conclusions:

1. Overall, the precision values are higher than recall values across all test sets and NER

system candidates. This implies that the number of false positives is smaller than the

number of false negatives while testing the NER system candidates. This is a positive

phenomenon as we would prefer a NER system not recognize a named entity than

to incorrectly annotate it. Incorrect and inconsistent annotation of the training data

may mislead the network and make the learning process more challenging (compare

with Section 4.1). Not annotating all named entities is not as harmful (yet still not

desired).

2. Stanford NER has the highest F1-score for two test sets (CoNLL-2003 and Wikipedia

corpus), whereas spaCy NER achieves the highest F1-score for the Groningen Mean-

ing Bank corpus. The percentage differences in F1-scores between Stanford and

other NER systems are higher for CoNLL-2003 and Wikipedia corpora than spaCy

achieves for the Groningen Meaning Bank test set. This showcases Stanford NER’s

superiority over other NER system candidates.

One has take into account, however, that CoNLL-2003 and Wikipedia tests sets are

17 or 10 years old (respectively) and Stanford may perform worse on up-to-date data

from the WMT2019 news translation task.

3. SpaCy NER’s F1-score is consistently higher than NLTK’s over all three test sets.
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5.4. Performance Analysis

5.4. Performance Analysis

The performance analysis focuses on measuring the execution time required to complete

the quality analysis. Execution time plays a crucial role to annotate large amount of named

entities in the training data within a reasonable time frame.

5.4.1. Experimental Setup

Due to the fact that the generation of source factors is implemented in Python, we use

the Python-implemented NLTK class nltk.tag.stanford11 to call Stanford NER in our

evaluation landscape. This may have a negative influence on the execution time.

The performance analysis is executed on Ubuntu 16.04 with Intel(R) Xeon(R) Platinum

8259CL CPU @ 2.50GHz processor with 4 cores. To measure the execution time of spaCy

NER, NLTK NER, and Python-implemented Stanford NER extension Python package time

was used.

5.4.2. Evaluation

Table 5.4 presents the results. Column “Sentences” describes the total number of sentences

in each test set, column “Exec. time” describes the total execution time of the Python

script, column “Time/1 sent.” calculates the required time to annotate one single sentence

(“sent.” stands for “sentence”). The last feature will be used to make a prediction about

the execution time required to annotate the training data set (approx. 2.1M sentences,

according to Section 4.3).

Test set NER system Sentences Exec. time in [s] Time/1 sent.

CoNLL-2003

spaCy NER 3684 29.8 0.008

NLTK NER 3684 37.5 0.010

Stanford NER 3684 5988.3 ≈ 1h 40min 1.625

Wikipedia Gold Standard

spaCy NER 1841 14.1 0.008

NLTK NER 1841 18.3 0.010

Stanford NER 1841 2996.9 ≈ 50min 1.628

Groningen Meaning Bank

spaCy NER 3000 25.8 0.009

NLTK NER 3000 32.5 0.011

Stanford NER 3000 4907.3 ≈ 1h 22min 1.636

Table 5.4.: Results of the performance analysis: Execution times required to annotate the

test sets

Interpretation of the results

Based on the results from Table 5.4, we draw the following conclusions:

11http://www.nltk.org/api/nltk.tag.html#module-nltk.tag.stanford
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5. Selection of the Named Entity Recognition system

1. At first glance, Stanford NER’s long execution times become visible. They are

between approx. 160 to 200 times longer than for spaCy NER and NLTK NER. Such

long annotation times make the use of the Stanford NER impossible. The requirement

for the NER system candidates is to be able to annotate 2.1M sentences (from the

training corpus) within a reasonable time frame. If Stanford NER’s use necessitates

1.62s to annotate one sentence, it would take up to 990 hours (≈ 41 days) to annotate
2.1M sentences. Long execution times of the Python-implemented NLTK plug-in of

Stanford NER are also confirmed in the its documentation
12
.

One possible solution to Stanford NER’s long processing times would be to parti-

tion the training corpus into multiple subsets and annotate them in parallel. An-

other solution recommended by the official Stanford CoreNLP’s documentation
13

is to set up a local Java server instead of starting a Java process each time the

StanfordNERTagger.nltk.tag is called. According to this analysis
14
, this should

speed up the process 17 times (from 24 hours to 85 minutes), still not making

Stanford NER acceptable for our use-case.

2. The estimated execution time, based on the results of the performance analysis, to

annotate the training data set (Section 4.3) for spaCy is approx. 5 hours
15
. Moreover,

spaCy NER and NLTK NER have a comparable execution speed.

5.5. Conclusion

The aim of this chapter was to select the most suitable NER system for annotating data

used in the experiments described in Section 4.2.

Based on the results of the quality and performance analyses, we decide to continue with

spaCy NER system. SpaCy is a fast and accurate tool and contains up-to-date language

models (for English and German). In spite of its notable accuracy, Stanford NER is not

able to annotate data in an efficient way. Moreover, spaCy NER system performs best on a

most up-to-date test set (Groningen Meaning Bank), which is out-of-domain for all three

NER system candidates.

12https://stanfordnlp.github.io/CoreNLP/other-languages.html#python
13https://github.com/nltk/nltk/wiki/Stanford-CoreNLP-API-in-NLTK
14https://towardsdatascience.com/a-comparison-between-spacy-ner-stanford-ner-using-all-us-

city-names-c4b6a547290
15
The actual execution time was approx. 6 hours. The difference may result from the fact that generating

the source factors was not included in the performance analysis.
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6. Evaluation

This chapter focuses on the evaluation of the experiments from Section 4.2. It starts by

analyzing the properties of the test data set which is used to execute the evaluation. Later, it

continues with the execution of three analyses: the automatic evaluation of the translation

quality (measurement of the BLEU score), the automatic named entity evaluation and its

human counterpart.

The first analysis aims at assessing the general translation quality, whereas the other

two target to measure the translation quality of named entities. We present the algorithms:

Automatic andHumanNamed Entity Evaluation used to conduct the before-mentioned

analyses. We also discuss their properties and potential deficiencies.

Furthermore, we execute an assessment of the annotation quality of spaCy’s NE German

model and provide translation examples from the annotated model and the baseline. Finally,

we execute the noise analysis to estimate the influence of the incorrect annotation by the

NER system on the named entity translation quality.

6.1. Description of the test data set

This section presents the test data set from the WMT2019 news translation challenge

newstest2019. Table 6.1 displays relevant statistics about the newstest2019 test data set.

