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Abstract

The goal of this thesis is to develop improved methods for the task of speech translation.

Speech translation takes audio signals of speech as input and produces text translations

as output, with diverse applications that reach from dialog-based translation in limited

domains to automatic translation of academic lectures. A main challenge and reason

why current speech translation systems often produce unsatisfactory results is the

division of the task into independent recognition and translation steps, leading to the

well-known error propagation problem. In this thesis, we use recent neural modeling

techniques to tighten the speech translation pipeline and, in the extreme, replace

the cascade by models that directly generate translations from speech without an

intermediate step. The overarching goal of all proposed approaches is the reduction

or prevention of the error propagation problem.

As a starting point, we analyze the state-of-the-art for attentional speech recognition

models, and develop a new model with a self-attentional acoustic model component.

We show that this reduces training time significantly and enables inspection and

linguistic interpretation of models that have previously often been described as black

box approaches. Equipped with such a model, we then turn to the problem of speech

translation, first from the viewpoint of a cascade, where we wish to translate the output

of a speech recognizer as accurately as possible. This requires dealing with errors

from the speech recognizer, which we achieve by noising the training data, leading to

improved robustness of the translation component. A second approach is to explicitly

handle competing recognition hypotheses during translation, which we accomplish

through a novel lattice-to-sequence model, achieving substantial improvements in

translation accuracy.

Direct models for speech translation are a promising new approach that does not

divide the process into two independent steps. This requires direct data in which spoken

utterances are paired with a textual translation, which is different from cascaded models

in which both model components are trained on independent speech recognition and
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machine translation corpora. Sequence-to-sequence models can now be trained on such

direct data, and have in fact been used along these lines by some research groups,

although with only inconsistent reported improvements. In this thesis, we show that

whether such models outperform traditional models critically depends on the amount

of available direct data, an observation that can be explained by the more complex

direct mapping between source speech inputs and target text outputs. This puts direct

models at a disadvantage in practice, because we usually possess only limited amounts

of direct speech translation data, but have access to much more abundant data for

cascaded training. A straight-forward potential solution for incorporating all available

data is multi-task training, but we show that this is ineffective and not able to overcome

the data disadvantage of the direct model. As a remedy, we develop a new two-stage

model that naturally decomposes into two modeling steps akin to the cascade, but

is end-to-end trainable and reduces the error propagation problem. We show that

this model outperforms all other approaches under ideal data conditions, and is also

much more effective at exploiting auxiliary data, closing the gap to the cascaded model

in realistic situations. This shows for the first time that end-to-end trainable speech

translation models are a practically relevant solution to speech translation, and are able

to compete with or outperform traditional approaches.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Methoden zur Verbesserung der automatischen

Übersetzung gesprochener Sprache (kurz: Speech Translation). Die Eingabe ist

hierbei ein akustisches Signal, die Ausgabe ist der zugehörige Text in einer anderen

Sprache. Die Anwendungen sind vielfältig und reichen u.a. von dialogbasierten

Übersetzungssystemen in begrenzten Domänen bis hin zu vollautomatischen

Vorlesungsübersetzungssystemen.

Speech Translation ist ein komplexer Vorgang der in der Praxis noch viele Fehler

produziert. Ein Grund hierfür ist die Zweiteilung in Spracherkennungskomponente

und Übersetzungskomponente: beide Komponenten produzieren für sich genommen

eine gewisse Menge an Fehlern, zusätzlich werden die Fehler der ersten Komponente an

die zweite Komponente weitergereicht (sog. Error Propagation) was zusätzliche Fehler

in der Ausgabe verursacht. Die Vermeidung des Error Propagation Problems ist daher

grundlegender Forschungsgegenstand im Speech Translation Bereich.

In der Vergangenheit wurden bereits Methoden entwickelt, welche die Schnittstelle

zwischen Spracherkenner und Übersetzer verbessern sollen, etwa durch Weiterreichen

mehrerer Erkennungshypothesen oder durch Kombination beider Modelle mittels Finite

State Transducers. Diese basieren jedoch weitgehend auf veralteten, statistischen

Übersetzungsverfahren, die mittlerweile fast vollständig durch komplett neuronale

Sequence-to-Sequence Modelle ersetzt wurden.

Die vorliegende Dissertation betrachtet mehrere Ansätze zur Verbesserung von

Speech Translation, alle motiviert durch das Ziel, Error Propagation zu vermeiden,

sowie durch die Herausforderungen und Möglichkeiten der neuen komplett neuronalen

Modelle zur Spracherkennung und Übersetzung. Hierbei werden wir zum Teil völlig

neuartige Modelle entwickeln und zum Teil Strategien entwickeln um erfolgreiche

klassische Ideen auf neuronale Modelle zu übertragen.

Wir betrachten zunächst eine einfachere Variante unseres Problems, die

Spracherkennung. Um Speech Translation Modelle zu entwickeln die komplett
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auf neuronalen Sequence-to-Sequence Modellen basieren, müssen wir zunächst

sicherstellen dass wir dieses einfachere Problem zufriedenstellend mit ähnlichen

Modellen lösen können. Dazu entwickeln wir zunächst ein komplett neuronales

Baseline Spracherkennungs-System auf Grundlage von Ergebnissen aus der Literatur,

welches wir anschließend durch eine neuartige Self-Attentional Architektur erweitern.

Wir zeigen dass wir hiermit sowohl die Trainingszeit verkürzen können, als auch

bessere Einblicke in die oft als Blackbox beschriebenen Netze gewinnen und diese aus

linguistischer Sicht interpretieren können.

Als nächstes widmen wir uns dem kaskadierten Ansatz zur Speech Translation.

Hier nehmen wir an, dass eine Ausgabe eines Spracherkenners gegeben ist,

und wir diese so akkurat wie möglich übersetzen wollen. Dazu ist es

nötig, mit den Fehlern des Spracherkenners umzugehen, was wir erstens

durch verbesserte Robustheit des Übersetzers und zweitens durch Betrachten

alternativer Erkennungshypothesen erreichen. Die Verbesserung der Robustheit der

Übersetzungskomponente, unser erster Beitrag, erreichen wir durch das Verrauschen

der Trainings-Eingaben, wodurch das Modell lernt, mit fehlerhaften Eingaben und

insbesondere Spracherkennungsfehlern besser umzugehen. Zweitens entwickeln wir

ein Lattice-to-Sequence Übersetzungsmodell, also ein Modell welches Wortgraphen

als Eingaben erwartet und diese in eine übersetzte Wortsequenz überführt. Dies

ermöglicht uns, einen Teil des Hypothesenraums des Spracherkenners, in Form

eines eben solchen Wortgraphen, an den Spracherkenner weiterzureichen. Hierdurch

hat die Übersetzungskomponente Zugriff auf verschiedene alternative Ausgaben des

Spracherkenners und kann im Training lernen, daraus selbständig die zum Übersetzen

optimale und weniger fehlerbehaftete Eingabe zu extrahieren.

Schließlich kommen wir zum finalen und wichtigsten Beitrag dieser Dissertation.