SpaCy’s model en_core_web_sm1 is used to recognize and classify named entities.

Number of words 42,034

Number of NE 2,681

Ratio NE to all words ≈ 6.38 %

Number of sentences 1997

Number of sentences w/o NE 454

Number of sentences with other NE classes
2

266

Number of sentences with NE 1277

Percentage of sentences with NE ≈ 63.95 %

Table 6.1.: Characteristics of the WMT2019 test data set

The percentage-based characteristics of the newstest2019 test set are similar to those

from training data (the latter ones are displayed in Table 4.5). newstest2019 has identical
content for both language pairs (English-German and English-Chinese) and contains 1997

1https://spacy.io/models/en#en_core_web_sm
2
A full list of NE classes recognized by spaCy NER is outlined in Appendix A.2.
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Figure 6.1.: Categorization of named entities in WMT2019 test data sets: En-De and En-Zh,

in %

sentences, in which 63.95% of the sentences on the English side contain at least one named

entity. The number of sentences with named entities in the test data set is approx. 10%

higher than in the training data. Overall, 36% of sentences in this test data set do not

contain any named entities. This is an important feature as we also wish to assess the

performance of our trained models on a subset of newstest2019 without any named entities

(Section 6.2.2).

Figure 6.1 displays the percentage categorization of available named entities among

three classes: Organization, Location and Person. There are 2681 named entity occurrences;

908 belong to the label Location (34% of all NEs), 870 to the label Person (32%) and 903

to the label Organization (34%). Each sentence with named entity occurrence contains,

on average, approx. 2 NEs. There occurs almost identical division among named entity

classes across three categories.

6.2. Evaluation of the general translation quality

This section reports the BLEU score (described in Section 2.9) for each of the models from

Section 4.2.

Model no. Label type Variant IOB En→De En→Zh

1 fine-grained sum no 33.61 26.29

2 fine-grained concat 8 yes 33.11 26.45
3 fine-grained sum yes 33.07 26.26

4 coarse-grained concat 8 yes 32.90 26.08

5 coarse-grained sum yes 32.70 26.34

6 Inline Ann. (fine-grained) no 32.50 26.05

B Baseline no 32.60 26.29

Table 6.2.: BLEU scores on newstest2019
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6.2. Evaluation of the general translation quality

We perform the evaluation on the test data set newstest2019 (described in Section 6.1).

It is pre-processed in an identical manner as the training data (cf. Section 4.4). To assess

the general translation quality, we calculate the BLEU score using the evaluation script

multi-bleu-detok.perl3 from Moses (Koehn et al., 2007). First, we transform the MT output

into a tokenized text (we remove the BPE separator character @@). Further, we detokenize

the MT output with detokenizer.perl4 (Koehn et al., 2007) for En–De and use OpenNMT

detokenize function to do the same for En–Zh.

Table 6.2 displays the results. Column “Model no.” identifies each model with its id,

“Label type” denotes whether specific (“fine-grained”) or generic (“coarse-grained”) NE

labels are used; column “Variant” describes whether source factors are added (“sum”) or

concatenated (“concat”) to the word embeddings; column “IOB” describes whether IOB

tagging is used as a second source factor stream.

6.2.1. Evaluation of the BLEU scores on newstest2019

Based on the results in Table 6.2, we draw the following conclusions:

• Almost all models annotated with source factors show minor improvements w.r.t

BLEU in comparison to the baseline. One Chinese model (model no. 4) has an

insignificantly lower score than the rest.

• The fine-grained model with source factors added and no use of IOB tagging (model

no. 1) seems to perform best for the translation from English to German and achieves

around one BLEU point more than the baseline. While translating from English to

Chinese model no. 2 achieves the highest BLEU score.

• Overall, German fine-grained models (models 1-3) achieve higher BLEU improve-

ments than their Chinese counter-parts.

• There is no clear trend visible while assessing the “variant” column.

As the BLEU score only assesses the quality of NE translation indirectly, we do not

deem it to be a reliable evaluation metric to assess the NE translation quality. As named

entities affect only a small part of a sentence, we do not expect high BLEU variations.

Hermjakob et al. (2008) make identical observations. In their work, they state that “general

MT metrics such as BLEU, TER, METEOR are not suitable for evaluating named entity

translation and transliteration, because they are not focused on named entities”.

Consequently, the answers to the research questions presented in Section 4.1 cannot be

resolved based on the BLEU scores. We answer them based on the results of an analysis

which targets NE translation quality directly (Sections 6.3 and 6.4).

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu-

detok.perl
4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
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6. Evaluation

6.2.2. Evaluation of the BLEU scores on a test set without named entities

In this section we investigate how the NMT systems perform on test sets not containing

any named entities. We are especially interested in determining how the annotated models

perform. For this purpose, we calculate the BLEU scores for each of the models from

Section 4.2 in the following experiment scenario.

The analysis is executed on the subset of the newstest2019 test set which is created by

filtering out all sentences with at least one named entity. SpaCy NER system (English

model) is used to determine such sentences. We refer to this newly created test set as

nonNE-newstest2019 in later part of this work. nonNE-newstest2019 test data set has 454
sentences (cf. with Table 6.1).

Model no. Label type Variant IOB En→De En→Zh

1 fine-grained sum no 32.11 19.97
2 fine-grained concat 8 yes 31.63 19.94

3 fine-grained sum yes 31.77 19.50

4 coarse-grained concat 8 yes 31.14 19.57

5 coarse-grained sum yes 31.06 19.54

6 Inline Ann. (fine-grained) no 30.88 19.05

B Baseline no 31.08 19.30

Table 6.3.: BLEU scores on nonNE-newstest2019

Based on the results from Table 6.3, we draw the following conclusions:

• Almost all models annotated with source factors show improvements w.r.t BLEU in

comparison to the baseline. One German model (model no. 5) has an insignificantly

lower score than the rest.

• The fine-grained model with source factors added and no use of IOB tagging (model

no. 1) seems to perform best for the translation of both language pairs.

• Inline Annotation models for both language pairs perform slightly worse then the

baseline.

In general, we state that external annotation does not influence the overall fluency and

translation quality negatively in the annotated models.

6.3. Automatic Named Entity Evaluation

In this section we execute an automatic in-depth analysis of the NE translation quality

with spaCy and Stanford NER (Finkel et al., 2005) systems. We use spaCy to evaluate

German models and Stanford to do the same for Chinese models.
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6.3. Automatic Named Entity Evaluation

Test set: random300 For this purpose, we randomly select 100 sentences from newstest2019
containing at least one named entity for each of the three classes (Person, Location, Or-
ganization) on the English side of the corpus, in total 300 sentences. There is an equal

percentage of named entities across all classes. We refer to this data set in later part of

this work as random300.

6.3.1. Process description

The aim of the Algorithm Automatic Named Entity Evaluation (Algorithm 3) is to

automatically assess the translation quality of named entities. The evaluation is called

“automatic” due to the fact that we use a NER system to execute it. This evaluation takes

place in the target language (German or Chinese). We use spaCy’s NER German model
5

de_core_news_md for En–De and Stanford’s NER (Finkel et al., 2005) Chinese model (4

classes) for En–Zh to locate named entities in the target sentences.

In the automatic NE evaluation we make use of the reference translations as they inter

alia contain the correct translations of named entities. The following algorithm presents

this evaluation process:

Algorithm 3 Automatic Named Entity Evaluation

For every reference translation 𝑖 in the test data set, we do the following:

1. We annotate the reference sentence 𝑖 with an external NER system (spaCy or Stanford

NER) and create a list 𝑟 with named entities in the reference translation. We do not

enclose their class labels as they are not evaluated.

2. We check, with the Python function find, if each named entity in the list 𝑟 is present

at any position in the hypothesis (MT output). If yes, we define this case as a “hit”,

otherwise as a “miss”. We store the number of “hits” and “misses” by adding them

to the global variables: ℎ𝑖𝑡𝑔 and𝑚𝑖𝑠𝑠𝑔.

Finally, we calculate the result according to the NE match rate formula:

𝑁𝐸 𝑚𝑎𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 =
ℎ𝑖𝑡𝑔

ℎ𝑖𝑡𝑔 +𝑚𝑖𝑠𝑠𝑔

6.3.2. Results

This subsection presents the results of the automatic evaluation of the named entity

translation quality of the MT output. It is executed on the random300 test data set. The
source factors annotating named entities are generated with the use of the algorithms

presented in Section 4.5. All models from Section 4.2 are evaluated. Based on the results

of this analysis, we are able to answer the research questions from Section 4.1.

5https://spacy.io/models/de#de_core_news_md
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6. Evaluation

Tables 6.4 and 6.5 display the results. Column “Total” calculates the accumulated NE
match rate for the three named entity classes.

Preliminary observations:

• At first glance, we see that the result values for En–De are significantly higher

than for En–Zh (the total NE match rates for En–De are in the 70s, whereas the

rates for En–Zh are in the mid-20s). We attribute this partly to the transliteration

issues which emerge while translating from English to Chinese and, thus, occurring

mismatch between the reference and hypothesis translation
6
.

• In general, the baseline models show high performance (high NE match rates). This
is attributed to the fact that a certain amount of named entities has already been

seen by the network in the training data.

En→De

Model no. Label type Variant IOB LOC PER ORG Total

1 fine-grained sum no 73.68 70.11 61.79 69.89

2 fine-grained concat 8 yes 72.87 71.96 63.41 70.67

3 fine-grained sum yes 75.71 70.85 69.11 72.39
4 coarse-grained concat 8 yes 74.09 71.22 62.60 70.67

5 coarse-grained sum yes 75.30 71.22 65.04 71.61

6 Inline Ann. (fine-grained) no 70.45 67.16 61.79 67.39

B Baseline no 74.09 71.59 60.16 70.36

Table 6.4.: Results of the automatic analysis on random300 data set for En–De with spaCy

NER, NE match rate in %

En→Zh

Model no. Label type Variant IOB LOC PER ORG Total

1 fine-grained sum no 41.67 20.07 31.62 24.41

2 fine-grained concat 8 yes 33.33 23.36 36.76 27.96
3 fine-grained sum yes 41.67 20.44 33.09 25.12

4 coarse-grained concat 8 yes 33.33 22.63 33.09 26.30

5 coarse-grained sum yes 33.33 21.90 38.97 27.73

6 Inline Ann. (fine-grained) no 33.33 19.71 34.56 24.88

B Baseline no 33.33 18.98 35.29 24.64

Table 6.5.: Results of the automatic analysis on random300 data set for En–Zh with spaCy

NER, NE match rate in %

Based on the results from Tables 6.4 and 6.5, we answer research questions from Sec-

tion 4.1. When we refer to the “model performance”, we determine it by comparing the

values from the column “Total” in the aforementioned tables.

6
An explanation of the term “transliteration issues” is outlined in Section 6.3.3.
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6.3. Automatic Named Entity Evaluation

• Research Question 1

Do annotated models achieve a better named entity translation rate in comparison to
the baseline? Is named entity annotation in the form of source factors helpful?

We observe improvements in named entity translation for En–De and En–Zh among

almost all classes, showing that augmenting source sentences with NE information

leads to their improved translation.

Additionally, based on the fact that models 4-5 have higher total NE match rates
than the baseline models, we state that the coarse-grained models perform better

than the baseline. This finding indicates that the mere information that a word is a

NE proves to be useful to the NMT system even if the class is not clearly specified.

• Research Question 2

Is there a difference between fine-grained and coarse-grained annotation? Do specific
named entity class labels contribute to an improved named entity translation?

Augmenting the models with exact NE class labels (fine-grained case) seems to

achieve, on some occasions, higher NE match rates in comparison to the coarse-

grained case. This statement holds true for model pairs 3 and 5 (En-De) and 2 and 4

(En-Zh). In spite of this trend, there are a few exceptions, e.g. the performance of

model 2 is weaker than model 5 (En-De). Identical observation can be made with

model 3 being worse than models 4 and 5 (En-Zh).

As model 1 is not trained with IOB tagging, we do not consider it while answering

this question.

• Research Question 3

Is IOB tagging helpful to translate compound named entities?

Yes.

There is no improvement in the models not using IOB tagging annotation (model 1).

Their total NE match rate values are lower than that one of the baseline models. As

such, IOB tagging, indicating compound named entities, proves to be an important

piece of information for the NMT systems.

• Research Question 4

How does inline annotation perform in comparison to named entity annotation with
source factors?

Inline Annotation does not deliver promising results, contrary to the findings of Li

et al. (2018b), with the total NE match rate below that one of the baseline system

(En–De) or insignificantly above (En–Zh).