Ein vielversprechender neuer Speech Translation Ansatz ist die direkte Modellierung,

d.h. ohne explizite Erzeugung eines Transkripts in der Quellsprache als

Zwischenschritt. Hierzu sind direkte Daten, d.h. Tonaufnahmen mit zugehörigen

textuellen Übersetzungen nötig, im Unterschied zu kaskadierten Modellen, welche

auf transkribierte Tonaufnahmen sowie davon unabhängigen parallelen übersetzten

Texten trainiert werden. Erstmals bieten die neuen end-to-end trainierbaren

Sequence-to-Sequence Modelle grundsätzlich die Möglichkeit dieses direkten Weges und

wurden auch bereits von einigen Forschungsgruppen entsprechend getestet, jedoch sind

die Ergebnisse teils widersprüchlich und es bleibt bisher unklar, ob man Verbesserungen

gegenüber kaskadierten Systemen erwarten kann. Wir zeigen hier dass dies entscheidend

von der Menge der verfügbaren Daten abhängt, was sich leicht dadurch erklären lässt
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dass direkte Modellierung ein deutlich komplexeres Problem darstellt als der Weg

über zwei Schritte. Solche Situationen bedeuten im Maschinellen Lernen oftmals dass

mehr Daten benötigt werden. Dies führt uns zu einem fundamentalen Problem dieses

ansonsten sehr vielversprechenden Ansatzes, nämlich dass mehr direkte Trainingsdaten

benötigt werden, obwohl diese in der Praxis sehr viel schwieriger zu sammeln sind

als Trainingsdaten für traditionelle Systeme. Als Ausweg testen wir zunächst eine

naheliegende Strategie, weitere traditionelle Daten ins direkte Modell-Training zu

integrieren: Multi-Task Training. Dies stellt sich in unseren Experimenten allerdings als

unzureichend heraus. Wir entwickeln daher ein neues Modell, das ähnlich einer Kaskade

auf zwei Modellierungsschritten basiert, jedoch komplett durch Backpropagation

trainiert wird und dabei bei der Übersetzung nur auf Audio-Kontextvektoren

zurückgreift und damit nicht durch Erkennungsfehler beeinträchtigt wird. Wir zeigen

dass dieses Modell erstens unter idealen Datenkonditionen bessere Ergebnisse gegenüber

vergleichbaren direkten und kaskadierten Modellen erzielt, und zweitens deutlich mehr

von zusätzlichen traditionellen Daten profitiert als die einfacheren direkten Modelle.

Wir zeigen damit erstmals, dass end-to-end trainierbare Speech Translation Modelle

eine ernst zu nehmende und praktisch relevante Alternative für traditionelle Ansätze

sind.
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Chapter 1

Introduction

The goal of this thesis is to enable machines to accurately translate speech by exploiting

recent advances in neural computing. Speech is foundational to human communication:

unlike written language, it is acquired naturally during childhood, does not require a

writing system, and is readily accessible without any tools beyond the human body.

Written language, in contrast, may not be accessible to every person, in every language,

and in every circumstance. Being able to automatically translate speech would therefore

be of tremendous usefulness toward an inclusive globalized world. Potential use cases

include the following:

• Information access. For example, accessing the recorded speech of a speaker whose

language one does not understand [CFH+13].

• Interpersonal communication. For example, enabling face-to-face dialog between

speakers of different languages [WBW07].

• Information dissemination. For example, enabling speakers of a minority language

without writing system to make their ideas known to others.

The task of speech translation, as considered in this thesis, takes an audio signal as input

and outputs a translated written text. It combines a number of challenging aspects that

all need to be addressed simultaneously, making the whole even more challenging than

the sum of its parts:

• An acoustic signal is a continuous signal with a high amount of variability that

needs to be abstracted from, including speaker characteristics, channel properties,

dialects, and background noise.
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1. INTRODUCTION

• The translation of a sentence into another language involves challenges such as

reordering of words and phrases, word sense disambiguation, pronoun resolution,

and producing syntactically correct and semantically adequate outputs.

• Spoken language1 tends to contain disfluencies, errors, casual style, and implicit

communication, while written language is more formal, grammatically correct,

and explicit. Speech translation involves moving from the spoken domain into

the written domain and must therefore bridge this gap.

The ambiguity of language and difficulty to describe language using a formal

system of rules, along with the aforementioned challenges, has led to a consensus

in the natural language processing (NLP) community on data-driven approaches

and statistical modeling techniques as preferable in most situations. This enables

development of language-independent techniques, automated training, combination of

several knowledge sources, and explicit treatment of uncertainty.

Traditionally, speech translation has been implemented through cascades of

several statistical models, including a speech recognition component, a segmentation

component, and a translation component. To optimize the accuracy of such a

cascade, it is important to both improve the accuracy of the individual components

and to tightly integrate all components across the cascade. An inherent defect to

the traditional cascading approach is the propagation of errors. Because of the

high degree of ambiguity in natural language, every involved component produces a

certain number of errors, which are then propagated through the cascade and lead to

compounding follow-up errors. The cascade violates an important principle in statistical

modeling, according to which any hard decisions are to be delayed as long as possible

[Hun87, MD14].

Attentional encoder-decoder models have recently emerged as a powerful model to

flexibly transduce a given sequence into another sequence [KB13, SVL14, BCB15].

These models consist of recurrent encoder and decoder sub-components and an

attention sub-component, which can intuitively be thought of as source-side language

model, target-side language model, and alignment model. However, a main reason

for their success has been the ability to train these sub-components jointly, thereby

somewhat blurring this clear-cut division of labor. Attentional encoder-decoder models

have been found flexible enough to handle a variety of NLP tasks, including machine

1We shall henceforth write speech to denote audio signals containing spoken utterances, spoken
language to denote a verbatim textual representation of spoken utterances, and written language as the
contrasting case of text originally composed as text without a spoken utterance as immediate basis.
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1.1 Contributions

translation [BCB15], speech recognition [CBS+15, CJLV16], constituency parsing

[VKK+15], and punctuation insertion [CNW17], with high accuracy.

This paradigm shift leads us to reconsider the traditional cascading approach to

spoken language translation in this thesis and to develop new approaches, with the

main motivation of preventing the error propagation problem. New approaches are

important both because attentional encoder-decoder models offer exciting new modeling

opportunities, and because some of the traditional techniques are no longer applicable.

In this thesis, we propose improvements to modern spoken language translation along

the dimensions of improving individual components, improving integration across the

cascade, and replacing the cascade by one-model approaches. The latter idea of

performing speech translation with only a single model is particularly appealing because

it has the potential to eliminate the problem of propagation of errors altogether and

because all model parameters can be estimated jointly. However, it also introduces

new challenges because combining several transformation steps into a single component

increases the transformation complexity between input sequences and output sequences,

and may therefore make models harder to train or require more training data.

1.1 Contributions

To tackle the problem of speech translation, we start with a simpler problem, speech

recognition: In order to develop neural speech translation models, we must first ensure

to be able to solve this simpler task with an all-neural model. To this end, we establish

a state-of-the-art all-neural baseline speech recognition system based on prior

methods from the literature (Section 4.1), which we then extend through a novel

self-attentional architecture (Section 4.2), improving both its training speed and

interpretability.

We next turn to developing tightly integrated cascaded speech translation models

using neural approaches. To this end, we assume to be given the output of a speech

recognizer, which we desire to translate as accurately as possible. Our first contributed

method (Section 5.1) improves noise robustness of the subsequent translation model.

In particular, we induce noise to the training data so that the translation model learns to

handle the speech recognition errors gracefully. As our next contribution (Section 5.2),

we devise a lattice-to-sequence translation model that is able to directly consume

the decoding graph of the speech recognizer, passing on information on recognition

uncertainty through the hidden states and thereby avoiding some of the early decisions

normally taken in cascaded approaches. We empirically demonstrate the effectiveness

3
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of the proposed methods.