• Research Question 5

Does vector concatenation perform better than vector addition? Can a clear recommen-
dation be defined for any given language pair?
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Based on the performance of models 2-5, we do not recognize any clear trend. We

conclude that model’s variant (the fact whether it is trained while adding or con-

catenating word features to the word embeddings) is likely to be a hyper-parameter.

Its value needs to be empirically determined to achieve the highest performance

possible.

Validation of the NEmatch rates on Stanford NER

En→De

Model no. Label type Variant IOB LOC PER ORG Total

1 fine-grained sum no 76.25 76.14 60.00 73.70

2 fine-grained concat 8 yes 75.62 77.16 64.62 74.88

3 fine-grained sum yes 80.00 78.68 69.23 76.78
4 coarse-grained concat 8 yes 75.62 77.66 67.69 75.36

5 coarse-grained sum yes 77.50 76.65 69.23 76.48

6 Inline Ann. (fine-grained) no 73.75 74.11 60.00 71.80

B Baseline no 78.75 76.65 60.00 74.64

Table 6.6.: Results of the automatic analysis on random300 data set for En–Dewith Stanford
NER, NE match rate in %

After having executed the automatic analysis with spaCy NER, we wish to validate the

results of the En–De models with a second state-of-the-art NER system: Stanford NER.

The analysis is conducted in an identical way as earlier and only the En–De models are

analyzed. At the point of writing this thesis, spaCy does not provide a Chinese model.

Table 6.6 presents the results.

Based on the results from Table 6.6, we draw the following conclusions:

• First, we observe that the overall NE match rates are higher than in Table 6.4. We

attribute this phenomenon to the fact that Stanford NER recognizes a different set of

NEs in the reference sentences than spaCy does. This, however, is not problematic

as we are interested in the variations in NE match rates between the models. In

general, there are no differences in the result trends and conclusions of the automatic

analysis, regardless whether spaCy or Stanford is used to conduct it.

• All models trained with IOB tags translate NEs more accurately than the baseline

model does. Again, fine-grained model trained with IOB tags and source factors

added to the word embeddings achieves the highest NE match rate.

• The model trained without IOB tags has a lower NE match rate than the baseline

re-confirming thus the usefulness of the IOB tags.

6.3.3. Drawbacks of the automatic named entity evaluation

This section outlines the drawbacks of the automatic named entity analysis.
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6.3. Automatic Named Entity Evaluation

1. Transliteration issues

We observe that named entities in the reference translation (from the test set) are on

some occasions translated according to the Chinese homophonic creation
7
. If the ML

model decides to preserve a named entity from the source sentence in its verbatim form,

the automatic evaluation is unable to recognize such cases and assesses them as “misses”.

These translations, however, may be correct as in certain cases it is acceptable to keep

named entities in their original form. Transliteration may occur in the reference and

hypothesis and causes, as a result, difficult to recognize mismatches. In the following,

we present an example of transliteration causing evaluation difficulties:

Source Mayorga claims Ronaldo fell to his knees after the alleged incident and

told her he was " 99 percent " a " good guy " let down by the " one

percent . "

Reference 马约尔加称，罗纳尔多在指称事件发生后下跪对她说，自己“ 99%

”的时候都是“绅士”，而如今却被那“ 1% ”拖下水。

Hypothesis Mayorga号称Ronaldo在据称事件发生后坠入其神职人员，并告诉
她"99% "是"良好服饰"，被"1% "取代。

Table 6.7.: Example of a transliteration from English to Chinese; occurring in the reference

only

Table 6.7 provides an example of a transliteration occurring in the reference translation

only. Table 6.8 outlines a transliteration issue occurring in the hypothesis only.

Source Speaking to the United Nations General Assembly , Foreign minister

Walid al-Moualem said conditions in the country are improving .

Reference 外交部长Walid al-Moualem在联合国大会上表示，叙利亚的条件
正在好转。

Hypothesis 在联合国大会发言时，外交部长瓦利德·穆阿莱姆说，该国的条件
正在改善。

Table 6.8.: Example of a transliteration fromEnglish to Chinese; occurring in the hypothesis

only

Hypothesis translations from Tables 6.7 and 6.8 are evaluated as “misses”, although

their translation is linguistically correct.
8

Transliteration issues partly explain the lower NE match rates across all models (1-6 and

the baseline) for the language pair En–Zh in Table 6.5. The En–De automatic analysis

may also be afflicted with errors of morphological origin. Their operating principles

and effects on the automatic evaluation are identical with the transliteration issues.

7
A list of Chinese homophones is available here: http://hskhsk.pythonanywhere.com/homophones.

8
This observation is confirmed by a native speaker. Examples in Tables 6.7 and 6.8 origin from the human

evaluation (Section 6.4).

61

http://hskhsk.pythonanywhere.com/homophones


6. Evaluation

2. String-based search

We intentionally decide against annotating the hypothesis sentence with an external

NER system to recognize named entities while executing the automatic evaluation. This

would introduce even greater potential for incorrect named entity recognition. In detail,

an external NER system may be inaccurate and may deliver on some occasions false

positives, false negatives or provide incorrect named entity boundaries. We discuss the

accuracy of a NER system in more detail in Section 6.4.4.

Therefore, we decided to execute a string-based search in the hypothesis. While this

evaluation form performs better, it also does not provide an optimal solution. With a

string-based search we are incapable of determining if a named entity we are at a given

point in time examining is in fact the one we wish to target.

Let us illustrate this based on the following example, we observed while executing the

automatic analysis:

Source The George Washington Bridge is named after the first U.S. President:

George Washington.

Reference Die George Washington Brücke ist nach dem ersten U.S.-Präsidenten:

George Washington benannt.

Recognized

NEs (in ref.)

(George Washington Brücke, ORG), (U.S., LOC), (George Washington,

PER)

Hypothesis Die George Washington Bridge ist nach dem ersten U.S.-Präsidenten

benannt: George Washigton.

Table 6.9.: Deficiencies of the string-based search

Following the logic outlined in Algorithm 3, a string-based search searches for George

Washington Brücke, and does not find this string in the reference. As a next step, it

searches for U.S. and assess this check as a “hit”. Later, it continueswith George Washington.

The person name George Washington has been misspelled by the NMT system. The

automatic evaluation mistakenly finds this sub-string in George Washington Brücke.

Final evaluation is: 1 hit, 2 misses. The correct evaluation, however, should be: 2 hits, 1

miss (It is acceptable to keep the name Bridge in a verbatim form).