Our final contribution is a one-model approach where all parameters are trained

jointly (Chapter 6). As a first attempt, we extend our all-neural speech recognition

model such that it is able to output translations instead of transcripts. We further

devise multi-task training strategies to improve the model, as well as to exploit

auxiliary data such as speech recognition and machine translation data. However, we

find that results are mixed when compared to a cascaded model, in line with similar

experiments in related works. Worse, the gap to the cascaded model only grows

when adding auxiliary speech recognition or machine translation data, putting such

models at a severe disadvantage in practical situations. We therefore introduce a novel

attention-passing model that eliminates the direct model’s weaknesses by using two

attention mechanisms, while still supporting efficient training via back-propagation

and avoiding early decoding decisions. An empirical evaluation shows that this

substantially outperforms the cascaded and direct approaches and a previously used

two-stage model in favorable data conditions, and is moreover able to exploit auxiliary

speech recognition and machine translation data much more effectively than the direct

one-model approach. This shows for the first time that end-to-end trainable speech

translation models are practically relevant and able to compete with and outperform

traditional approaches.

We have also published many of our findings in conference and journal papers

[SNNW17, SNW17, PSS+17, SNN+18, ZSN+18, SPN+18, SNNW19].
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Chapter 2

Background

The traditional approach to speech translation uses a cascade of an automatic speech

recognition component, a machine translation component, and some“speech translation

glue” to make both compatible. Naturally, the cascade can benefit from advancements

within the individual components. For instance, the recent paradigm shift in machine

translation from statistical machine translation (SMT) to neural machine translation

(NMT) has improved not only translation of text but also the overall quality of a speech

translation cascade in which the SMT component is replaced by NMT.

This chapter establishes the background for this thesis. It describes a

speech translation cascade that is traditional in its overall approach of chaining

independent components, but does consider state-of-the-art modeling techniques for

each component. We start by describing a machine translation system using a modern

attentional encoder-decoder architecture. Next, two approaches to solving the speech

recognition stage are described: The HMM-based approach that has been the dominant

approach for many years, and an attentional encoder-decoder variant that is one of

several methods that have recently started to approach the accuracy of HMM systems.

All of these are used and extended in later chapters of this thesis. We therefore describe

each model to the level of detail necessary for later explorations. We continue on to

describing several basic challenges that need to be considered in cascaded systems, and

conclude with an overview of prior research on the specific topic of speech translation.

2.1 Neural Machine Translation

Machine translation is the task of translating a given sentence in the source language

into a new sentence in the target language. Source and target sentences can be thought
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2. BACKGROUND

of as sequences of discrete word tokens, but can also be broken down into smaller

sub-word units or even character sequences. Neural machine translation imposes a

conditional probability distribution pθ(y|x) for input sequence x = (x1, x2, . . . , xN ) and

output sequence y = (y1, y2, . . . , yM ). The model parameters θ are directly estimated

in a supervised fashion using a parallel corpus of paired sentences in the source and

target language.

The most successful approach to machine translation is currently the attentional

encoder-decoder model [KB13, SVL14, BCB15], which we will sometimes refer to simply

as encoder-decoder model for brevity. These models are also called sequence-to-sequence

models in literature. We describe this approach in detail because subsequent chapters

will introduce extensions to it. Figure 2.1 illustrates the model architecture.

�1

He      loved        to         eat

+

<s>           Er   …

 Er          liebte  …

Figure 2.1: Encoder-decoder model architecture.

We begin by factorizing the conditional probability as the product of conditional

probabilities of each token to be generated:

p(y | x) =

M∏
t=1

p(yt | y<t,x).

The training objective is to estimate parameters θ that maximize the log-likelihood of

the sentence pairs in a given parallel training data set D:

J(θ) =
∑

(x,y)∈D

log p(y | x; θ).
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2.1 Neural Machine Translation

2.1.1 Encoder

The encoder is a bi-directional recurrent neural network (RNN), following Bahdanau et

al. [BCB15]. Here, the source sentence is processed in both the forward and backward

directions with two separate RNNs. For every input xi, two hidden states are generated

as

−→
h i = LSTM

(
Efwd(xi),

−→
h i−1

)
(2.1)

←−
h i = LSTM

(
Ebwd(xi),

←−
h i+1

)
, (2.2)

where Efwd and Ebwd are source embedding lookup tables. A typical choice of RNN is

long short-term memory (LSTM) [HS97, Section 2.1.4] which has been demonstrated

to achieve high accuracy in many situations. Multiple LSTM layers can be stacked,

with bidirectional outputs concatenated either after every layer or only after the final

layer. We obtain the final hidden encoder state hi =
−→
h i |

←−
h i, where layer indices are

omitted for simplicity.

2.1.2 Attention

We use an attention mechanism [LPM15] to summarize the encoder outputs into a

fixed-size representation. At each decoding time step j, a context vector cj is computed

as a weighted average of the source hidden states:

cj =
N∑
i=1

αijhi.

The normalized attentional weights αij measure the relative importance of the source

words for the current decoding step and are computed as a softmax with normalization

factor Z summing over i:

αij =
1

Z
exp

(
s
(
sj−1,hi

))
s(·) is a feed-forward neural network with a single layer that estimates the importance

of source hidden state hi for producing the next target symbol yj , conditioned on the

previous decoder state sj−1.

7



2. BACKGROUND

2.1.3 Decoder

The decoder generates output symbols one by one, conditioned on the encoder states

via the attention mechanism. It uses another LSTM, initialized using the final encoder

hidden state: s0 = hN . At decoding step j, we compute

sj = LSTM
(
Etrg(yj−1), sj−1

)
s̃j = tanh(Whs[sj ; cj ] + bhs)

The conditional probability that the j-th target word is generated is:

p(yj | y<j ,x) = softmax(Wsos̃j + bso).

Here, Etrg is the target embedding lookup table, Whs and Wso are weight matrices, and

bhs and bso are bias vectors.

During decoding, beam search is used to find an output sequence with high

conditional probability.

2.1.4 Long Short-Term Memory RNNs

At the heart of both the encoder and decoder are recurrent neural networks such as

LSTMs [HS97]. These are computed as follows:

fi = σ (Wfxi + Ufhi−1 + bf) forget gate (2.3)

ii = σ (Winxi + Uinhi−1 + bin) input gate (2.4)

oi = σ (Woxi + Uohi−1 + bo) output gate (2.5)

ui = tanh (Wuxi + Uuhi−1 + bu) update (2.6)

ci = ii � ui + fi � ci−1 cell (2.7)

hi = oi � tanh(ci) hidden (2.8)

Inputs xi are embeddings or hidden states of a lower layer at timestep i, hi are

the hidden states and ci the cell states. W· and U· denote parameter matrices, b· bias

terms. LSTMs mitigate the vanishing gradients problem of vanilla RNNs by using a

gating mechanism in which sigmoidal gates explicitly control how much information in

the cell state should be kept or overwritten [Hoc98].

8



2.1 Neural Machine Translation

2.1.5 RNN-Free Models

RNNs have proven powerful sequence models in many tasks, but also possess a practical

drawback: Their slow computation speed. The reason for this is that computations

across a sequence cannot be parallelized because the computation at each time step

depends on the outcome at the previous time step. This has led researchers to consider

alternatives to RNNs, the most popular ones being time-delay/convolutional neural

networks (TDNNs/CNNs) and self-attentional neural networks.

TDNNs/CNNs have been proposed in the late 1980s [WHH+87, WHH+89] for

acoustic modeling, and have also been extensively used in computer vision [LBD+89].

However, only relatively recently have they been applied to discrete sequence modeling

[KGB14, Kim14, SHG+14] and machine translation [GAG+17]. These networks define

learnable filters over receptive fields of a fixed and usually small size. By stacking

multiple layers the receptive field grows larger in each layer. Parallelization on modern

GPU hardware is possible because each time step can be computed independently of

the other time steps.

A limitation of TDNNs/CNNs is that the context is still fixed to a window of a

certain size, even after stacking multiple layers. This is in contrast to RNNs that

condition on infinitely long contexts, at least in theory. Recently, self-attentional models

have been introduced [CDL16, PTDU16, LFdS+17] that combine support for arbitrarily

large contexts and parallelization. They have been found to yield excellent results for

machine translation [VSP+17].