3. Inaccurate NER systems

In this paragraph, we describe how the inaccuracies of the NER system influence the

automatic evaluation negatively.

Each sentence in the test data set random300 contains a named entity (according to the

output of the spaCy’s English model). There are, however, cases where, e.g., Stanford

NER does not find any named entities in the Chinese reference translation producing,

thus, false negatives. This occurs approx. 10 times out of 300 for Stanford NER and has

not been observed while using spaCy NER system (German model). An example of a

false negative error is presented in Table 6.10. Here, a named entity Worcestershire
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is not recognized as “Location” in the reference translation. As a result, a correctly

translated named entity in the hypothesis is not counted as a “hit”.

Another example of a NER system inaccuracy is observed when false positives occur

in the reference translations. This implies that the automatic evaluation is searching

for words which are not named entities. An example of such occurrences is presented

in Table 6.10. As BST is not a named entity, the automatic evaluation should not be

assessing if such string is present in the hypothesis.

Source Disorder broke out at HMP Long Lartin in Worcestershire at about

09:30 BST on Sunday and is ongoing.

Reference Die Störung brach bei HMP Long Lartin in Worcestershire gegen 09:30

BST am Sonntag aus und dauert an.

Recognized

NE (in ref.)
(HMP Long Lartin, ORG), (BST, ORG)

Table 6.10.: An example of how the inaccuracies of theNER system influences the automatic

analysis

We address the drawbacks of the automatic analysis presented in this section by execut-

ing a human named entity evaluation in Section 6.4.

6.4. Human Named Entity Evaluation

In view of the drawbacks of the automatic evaluation (Section 6.3.3) and the fact that the

NER systems are prone to delivering inaccurate results
9
, we perform a human evaluation.

Its aim is to provide a high level of certainty that annotating named entities with source

factors leads to their improved translation. This section outlines the test data set, describes

the evaluation rationale and presents the results.

6.4.1. Process Description

The human evaluation consists in recognizing named entities in the source sentence,

comparing them to the corresponding named entities’ translation in the MT output (in the

hypothesis) and calculating the NE match rate. Note that the reference translation is used

in a supporting role only and is not assessed directly. The human evaluation is conducted

on the random300 data set.
Algorithm 4 presents the logic according to which the human evaluation is executed:

9
spaCy’s German model has 83% F1-Score (https://spaCy.io/models/de) with a warning that it may

“perform inconsistently on many genres”, the same holds for Stanford NER: https://nlp.stanford.edu/

projects/project-ner.shtml.
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6. Evaluation

Algorithm 4 Human Named Entity Evaluation

For every source sentence 𝑖 in the test data set, we do the following:

1. We search for named entities in the sentence 𝑖 and create a list 𝑠 with named entities

in the source sentence. We do not enclose their class labels as they will not be

needed.

2. We check if each named entity in the list 𝑠 is correctly translated in the hypothesis

sentence (from the MT output). If yes, we define this case as a “hit”, otherwise as

a “miss”. We store the number of “hits” and “misses” by adding them to the global

variables: ℎ𝑖𝑡𝑔 and𝑚𝑖𝑠𝑠𝑔.

Finally, we calculate the result according to the NE match rate formula:

𝑁𝐸 𝑚𝑎𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 =
ℎ𝑖𝑡𝑔

ℎ𝑖𝑡𝑔 +𝑚𝑖𝑠𝑠𝑔

We use the term “correctly translated” in Algorithm 4. As language may often be

ambiguous, several correct translation variantsmay exist. When evaluating the translations

from the MT output (hypotheses), we applied the following evaluation logic:

(i) if a named entity is in a different form in the hypothesis than the reference proposes

or

(ii) a named entity is transliterated into or from Chinese,

but its form is still grammatically and semantically correct, its occurrence is counted as

correct.

Test set We execute the human evaluation on the random300 test data set. This is the
same test set as used in the automatic analysis (Section 6.3). We choose this test set with

an intent to be able to compare the results of the human and automatic analyses.

Comparedmodels We compare the baseline and the best model (highest total NE match
rate in Tables 6.4 and 6.5) for En–De and En–Zh and refer to them as annotated models. In

detail, we evaluate the following models:

(i) for En–De: model no. 3 (compare with Table 6.4)

(ii) for En–Zh: model no. 2 (compare with Table 6.5)

Assessment guidelines The evaluation of En–De models is executed by a user with

business-fluent near-native skills in German whereas the evaluation of En–Zh models is

done by a Chinese native speaker. Human assessors discussed and unified the definition

of each named entity class to ensure a homogeneous and fair assessment of each language

pair.
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6.4. Human Named Entity Evaluation

Assessment style The human assessment is executed in a single-blind fashion. This

implies that human assessors are unaware of the model’s identity (model number).

6.4.2. The superiority of the human analysis

Section 6.3.3 outlines three deficiencies of the automatic analysis resulting from its nature

of execution. This section outlines how the human analysis improves these issues. The

following drawbacks are eliminated:

1. Transliteration issues Transliteration issues presented in point 1 result from the

mismatch occurring between the reference and hypothesis translations. In the human

analysis, however, the reference translation is no longer evaluated. Moreover, a native

speaker is able to assess if a given named entity in the source sentence is translated

into Chinese in accordance with the style common in the Chinese language. As such,

transliteration issues in the human analysis are eliminated.

2. String-based search Errors resulting from the fact that the automatic analysis mistakes

one named entity for another (as in Table 6.9) are eliminated. A human assessor

recognizes which named entity is processed at a given point in time.

3. Inaccurate NER systems Evident miss-classification errors, such as false positives

or false negatives (as presented in Table 6.10), are eliminated. Furthermore, thanks

to the unification of definitions of each named entity class an objective evaluation is

provided. Last but not least, as the evaluation is executed in a single-blind fashion, it is

also deemed as impartial.

6.4.3. Results

Table 6.11 presents the results of the human evaluation. Column “Total” calculates the

accumulated NE match rate for three named entity classes.

En→De

Model no. Label type Variant IOB LOC PER ORG Total

3 fine-grained sum yes 93.02 83.52 78.01 85.17
B Baseline no 89.77 82.05 70.92 82.14

En→Zh

2 fine-grained concat 8 yes 73.85 67.04 64.27 68.05
B Baseline no 71.43 61.90 57.35 63.24

Table 6.11.: Results of the human evaluation on random300 data set, NE match rate in %

The NE match rate for human evaluation is higher than for its automatic counterpart.

This is due to the fact that the deficiencies of the automatic evaluation (described in

Section 6.4.2) are eliminated.

Based on the results from Table 6.11, we are able to reinforce our claims from Sec-

tion 6.3.2.
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• Research Question 1

Do annotated models achieve a better named entity translation rate in comparison to
the baseline? Is named entity annotation in the form of source factors helpful?

We can state that the annotated models perform consistently better than the baseline

and, in fact, the incorporation of external annotation in form of source factors into

the source sentence leads to an improvement in named entity translation.

There is an increase of 3.67% in the total NE match rate value for En–De and 7.61%

for En–Zh. Further, we observe the greatest NE match rate improvement while

translating organizations’ names (+9.99% for En–De, and +12.07% for En–Zh).

6.4.4. The F1-score of the spaCy NER system on random300 data set

While executing the human named entity evaluation, we also annotated false positives and

false negatives of NE annotations in the reference, executing, thus, a quality check of spaCy

NER on data from the news domain. The evaluation is executed on the random300 data
set and on the German model only. Precision and recall values are outlined in Table 6.12.

The values are similar to the official ones provided in spaCy documentation
10
.

Precision 84.43

Recall 85.93

Table 6.12.: Precision and recall values of the spaCy NER system, evaluated on the ran-
dom300 data set, in %

Observation Values in the above table lead to the conclusion that incorrect named entity

annotation may occur relatively frequently in the training data. We hypothesize that

annotating named entities with source factors may lead to better results if the training

data is fully correctly annotated.

6.5. Translation examples

In this section we discuss our observations based on the human analysis and provide

translation examples. We compare the translation outputs of the annotated model (model

no. 3) and the baseline for the language pair English→German.

1. Ignoring of low-frequency words

The use of source factors seems to alleviate the problem of ignoring low-frequency

proper names as the annotated models appear to consistently react to named entity

occurrence by producing a translation. The baseline, however, may ignoremore complex

named entities, producing, thus, an under-translation as in the Alaska State Troopers
example in Table 6.13.

10https://spacy.io/models/de
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6.5. Translation examples

Source Palin, 29, of Wasilla, Alaska, was arrested (...) according to a report released

Saturday by Alaska State Troopers.
Reference Palin, 29, aus Wasilla, Alaska, wurde (...) verhaftet. Gegen ihn liegt bereits ein

Bericht (...), so eine Meldung, die am Samstag von den Alaska State Troopers
veröffentlicht wurde.

Annotated Palin, 29 von Wasilla, Alaska, wurde (...) verhaftet (...), wie ein am Samstag von

Alaska State Troopers veröffentlichter Bericht besagt.
Baseline Laut einem Bericht von Alaska, der Samstag veröffentlicht wurde, wurde Palin,

29 von Wasilla, Alaska, (...) verhaftet (...).

Table 6.13.: Translation examples: The baseline model ignores the named entity (Alaska
State Troopers) in the source sentence

2. Under- and over-translation

Furthermore, source factors seem to guide the annotated models better (in comparison

to the baseline) to prevent an over-translation, as shown in the Home Depot example or

a miss-translation (Gwyneth Paltrow’s Goop), both examples are in Table 6.14.

3. Superfluous translation enforcement

On the other hand, a frequent cause of errors in the annotated models stems from the fact

that organizations’ or persons’ names are translated verbatim instead of being preserved

in their original forms, as in the Francis/Franziskus and Giants/Giganten example in

Table 6.15. This problem concerns both the annotated model and the baseline. This

behavior may not be desirable for persons’ names, yet for organizations’ names the

desired output is dependent on the context and the translation language pairs.

Source Saipov, 30, allegedly used a Home Depot rental truck (...).

Reference Saipov, 30, hat (...) angeblich einen Leihwagen vonHome Depot (...) benutzt (...).
Annotated Saipov, 30, soll einen Mietwagen aus dem Home Depot benutzt haben (...).

Baseline Saipov, 30, soll einen Home Department Depot Rental benutzt haben (...).

Source The pair’s business had been likened to Gwyneth Paltrow’s Goop brand.

Reference Das Geschäft der beiden war mit der Marke Goop von Gwyneth Paltrow ver-

glichen worden.

Annotated Das Geschäft des Paares wurde mit der Marke Gop von Gwyneth Paltrow
verglichen.

Baseline Das Geschäft des Paares wurde mit der Marke von Gwyneth Palop verglichen.

Table 6.14.: Translation examples: Under- and over-translations produced by the baseline
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Source The Giants got an early two-goal lead through strikes from Patrick Dwyer and

Francis Beauvillier.
Reference Die Giants hatten durch Treffer von Patrick Dwyer und Francis Beauvillier eine

frühe Zwei-Tore-Führung.

Annotated Die Giganten bekamen durch die Streiks von Patrick Dwyer und Franziskus
Beauvillier ein frühes Ziel.

Baseline DieGiganten erhielten durch die Streiks von Patrick Dwyer und Francis Beauvil-
lier ein frühes Ziel.

Table 6.15.: Translation examples: superfluous translation enforcement

6.6. Estimation of the effect of the NER annotation quality

In Section 6.4.4 we state that spaCy NER achieves approx. 85% F1-score on the random300
test data set. This value implies that a certain amount of named entities is incorrectly

annotated in the training data and during inference time. In the same section we formulate

a hypothesis stating that the NE translation improvement would be higher if the data were

fully correctly annotated. In this section we aim at quantifying this claim.

The objective of this section is to perform an estimation of the effect of the NER

annotation quality. As we are not able to improve the F1-score of the NER system
11
, we

knowingly and purposely introduce a predefined amount of annotation error into the

training data, and wish to assess its effects on the NE translation rates. We call this analysis,

in short, a noise analysis and execute it on En–De models only.

There are three types of errors committed by spaCy NER, we empirically observed

during the human analysis:

1. False Positives – During the human evaluation, we noticed that this type of error

seems to occur e.g. when a word is capitalized (e.g. “Sarahs Handy” is annotated as a

person) or when all letters are capitalized (e.g. “10.00 AMCEST”, “CEST” is annotated

as an organization). Most importantly, this type of error does not appear at random,

e.g we do not observe its occurrence on regular verbs, pronouns, adjectives and

adverbs. It would be incorrect to annotate a certain amount of words in a haphazard

manner without investigating how probable it would be for spaCy to also annotate

them in a false positive manner.