The main idea behind self-attention is to condition the state for every time step

on every other time steps by computing pairwise relevance scores. The attention

mechanism is used to compute such relevance scores and makes sure that weights for

all states sum up to 1. The new state is then computed as the weighted average over

all other states. Formally, let [x1 . . .xl] denote a sequence of state vectors. For each

position xi, 1≤i≤l, we compute the following:

eij = f (xi,xj) ∀l : 1 ≤ j ≤ l (2.9)

αi = softmax (ei) (2.10)

yi =
l∑

j=1

αijxj (2.11)

Here, f is a (potentially parametrized) similarity function, usually based on dot
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2. BACKGROUND

products, bilinear combination, or a multi-layer perceptron. f is used to establish

relevance between all pairs of sequence items. These are then run through a softmax

and used to compute a weighted average over all states, independently at each position.

For sufficient model expressiveness, multiple layers can be stacked and interleaved

with position-wise multi-layer perceptrons [VSP+17].

2.1.6 Modeling Units

Neural sequence models have traditionally used word tokens as modeling units

[BDVJ03], based on the intuition that language is usually based on words to convey

particular concepts, and on the idea of using word embeddings in continuous space

to relate such word-based concepts to one another. This position can be challenged

in several ways. First, some languages such as Chinese and Japanese have no clear

concept of a word. Second, sparsity issues lead to poorly estimated word embeddings,

particularly in languages with rich morphology or compounding. Third, these models

cannot account for unseen words, a common problem even in languages without rich

morphology.

An obvious alternative is to use characters as basic modeling unit. These form

the basis of virtually every language that has a writing system, often do not suffer

from sparsity issues, and can account for unknown words. In practice, character units

require smaller embedding spaces and are much cheaper to compute at the softmax

output projection. Despite this, they usually lead to more expensive models because

sequence lengths are much longer, and sometimes larger hidden dimensions are required

[BJM16]. Also, they often perform slightly worse than word-based models.

These trade-offs have led researchers to consider sub-word models, exploring the

space between words and characters as units [MSD+12]. The currently most popular

technique is byte-pair encoding [SHB16] which allows to flexibly choose a tradeoff

between vocabulary size and sequence length.

Besides the issues mentioned above, there are two important factors in practice

that determine whether characters, words, or sub-words are the most desirable

representation. First, the data size: For small training data, sparsity issues can become

severe and character-level models or small sub-word units often perform best, while for

large data sets longer units are preferable. Second, when using an attention mechanism

in an encoder-decoder model, it is desirable to have similar scales at both sides so that

similarity scores are computed between comparable entities.
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2.2 Automatic Speech Recognition

2.2 Automatic Speech Recognition

Hidden Markov model (HMM) have been explored in the 1970s for the recognition

of continuous speech at IBM [JBM75] and Carnegie Mellon University [Bak75] and

have provided the by far dominant framework for continuous speech recognition until

very recently. As HMM-free, all-neural methods are achieving increasingly competitive

accuracies in recent years, there is less clarity about what the best approach is compared

to the translation scenario. All-neural methods include connectionist temporal

classification [GMH13], attentional encoder-decoder models [CJLV16, BCS+16], and

the recurrent neural aligner [SSRB17]. In this thesis we make use of both HMM-based

and encoder decoder-based speech recognition and survey both below.

2.2.1 Preprocessing

Acoustic signals for speech are represented as discrete sequences of samples of the

changing electric currents in a microphone. These samples are captured through an

A/D converter at intervals of a certain frequency, often 16kHz, and quantized to e.g.

16-bit numbers. The resulting representation contains a large amount of numbers for

every speech utterance, which is challenging for both computational and modeling

reasons. The signal must therefore first be mapped to a space of much lower dimension

while attempting to remove much of the redundancy present in a speech signal.

Based on the observation that humans can acquire the skill of interpreting speech

signals in the frequency domain but are very poor at doing the same in the time domain,

many preprocessing methods use the discrete Fourier transform to convert the signal

into the frequency domain. This is done with windows of e.g. 16ms or 25ms size,

chosen to be shorter than the length of most phonemes that occur in a signal. The

windows are shifted by a step size of e.g. 10ms to capture the sequence of acoustic

events. The feature space can be reduced by grouping the spectrum into bins that

cover a certain range of frequencies each. To this end, the Mel scale can be used

to divide into bins that correspond to perception by the human ear. The result is a

feature representation called Mel filterbank features that will be the main technique

used throughout this thesis. Other common techniques are cepstral coefficients that

applies a series of further transformations, or perceptual linear prediction that follows

a rather different predictive approach [RJ93].
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2.2.2 HMM-based Speech Recognition

HMM-based speech recognition decomposes the task using the intuition of the noisy

channel model [Sha48]:

Ŵ = argmax
W

Pr(W |X) = argmax
W

Pr(X|W ) · Pr(W )

Pr(X)

= argmax
W

Pr(X|W ) · Pr(W ),

where W denotes a word sequence, X is an acoustic observation, and Ŵ is our best

guess for the true uttered word sequence. The noisy channel considers the correct

word sequence as having been garbled by a noisy channel so that only a noisy signal is

observed; the task is then to decode the original signal (the word sequence) based on

the noisy signal (the acoustic signal). In the derived formula, P (W ) is a linguistically

motivated prior, and P (X|W ) is the likelihood term, i.e. the probability of observing

the acoustic sequence given a particular word sequence. The noisy channel model offers

a convenient machinery for combining the prior and the conditional model.

Feature 
extraction Decoder

Acoustic 
model

Pronunciation 
dictionary

Language 
model

Acoustic 
signal

Output word 
sequence

Figure 2.2: Block diagram of HMM-based speech recognition.

Figure 2.2 illustrates how this approach is put to practice. The speech signal is

preprocessed as outlined in Section 2.2.1 to obtain a sequence of feature vectors X.

P (W ) is usually computed by an n-gram language model [Sha48, CG98], and P (X|W )

can be modeled through a GMM-HMM or hybrid acoustic model. Furthermore, because

acoustic models work over phonemes but language models over words, a pronunciation

dictionary is necessary to establish a proper mapping. Importantly, the language model,

acoustic model, and dictionary are estimated independently of each other. Decoding is

realized by employing a beam search over the hypothesis space. Because this model is

often unable to handle punctuation and produces numbers and other special terms in a

pronounced format that is hard to read, a post-processing step is necessary to produce

legible output.
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2.2.3 Encoder-Decoder-Based Speech Recognition

A drawback of the HMM-based approach is the need for creating pronunciation

dictionaries, posing a considerable burden when developing ASR for new languages.

A recent trend has therefore been to learn dictionaries implicitly via neural methods,

often referred to as end-to-end ASR. One common approach is connectionist temporal

classification (CTC) [GMH13] which computes a high-level representation of a sequence

of acoustic feature vectors using an RNN, and then classifies each frame by assigning

it e.g. an alphabet letter in the case of English. Blank labels and mechanisms to deal

with repeated characters are used to account for the fact that the input sequences are

much longer than the output sequences, and the CTC loss function marginalizes over all

equivalent outputs (also called segmentations) via a dynamic programming approach.

CTC eliminates the need to create dictionaries, but is still dependent on external

language models for good performance. This is because outputs are conditionally

independent of each other, therefore only a weak implicit language model can be

learned in the RNN layers. A remedy to this is provided by the listen-attend-spell

model [CJLV16], another HMM-free approach to speech recognition that uses an

encoder-decoder architecture as described in Section 2.1 with a few modifications.

The learned word embeddings are replaced by acoustic features (see Section 2.2.2),

such that the encoder component now serves as an acoustic model. Because acoustic

sequences are very long compared to text inputs, the encoder performs downsampling

to make memory and computation time manageable. This is achieved through a

pyramidal LSTM, a stack of LSTM layers where pairs of consecutive outputs of a layer

are concatenated before being fed to the next layer, such that the number of states is

halved between layers. As output units, characters rather than words are used and yield

much better results. This can be explained by a more direct correspondence between

encoded units (downsampled audio frames) and outputs, and by the fact that training

data in number of words is usually much smaller for speech recognition than machine

translation, causing data sparsity problems when using full word-based vocabularies.

Note several important differences to the HMM-based approach:

• No noisy-channel assumption is made. Instead, P (W | X) is modeled directly.

• All parameters are trained jointly. This can be a desirable property and can

also simplify implementation and maintenance. On the other hand, exploiting

auxiliary data such as monolingual data for language modeling becomes less

straight-forward.

13



2. BACKGROUND

• No pronunciation dictionary is required, the creation of which is one of the major

burdens in traditional speech recognition.

• This model is more flexible regarding output text normalization, e.g. can be

trained to directly produce output that is properly cased, punctuated, and uses

properly formatted numbers.

2.3 Considerations for Cascaded Systems

Even in the hypothetical case of a perfect speech recognition system, simply chaining

the aforementioned speech recognition and machine translation models as-is would be

problematic because the speech recognition output differs from the machine translation

training data in significant ways. Such train-test mismatch is a reason of degradation

with many machine learning models. The most important problems are listed below.

Not all of these are dealt with explicitly in this thesis, but a good understanding

is nevertheless important. Section 2.4 will survey the proposed solutions in existing

literature.

2.3.1 Text Normalization

Speech recognition output is often unpunctuated, contains numbers as written-out

words, and may otherwise differ regarding normalization conventions. Therefore,

the speech recognition output must be post-processed to follow conventions of the

translation training data as closely as possible in order to minimize the data mismatch

and avoid out-of-vocabulary problems.

2.3.2 Segmentation

In scenarios where the input is either a very long audio, or comes as a live stream

of unbounded length, speech recognition outputs may be unsegmented or possess

segmentation guided by acoustic properties rather than into linguistically meaningful

sentences. This is in contrast to the translation training data that usually consists of

well-formed individual sentences. In addition to the mismatch, reordering phenomena

often make it necessary to be in possession of a full sentence in order to translate it.

Therefore, a segmentation step must be performed, often jointly with the punctuation

step needed for text normalization. When doing simultaneous translation this is further

complicated by the lack of future context, and often one must trade off between high

translation accuracy and low latency.
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2.3.3 Style

Spoken language is often more casual, less grammatical, and may suffer from disfluencies

such as false starts, repetitions and filler words. It uses a limited vocabulary, makes

many inexplicit references, and is structured as shorter intonation units that are often

not topically coherent [CD87]. None of these phenomena are likely to be appropriately

captured by the textual translation training data. It can therefore be beneficial to

remove disfluencies and correct incorrect grammar before attempting translation. Note

that the style mismatch can be of varying degrees. For example, a well-rehearsed lecture

is usually closer in style to written language than a spontaneous dialog between family

members.

2.3.4 Paralinguistic Information

Spoken representations of text often do not represent paralinguistic information such as

word emphasis. However, such information can be very useful for translation purposes,

especially when generating speech outputs, but also for text outputs. Some prior work

approaches this issue by including emphasis information into the ASR output and

proposing ways for translating such representations [DSN18, KTS+13, AOB12, AAB06,

TGN13].

2.4 Speech Translation: Prior Research

2.4.1 Early Work

Early efforts to speech translation around the Janus project [WJM+91, WCE+93,

LGG+95] used a simple cascading approach where speech recognizer and translation

systems were built separately and the best hypothesis of the former would be used as

input to the latter. Another early approach used template matching for the translation

stage [WW91]. The possibility of speech-to-speech translation, producing speech output

instead of text output, has also been considered, for example by Lavie et al. [LGG+95].

However, whether to output text or speech has usually been treated as a user interface

issue that should be evaluated separately and can be achieved by simply applying speech

synthesis to the speech translation text outputs. These early efforts were focused on

limited domains such as a scheduling dialog scenario, in which results were promising.

However, errors propagated from the speech recognizer were especially challenging for

interlingua-based machine translation, widespread at this time, because it relied on

parsers that in turn often expected well-formed inputs [WCE+93, LGG+95, LGGP03].
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Along with the trend in general machine translation, following work turned increasingly

to data-driven approaches [WW98, TMS+98, BBF+02, SSN07].

2.4.2 Integration of Components

Research efforts soon turned to the question of how to better integrate the recognition

and translation stage. Ney describes a probabilistic framework for fully integrated

data-driven approaches [Ney99]. According to this framework, speech translation seeks

a solution to

argmax
eI1

Pr
(
eI1 | xT1

)
,

or equivalently to

argmax
eI1

Pr
(
eI1
)
Pr
(
xT1 | eI1

)
,

where eI1 are the translated words in the target sentence of length I, and xT1 are the

frames in the acoustic sequence of length T . While the speech transcript fJ1 is ultimately

of no interest to us,1 we can bring it into the model by marginalizing over all possibilities:

argmax
eI1

Pr
(
eI1
)
Pr
(
xT1 | eI1

)
= argmax

eI1

Pr
(
eI1
)∑
fJ1

Pr
(
fJ1 | eI1

)
Pr
(
xT1 | fJ1

)
Explicit marginalization is intractable, efforts can therefore be categorized by the

approximations they take.

A first simple way of better integrated recognition and translation is moving from

1-best translation to n-best translation. This option was explored by Quan et al.

[QFC05] and Lee et al. [LLL07], but has been mentioned in earlier works as well

[LGG+95]. The n-best approach corresponds to replacing the sum over all possible

transcripts fJ1 by a sum over only the list of the n-best outputs of the speech recognizer.

This was found to improve results in the travel domain while being rather expensive.

On the opposite end of the spectrum was a fully integrated approach that

used the finite state transducer (FST) formalism to model a decoder that directly

produced translations from audio inputs, with corresponding transcript as a side

product [Vid97, BR01, CNO+04, PGJ+07]. Conveniently, this approach allowed using

general-purpose FST tools to conduct an approximate search over the intractable search

1One may argue that this is not always true: Speech translation user interfaces often display both
the transcript and the translation to the user, making it necessary to produce not only a translation
but also a transcript.
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space. Conceptually, this amounted to permitting the full marginalization in the model,

but exploring only a limited region of the search space by using pruning and other

search heuristics. Results were promising in a limited domain scenario, hotel front desk

dialogs, but also somewhat inconsistent and revealed robustness issues.

Follow-up work suggested using word graphs such as lattices [SJVS04, ZKYL05]

or confusion networks [BF05] as a more compact and computationally convenient

alternative to n-best lists. Word graphs integrated nicely with word-based translation

models based on the IBM models [BPPM93]. While slight improvements were observed

in some cases, the main advantages turned out to be of computational nature. After

phrase-based translation [KOM03] emerged, Matusov et al. developed a method for

performing lattice decoding in a phrase-based context and reported good results

[MNS05, MHN08]. Evaluated speech translation tasks were now moving from limited

travel-related tasks to open-domain tasks such as translation of TED talks [TED12] or

speeches from the European parliament.

2.4.3 Advanced Topics

With accuracies of even the cascaded approaches reaching more acceptable levels,

researchers turned to tackle the more advanced aspects of speech translation (see

Section 2.3). Domain adaptation techniques were used to adapt models to the spoken

language domain [LGGP03, Füg08]. It was shown how to automatically optimize

recognition outputs that lead to better translation quality [KBT+15, HDA11]. The

scenario of translating longer speeches rather than short utterances was explored. This

scenario is challenging because machine translation models can usually handle only

single sentences, but sentences boundaries are unknown. The works by Matusov et al.