2. False Negatives – Based on our observations from the human evaluation, this type

of error seems to occur when spaCy encounters a rare named entity, e.g. “East Baton

Rouge” as an example of a location, and does not annotate it.

3. Incorrect Labels – This type of error occurs when a named entity is recognized, but

it is incorrectly classified. This implies a false positive error of an entity and a false

negative of the same entity but with a different class label. Intuitively, incorrect

labels cause a double penalty as two types of errors are found.

11
It would be possible to improve the F1-score of a given NER system, however such adaptation is out of

scope of this work.
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6.6. Estimation of the effect of the NER annotation quality

In general, it is challenging to develop a reliable heuristic which imitates the probability

distribution of False Positive errors (error type no. 1) because of high linguistic complexity.

We decide against annotating random words only. As such, we propose the following four

experiments, which incorporate error type two and three only:

1. 𝑁𝐴20 – 20% of NEs found by spaCy are not annotated imitating, thus, false negative

errors (error type no. 2). 𝑁𝐴 stands for “not annotated”.

2. 𝐼𝐿20 – 20% of NEs have an incorrect label imitating, thus, error type no. 3. 𝐼𝐿 stands

for “incorrect label”. Instead of the classification from the NER system, the other

two remaining labels are chosen with an equal probability. For example, if an entity

is classified as an “ORG”, it is annotated as either “PER” or “LOC” and so on.

3. 𝐼𝐿40 – 40% of NEs have an incorrect label imitating, thus, error type 3. We are inter-

ested in discovering the effect of intensifying the error source for one experiment.

For this purpose, we choose error type no. 3 and decide to double the amount of

incorrectly annotated named entities.

4. 𝑁𝐴10 + 𝐼𝐿10 – 10% of NEs are not annotated imitating, thus, false negative errors

(error type no. 2). In addition, 10% of NEs have an incorrect label imitating, thus,

error type no. 3. This experiment is designed to discover how the combination of

two types of errors influences the NE translation rates.

The above experiments are conducted with an identical experimental setup (training

corpus, pre-processing) as the experiments in Sections 6.2, 6.3 and 6.4. As we would like

to investigate how robust the NE translation is with different quality of annotation, we

introduce the noise to the training data set only. All models are evaluated on newstest2019
with an identical NE annotation as in Sections 6.3 and 6.4.

Results and Evaluation

Table 6.16 presents the results of the noise analysis. The results of the En–De baseline
model and the annotated model with the highest NE match rate are outlined towards the

end of the table to enable an easier comparison. Their results are replicated from Tables 6.2

and 6.4.

En→De

Experiment type BLEU LOC PER ORG Total

𝑁𝐴20 32.52 74.09 73.06 61.79 71.29

𝐼𝐿20 32.47 74.90 71.96 61.79 71.14

𝐼𝐿40 32.72 72.87 71.80 61.79 70.14

𝑁𝐴10 + 𝐼𝐿10 33.03 70.85 71.96 62.60 69.73

Baseline 32.60 74.09 71.59 60.16 70.36

Best model for En–De (model no. 3) 33.07 75.71 70.85 69.11 72.39

Table 6.16.: Results of estimation of the effect of the NER annotation quality on random300
with spaCy NER for En–De, NE match rate in %
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Observations:

• Both 𝑁𝐴20 and 𝐼𝐿20 have similar BLEU scores and experience a drop of approx. 1%

in the total NE match rates. This would imply that both types of errors: no. 2 and

no. 3 have a comparable effect on NE translation quality and lead to similar quality

drops in translation.

• When comparing the total NE match rates of 𝐼𝐿20 and 𝐼𝐿40, we state the following:
Increasing the amount of incorrect labels by doubling their amount, results in an

additional quality drop of 1 %. This may suggest a linear dependency.

• Based on the total NE match rate for 𝑁𝐴10 + 𝐼𝐿10, we state that combining different

types of errors, results in a significantly lower NE match rates than in the other

experiments. This leads to the conclusion that the combination of different error

types perplexes the networkmore than a higher amount of error of just one type. This

is an interesting occurrence as a real NER system outputs errors of three different

origins (error types no. 1, 2 and 3). This suggests that improving the F1-score of a

NER system, may lead to a significant improvement in the NE match rates of the
annotated models.

Overall, the noise analysis demonstrates that the improvement of the NER system

annotation quality, would lead to an enhanced named entity translation while using the

annotation method presented in this thesis. As a result, there is a potential for higher

improvements in the NE match rates than those reported in the final human analysis in

Section 6.4.
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7. Conclusion and future work

This chapter summarizes the thesis with regard to achieved research results and outlines

the general conclusions based on the findings of the analyses presented in this study.

Furthermore, it considers shortly the strengths and limitations of our annotation approach.

Finally, the chapter provides an overview of possible further research and improvements

building on this work.

7.1. Conclusion

Challenges arising in the new digital era, require intensified international cooperation

and collaborative work. A further intensification of intercultural exchange necessitates

overcoming language barriers. In order to achieve this goal, automated translation solutions

and large-scale Machine Translation systems are being made available to thousands of

people over desktop and mobile solutions. The urge to deliver such platforms drives the

research in the area of MT.

This thesis contributes to the area of named entity translation. Our work focused on

establishing whether annotating named entities with the use of source factors leads to

their more accurate translation. After executing a series of experiments, we can state the

following:

1. The annotated models achieve higher BLEU scores than the baseline. As a result, we

state that named entity annotation leads to higher BLEU values of the translated texts.

Furthermore, we show that our annotation technique does not result in a worse transla-

tion performance than the baseline in the scenario where no named entities are present

in the source sentence.

2. The automatic named entity evaluation demonstrates that the annotated models trans-

late named entities with a higher translation quality than a regular NMT system trained

with no external annotation. This conclusion is confirmed by validating the results of

the automatic analysis on a second NER system.

3. Finally, based on the results of the human analysis, we can state that the annotated
models perform consistently better than the baseline. There is an increase of 3.67% in

the total NE match rate value for En–De and 7.61% for En–Zh. Further, we observe the

greatest NE match rate improvement while translating organizations’ names (+9.99%

for En–De, and +12.07% for En–Zh).

All of the above observations lead to the conclusion that the incorporation of named

entity annotation leads to their improved translation.
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Limitations of the NE annotation approach

1. The application of the NE annotation approach during the inference time necessitates

the development of pre-processing annotation pipelines the aim of which is to annotate

named entities in the desired text with an external NER system prior to its translation.