[MMN06] and by Fügen [Füg08] thus segment the speech recognition output and insert

punctuation to optimize translation performance. As such systems are often deployed

in a real-time situation, simultaneous speech translation with low latency is a very

useful feature [Füg08, ONS+14, NPH+18]. As spoken language contains disfluencies

that hurt readability of the transcript and causes translation errors, disfluency removal

[CFH+13] can be beneficial.

2.4.4 Speech Translation Corpora

It is important to realize that all efforts to this point had used separate speech

recognition and machine translation translation corpora to train models. Translated

speech data was only available in small quantities and was useful only as validation
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and test data, but not for training. This often led to domain mismatch between the

translation and recognition components, and it was recognized that addressing this

issue would also result in a tighter integration of both models. One approach was to

generate synthetic speech recognition outputs by imagining recognition errors, which

can then be used to train a more robust translation model [TMD14, RGLF15]. Some

efforts were devoted to collecting speech translation corpora that could be used for

training purposes [SKM+12, PKL+13, GAAD+18, KBK18]. However, initial attempts

by Post et a. did not observe gains from training a machine translation model directly

on speech recognition output [PKL+13]. Paulik made use of interpreted speech data,

i.e. speech utterances paired with the utterances of a human interpreter [Pau10]. Such

data can be easier to obtain in some situations, but is a less direct form of supervision

for a speech-to-text translation system.

2.4.5 New Chances and Challenges

Machine translation and speech recognition, as well as machine learning in general,

underwent several major changes in the past years and decades. Machine translation

transitioned from interlingua-based approaches to statistical approach and then to

end-to-end trainable neural approaches in recent years. Speech recognition has long

been dominated by HMM-based models, but these have recently been challenged

(though not replaced) by end-to-end trainable neural approaches. These changes

re-raise some of the questions and issues related to speech translation. For example, it

has been observed that neural machine translation is less robust to speech recognition

errors than statistical machine translation models, although overall accuracies are

improved enough to make up for this [RDBF17]. Prior approaches to lattice translation

are no longer applicable with neural machine translation because output independence

assumptions no longer hold. Finally, the question of how to leverage end-to-end speech

translation corpora has not been conclusively answered.
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Chapter 3

Databases

This chapter introduces two speech recognition corpora and one speech translation

corpus that will be used throughout this thesis. The chapter is then concluded by

discussing evaluation metrics that can be used to assess model performance based on

the given data.

3.1 WSJ

The Wallstreet Journal (WSJ) continuous speech recognition corpus [PB92] contains

English sentences selected from the Wallstreet Journal and read by a variety of speakers.

It is a widely used benchmark in speech recognition. The speech being read instead of

spontaneous places this corpus is on the easier side of the spectrum. Table 3.1 shows

statistics of this corpus, and Table 3.2 lists some examples. We will make use of it to

develop our speech recognition baseline in Section 4.1.

Data set Audio duration Number of utterances Number of words

WSJ/Train (I284) 81h 37,416 645,876
WSJ/Dev (dev93) 1:05h 503 8,334
WSJ/Test (eval92) 0:42h 333 5,700

Table 3.1: WSJ corpus statistics.
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1 he chats with her briefly then resumes his political analysis
2 quote we have a dirty war exactly the same as in argentina unquote he says
3 quote it isn’t acceptable but it’s understandable unquote noise
4 and what should the government do about the murders
5 nothing says the businessman

Table 3.2: WSJ corpus example utterances. A curiosity are the explicitly spoken
punctuation marks.

3.2 TEDLIUM

The TEDLIUM corpus [RDE14] is a widely used corpus of recorded TED talks [TED12],

containing talks on technology, entertainment, and design, delivered in English by

well-prepared, high-profile speakers. The corpus includes the recorded audios and

transcripts created by volunteers. In this thesis, we use its second edition. Compared

to WSJ this is a more difficult speech recognition task because it contains realistic,

spontaneous speech. However, the level of difficulty is still only moderate because the

audio quality is excellent and the preparedness of the speakers results in only a limited

amount of disfluencies and other characteristics of spontaneous speech. Table 3.3 shows

the statistics, and Table 3.4 lists example utterances.

Data set Audio duration Number of utterances Number of words

TEDLIUM/Train 206h 92,968 2,250,412
TEDLIUM/Dev 1:35h 507 18,226
TEDLIUM/Test 2:37h 1,157 28,432

Table 3.3: TEDLIUM corpus statistics.

1 and now we ’re trying to go from that digital code
2 into a new phase of biology with designing and synthesizing life so we ’ve

always been trying to ask big questions
3 what is life is something that i think many biologists have been trying to

understand at various levels we ’ve tried various approaches
4 paring it down to minimal components we ’ve been digitizing it now for almost

twenty years when we sequenced the human genome it was going from the
analog world of biology into the digital world of the computer

5 now we ’re trying to ask can we regenerate life

Table 3.4: TEDLIUM corpus example utterances.
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Audio duration Number of sentences Number of words

Fisher/Train 162h 138,819 1,810,385
Fisher/Dev 4:21h 3,979 50,700
Fisher/Dev2 4:28h 3,961 47,946
Fisher/Test 4:14h 3,641 47,896

Callhome/Train 13h 15,080 181,311
Callhome/Devtest 3:33h 3,966 47,045
Callhome/Evltest 1:47h 1,829 23,626

Table 3.5: Fisher-Callhome corpus statistics.

1-best WER Lattice oracle WER

Fisher/Dev 41.3 19.3
Fisher/Dev2 40.0 19.4
Fisher/Test 36.5 16.1

Callhome/Devtest 64.7 36.4
Callhome/Evltest 65.3 37.9

Table 3.6: Accuracy of ASR outputs in Fisher-Callhome corpus.

3.3 Fisher-Callhome

We conduct most of our speech translation experiments on the Fisher and Callhome

Spanish–English Speech Translation Corpus [PKL+13]. This is a corpus of Spanish

telephone conversations that includes audio recordings, transcripts, and translations

into English, as well as automatic transcripts and speech recognition lattices created

by a Kaldi system. The Fisher portion consists of telephone conversations between

strangers, while the Callhome portion contains telephone conversations between

relatives or friends. Data statistics are shown in Table 3.5. For the Fisher

development and test sentences, four translation references exist, while for sentences

from Fisher/Train and Callhome there is only a single reference translation. ASR word

error rates (WER) are relatively high (Table 3.6), due to the spontaneous speaking

style and challenging acoustic conditions. From a translation viewpoint, on the other

hand, the data can be considered as relatively easy with regards to both the topical

domain and particular language pair. Table 3.7 lists some example utterances with their

translations. Lattices contain on average 3.4 (Fisher/Train) or 4.5 (Callhome/Train)

times more words than their corresponding reference transcripts. The average sentence

length is between 11.8 and 13.1.
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3. DATABASES

Source sentence Translated sentence

1 aló hello
2 aló hello
3 hola hello
4 hola hello
5 con quién hablo with whom am i speaking
6 eh silvia śı cómo se llama eh silvia yes what is your name
7 hola silvia eh yo me llamo nicole hello silvia eh my name is nicole
8 ah mucho gusto ah nice to meet you
9 mucho gusto em y dónde está usted nice to meet you em and where are you from
10 n eh yo estoy en filadelfia eh i’m in philadelphia
11 ay mira yo estoy en nueva york aye look i’m in new york
12 y ust ah no sab́ıa que el estudio and you ah i didn’t know that the study

inclúıa gente tan lejos pero que bueno included people so far but how nice
13 śı yo participé en un es un estudio yes i participated in a study like this

aśı em hace como un año y em like a year ago and
14 ah ah mm mi hijo participó en ese śı ah ah hmm my son participated in this yes
15 śı supe que es para todo páıs o yes i knew that it was in the whole country

sea para gente de todo páıs like people from the whole country

Table 3.7: Fisher corpus example utterances.

3.4 Evaluation

Throughout this thesis we mainly rely on automatic reference-based evaluation to assess

accuracy and compare different models. The main metrics we use are word error rate

(WER) for speech recognition and BLEU (short for bilingual evaluation understudy)

for translation.

3.4.1 WER

WER is based on the edit distance, also referred to as Levenshtein distance. The main

idea is to count the minimum number of word-level edits necessary to transform the

incorrect output string into the correct reference string. Edits can be substitutions,

insertions, and deletions. The WER is then defined as

WER =
substitutions + insertions + deletions

reference length
× 100%.

The minimum number of edits can be computed efficiently through a dynamic

programming algorithm. In languages where no clear word boundaries exist, such as
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Chinese and Japanese, the character edit rate can be used instead which works exactly

the same but operates on character-level instead of word-level.

While WER is meaningful even when computed for individual test sentences, it is

usually computed at the corpus level, so that longer sentences in the corpus are given

proportionally more weight in the final score than shorter sentences.

3.4.2 BLEU

The BLEU score [PRWZ02] is based on a precision term that computes how many

n-grams in an output actually appear in the reference string, and a brevity penalty

that prevents gaming the metric by generating short translations that contain only safe

or highly confident n-grams:

BLEU4 = brevity penalty×
4∏
i=1

precisioni,

where

precisioni =

∑
ngram∈output Countclip (ngram)∑
ngram′∈output Count (ngram′)

.

Commonly, precision scores for n-grams up to order 4 are computed, as shown in

the equation. Countclip (ngram) refers to a clipped count, i.e. the number of output

n-grams that appear in the reference where each n-gram in the reference can be used

only once.

The brevity penalty is defined as follows:

brevity penalty = min(1, e
1− reference length

output length ).

BLEU scores can also be computed against multiple references, in which case the

clipped counts are clipped at the maximum count of n-grams which occurs in a single

reference, and the brevity penalty is computed against the length of the reference closest

in size to the candidate translation.

Note that the n-gram precision for higher order n-grams, e.g. 4-grams, is not unlikely

to be zero for a single sentence, which would result in the BLEU score for a whole

sentence becoming zero. For this reason, BLEU-scores are computed at the corpus

level, not at the level of individual sentences.
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Chapter 4

All-Neural Speech Recognition

As a first step toward advancing speech translation using recent deep learning

techniques, we first experiment with a speech recognition task. Speech recognition

can be seen as an easier version (or subtask) of the speech translation task, with

acoustic modeling similarly challenging but without the complexities of having to

produce outputs in a different language. This makes speech recognition an ideal test bed

for improving models, debugging implementations, and conducting analyses. A good

speech recognition model can also directly improve speech translation by helping form

a strong cascade. This chapter first describes efforts to produce and analyze a strong

baseline based on state-of-the-art modeling techniques from the available literature, and

then explores novel improvements. Importantly, this chapter directly models P (W | X),

the probability of the transcript W given the audio signal X, with no decompositions.

This will allow us in Chapter 6 to extend the models introduced here to be capable of

translating speech.

4.1 Analyzing the State of the Art

We start by describing the development of a strong baseline system by using the initial

work by Chan et al. [CJLV16] as a starting point. This work has formed the basis of

many subsequent works on attentional speech recognition models and has been reported

to yield promising results competitive with other models.

4.1.1 Basic Settings

We choose basic settings based on findings in literature and on our own preliminary

experiments. These settings are used throughout the thesis unless otherwise noted.

25



4. ALL-NEURAL SPEECH RECOGNITION

For audio preprocessing, we extract 40-dimensional Mel filterbank features with

per-speaker mean and variance normalization. We exclude utterances longer than 1500

frames from training to keep memory requirements manageable. The encoder-decoder

attention is MLP-based, and the decoder uses a single LSTM layer. The number of

hidden units is 128 for the encoder-decoder attention MLP, 64 for target character

embeddings, and 512 elsewhere unless otherwise noted. The model uses input feeding

[LPM15]. For the encoder, we use bidirectional LSTMs with 256 hidden units per

direction. During inference, we use beam search and length normalization.

We set the batch size dynamically based on the number of source and target tokens

of the longest sentence in the minibatch. We choose the average batch size such that

most of the available GPU memory is used, here 24 utterances per minibatch. We

use Adam [KB14] with initial learning rate of 0.0003, decayed by 0.5 when validation

WER did not improve over 10 epochs initially and 5 epochs after the first decay. We

implement our method based on the DyNet neural network toolkit [NDG+17].

4.1.2 Findings

We start our exploration using a vanilla implementation of the listen-attend-spell

architecture by Chan et a. [CJLV16] that features a pyramidal LSTM encoder and

the settings just described.

Overfitting. Overfitting is a major challenge in attentional speech recognition and

proper generalization techniques are therefore an important consideration. While

prior work has often used weight noise and weight decay for normalization, we

have observed inconsistent gains and a necessity to perform expensive grid search

to tune the respective hyperparameters. Instead, we opt for a solution that uses

variational dropout combined with target character type dropout, both proposed

by Gal et al. [GG16], both because it yielded best results and because it was

more stable across the various models and settings.

In particular, recurrent dropout is applied to all LSTMs that are used in the

encoder or decoder. Independently for each LSTM layer, direction, and minibatch

element, we draw dropout masks mx and mh from a multivariate Bernoulli

distribution: mx ∼ Bernoullidx (1− p) and mh ∼ Bernoullidh (1− p) where p

it the dropout probability. We then replace hi−1 by 1
1−pmh � hi−1 and xi by

1
1−pmx�xi in Equations 2.3 through 2.6 at training time and obtain the following:
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fi = σ

(
Wf

1

1− p
mx � xi + Uf

1

1− p
mh � hi−1 + bf

)
forget gate (4.1)

ii = σ

(
Win

1

1− p
mx � xi + Uin

1

1− p
mh � hi−1 + bin

)
input gate (4.2)

oi = σ

(
Wo

1

1− p
mx � xi + Uo

1

1− p
mh � hi−1 + bo

)
output gate (4.3)

ui = tanh

(
Wu

1

1− p
mx � xi + Uu

1

1− p
mh � hi−1 + bu

)
update (4.4)

(4.5)

Crucially, the same mask is applied at every time step, and only at training time

but not at test time. For word type dropout, we randomly choose a fraction

p of the word types from the vocabulary and replace all corresponding word

embeddings by a zero-vector during training. More details are given in [GG16].

Encoder architecture. We implemented and tested several of the advanced encoder

architectures proposed by Zhang et al. [ZCJ17]. While some of their models,

in particular those that feature convolutional networks or convolutional LSTMs,

did not yield improvements over our baseline, we did obtain good results using

an LSTM/network-in-network architecture that stacks blocks consisting of a

bidirectional LSTM, a network-in-network (NiN) projection, batch normalization

[IS15], and a rectified linear unit (Figure 4.1). The final LSTM/NiN block is

topped off by another bidirectional LSTM layer. NiN denotes a simple linear

projection applied at every time step, possibly performing downsampling by

concatenating pairs of adjacent projection inputs.