This may result in longer inference times depending on the implementation. According

to the analysis conducted in Chapter 5, however, a state-of-the art NER system annotates

a given text in an extremely performant way. Nevertheless, it shall be advised tomeasure

the latency of the incorporation of named entity annotation (prior to its translation)

into a NMT system in productive landscapes.

2. The quality of the NER system plays a crucial role during the annotation of named

entities in the data as well as during the evaluation (cf. with Section 6.3). By establishing

spaCy’s F1-Score on random300 test set during the human named entity analysis to

amount to approx. 85%, we conclude that the accuracy of any NER system greatly

influences the practicability of our approach. Therefore, the improvement of named

entity translation is closely related to the improvement of NER systems.

The noise analysis demonstrates the potential of the NE annotation method presented

in this thesis. Should the annotation quality of the NER system greatly improve in the

future, even higher NE translation rates shall be expected.

7.2. Future work

Further research may either focus on refining the system description and analyses pre-

sented in this study, or on addressing cross-domain topics in Machine Translation. In the

following, we present potential further extensions of our work:

1. The statistical accuracy of the results of the automatic named entity analysis may be

greatly improved if the inaccuracies of the NER system are fully eliminated. This may

be achieved if a gold standard test set is used. In the context of this work, this implies

annotating NEs in the random300 test set manually instead of using spaCy or Stanford

NER system to recognize NEs in text.

Furthermore, the transliteration issues in Chinese occurring in the automatic named

entity analysis can be eliminated if multiple correct Chinese translations were provided

during the evaluation (e.g. including the Chinese homophonic translation or preserving

a named entity in its verbatim form).

2. Another alternative approach worth investing is to use a hybrid NER system to annotate

NEs in the data. The aim of pursuing such method is to improve the F1-score of NE

annotation. As previously outlined, with raising annotation quality, the translation of

named entities improves. Jiang et al. (2016) and Murugesan et al. (2017) outline ways of

creating such a hybrid NER system. The output of multiple NER systems can be merged

together by applying either a “union” operation or an “intersection” operation. The

“intersection” improves the precision and reduces the recall, while applying the “union”

operation has an adverse affect, it improves the recall and reduces the precision. In
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general, the application of a hybrid NER system must be investigated in the current

application scenario and potential benefits measured.

3. It would be interesting to execute identical experiments of NE annotation on a further

number of language pairs. In doing so, the improvements in named entity translation

rates can be averaged over a substantial number of experiments.

Another possibility of reinforcing the findings of this thesis is to use different seeds to

perform identical experiments several times and report the average scores. In doing so,

we can further increase the confidence in the reported results.

4. Furthermore, a higher number of models could undergo a human evaluation. A clear

benefit of this solution is providing an evaluation with high confidence scores. Unfortu-

nately, this approach requires a high amount of expensive and time-consuming manual

work. Therefore, efforts should focus on preferring automated solutions.

5. A natural extension of our approach is to use target factors annotating named entities

in the target sentence. Examples of studies presenting target factors are Wilken and

Matusov (2019) and García-Martínez et al. (2016). Such additional annotations would

allow the network to create connections between the annotations on the source and

the target side. This potentially may result in better NE match rates. It remains to be

researched if more external annotation benefits the NE translation in the NMT systems.

6. Dinu et al. (2019) use source factors successfully to enforce custom terminology. Their

method is more effective than a state-of-the-art implementation of constrained decoding.

In light of these findings, future work may focus on the combination of NE annotation

and terminology enforcement by providing multiple streams of source factors (= word

features) into the input of the neural network.

In general, further research may focus on the combination of the NE annotation method

presented in this study with e.g. the annotation of morphological features, part-of-

speech tags, syntactic dependency labels and others. Furthermore, it would be interest-

ing to evaluate the influence of a higher number of external annotations with source

factors on the MT quality and to assess where the limitations of such annotation with

diverse word features are.
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List of Abbreviations

ACL Association of Computer Linguistics.

ANN Artificial Neural Network.

BPE Byte Pair Encoding.

CNN Convolutional Neural Network.

CRF Conditional Random Fields.

DL Deep Learning.

GPU Graphical Processing Unit.

GRU Gated Recurrent Unit.

IE Information Extraction.

IOB inside-outside-beginning.

LSTM Long Short-Term Memory.

ML Machine Learning.

MT Machine Translation.

NE Named Entity.

NER Named Entity Recognition.

NLP Natural Language Processing.

NMT Neural Machine Translation.

POS Part-of-speech.

RNN Recurrent Neural Network.

SMT Statistical Machine Translation.

TDNN Time-Delay Neural Network.
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A. Appendix

A.1. Validation data

Table A.1 presents the statistics about the WMT2019 news translation task develop-

ment/validation data newstest2018. This data is used during the training of ML models

(experiments) outlined in Section 4.2.

Metrics En-De En-Zh

Number of words in corpus 68,643 98,308

Number of NE 2,941 5,173

Relation: NE to all words ≈ 4.28% ≈ 5.26%

Number of sentences 2,998 3,981

Number of sentences without NE 928 970

Number of sentences with other NE classes 459 553

Number of sentences with NE 1,611 2,458

Percentage of sentences with NE ≈ 53.74% ≈ 61.74%

Table A.1.: Number of named entities in WMT2019 validation/development training

datasets: En-De and En-Zh
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Figure A.1.: Categorization of named entities in development data sets: En-De and En-Zh,

in %
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A. Appendix

A.2. spaCy’s NER classes

Named Entity Class Description

PERSON People, including fictional.

NORP Nationalities or religious or political groups.

FAC Buildings, airports, highways, bridges, etc.

ORG Companies, agencies, institutions, etc.

GPE Countries, cities, states.

LOC Non-GPE locations, mountain ranges, bodies of water.

PRODUCT Objects, vehicles, foods, etc. (Not services.)

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK OF ART Titles of books, songs, etc.

LAW Named documents made into laws.

LANGUAGE Any named language.

DATE Absolute or relative dates or periods.

TIME Times smaller than a day.

PERCENT Percentage, including %.

MONEY Monetary values, including unit.

QUANTITY Measurements, as of weight or distance.

ORDINAL “first”, “second”, etc.

CARDINAL Numerals that do not fall under another type

Table A.2.: Recognized NE classes by spaCy NER
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