Label smoothing. Label smoothing has been found to prevent overconfidence and

to improve decoding accuracy by Chorowski et al. [CJ17]. While the authors

suggest a variant that smoothes across labels of adjacent time steps, we have

found the simpler approach of uniform label smoothing [SVI+16] to yield best

results. Specifically, instead of assigning all probability mass to the correct label

at a particular decoding time step, we only assign it a probability of β, and spread

the remaining probability mass 1− β uniformly over all remaining labels.

Fixed embedding norm. In the context of neural machine translation, Nguyen et al.

suggest fixing the norm of target embeddings to a fixed value in order to prevent

bias toward common tokens [NC18]. We confirm consistent improvements in the
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NiN (downsampling)

bi-LSTM

Batch norm

ReLU

NiN (downsampling)

bi-LSTM

Batch norm

ReLU

bi-LSTM

Figure 4.1: Block diagram of the LSTM/NiN encoder model. The encoder contains
three LSTM/NiN layers, followed by a final LSTM layer. Downsampling operations are
illustrated through reduced layers widths.

speech recognition task when tuning the fixed value appropriately. Specifically,

we replace character embeddings e by r e
‖e‖2

for a fixed scalar hyper parameter r.

Stopping criterion. Despite having received little attention in the literature, we have

found a well-calibrated early stopping criterion to be of high importance. In

particular, we observe improvements when performing a full beam search during

validation checkpoints and writing out tentative best models according to word

error rate, compared to not conducting beam search or measuring only perplexity.

Speed and memory optimization. When modeling audio, the corresponding input

sequences can get very long and consume a lot of memory. This in turn hurts

training speed significantly because we can only use small mini batch sizes, and

therefore miss out on the main advantage of using modern GPU hardware, namely

highly optimized batch operations. Modern dynamic deep learning frameworks

allow defining computation graphs in a very natural and readable way, such that

the LSTM equations (2.3-2.8) can be directly translated into code. While greatly

facilitating prototyping and model extension, this sometimes comes at the cost

of increasing memory requirements. In particular, in case of our employed deep
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learning framework DyNet [NDG+17], this led to memory being allocated for

each of the elementary operations. To make memory manageable in the case

of speech inputs, we implement a solution that performs most intermediate

steps in temporary memory, but retains the flexibility to be used in a natural

for loop which is important for decoding. Namely, we proceed in three steps,

the first computing Equations 2.3-2.6 (or 4.1-4.4, respectively), the second step

computing 2.7, and the third step computing 2.8. Each of these requires memory

for activations and gradients, but no memory is needed for intermediate operations

and memory usage is reduced about threefold compared to DyNet’s original

implementation.

4.1.3 Ablation Study

We conduct an ablation study to provide empirical evidence for the effectiveness of

the methods discussed in Section 4.1.2. In particular, we train and test models on

the respective splits of the WSJ dataset 3.1, starting with the basic settings described

in Section 4.1.1 and testing the effectiveness of several features individually through

a leave-one-out ablation experiment. We can see in Table 4.1 that the combined

improvement amounted to 2.89% WER absolute, or about 20% in relative terms. The

use of label smoothing was particularly effective, while all methods except for the fixed

norm contributed strongly to the final results.

Model WER

Baseline model 16.91

Full − dropout 14.91
Full − label smoothing 16.18
Full − fixed norm 14.16
Full − NiN encoder 15.11

Full model 14.02

Table 4.1: Baseline ASR ablation results. The table shows the model with all experimental
features, leave-one-out variants, and leave-all-out model.

4.1.4 Comparison to Other Approaches

We compare the speech recognition model developed above on the TEDLIUM

benchmark to several other models and toolkits, including ESPnet [WHK+18], a CTC

system similar to the model described by Zenkel et al. [ZSN+18], the numbers published

29



4. ALL-NEURAL SPEECH RECOGNITION

in the original TEDLIUM paper [RDE14] that are based on a hybrid DNN/HMM model

by employing Kaldi [PGB+11], and an in-house Janus system [SMFW01] with a 5-layer

BiLSTM acoustic model and a large language model. The results in Table 4.2 show

that our model is competitive with other end-to-end models. It also shows that these

do not quite achieve the accuracy of a highly tuned HMM/DNN system, although it

must be noted that these make use of a language model trained on large data which

is not available to our model. Removing the extra language model data can lead to

a degradation of up to 25% relative, according to the numbers by Rousseau et al.

[RDE14].

Model Dev WER Test WER

ESPnet [WHK+18] 19.8 18.6
CTC 16.0 16.4
HMM/DNN [RDE14] 10.4 11.3
Janus 13.1 12.1

Ours 15.4 16.0

Table 4.2: ASR toolkit comparison on TEDLIUM dev and test sets.

4.1.5 Analysis of Character-Level Behavior

To obtain a better understanding of our model’s behavior, we conduct a detailed

analysis. First, we plot its generated attention matrix for an example sentence in

Figure 4.2. Such visualizations can be a helpful debugging tool and we can see that

the attention is producing an intuitively reasonable alignment between input audio and

output characters.

We also examine the open-vocabulary nature of the model. Note that because we

generate outputs character by character, we are able to generate any possible word,

even if this word has never been seen during training.1 Thus, it is insightful to see

whether new words were actually generated in practice, and whether such new word

creations are performed correctly.

Looking at unique word types, we observe 13724 word types in the WSJ training

corpus. The generated output for the test set contains 1897 word types, similar to but

slightly higher than the 1835 word types appearing in the reference. Relative to the

training text, the generated text contains 5.98% unknown words (newly created words

1Of course, words that contain unknown characters cannot be generated, but for European
languages as regarded in this thesis such cases occur rarely if at all.
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Figure 4.2: Attention matrix for a short, correctly recognized sentence.

that do not appear in the training data), the reference slightly less at 4.89%. Out

of the newly generated words, 21.99% appear in the corresponding reference sentence

(precision), likewise out of the unknown words from the reference 26.88% appear in

the generated output (recall). To summarize, this open vocabulary model was able to

recover unknown words in about a quarter of cases, but also produced a significant

amount of errors due to incorrectly generated new words. To examine how severe these

errors are, Table 4.3 shows the top 5 correct or incorrect newly created words and

the top 5 missed unknown words. We see that some but not all of the successfully

recovered unknown words correspond to morphological variants of words that were

probably seen during training (populists, amends). Moreover, some of the unrecovered

OOVs corresponded to rare words or proper nouns that were transcribed using intuitive

but wrong alternative spelling (ciba vs. seeba, multiplicity vs. multiplecity), while some

are plain errors (strongers vs. astronomers).

4.1.6 Related Work

A range of largely contemporaneous related work has proposed further extensions,

even to the point where the outperforming of HMM-based systems has been reported
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Recovered unknown words Incorrect created words Unrecovered unknown words

barry (3) seeba (6) ciba (6)
corning (2) strongers (4) aircoa (4)
populists (2) theses (4) astronomers (4)
amends (2) multiplecity (3) wang (4)
convoy (2) wholestructure (3) multiplicity (3)

Table 4.3: Top 5 examples for three kinds of unknown words. Namely, we show the top
successfully recovered unknown words, incorrectly created new words, and unknown words
that were not recovered.

[CSW+18]. We may think of them as reducing the gap between the large available

“bag of tricks” of conventional models and the still smaller bag of tricks available for

attentional speech recognition. Exploring these is beyond the scope of this thesis, but

would likely have a positive impact on both our baseline and proposed method results

in the upcoming chapters.

Improvements include monotonic attention [TSN17], integrating multiple tasks

[TTLL17, TSW+17], improved decoding [CJ17], word-piece models, multi-head

attention, and optimization improvements [CSW+18].

4.2 Self-Attentional Acoustic Models

Having established a strong baseline, we move on to advancing this model by improving

upon its encoder component which takes on the function of an acoustic model. In

order to transform an acoustic signal into a useful abstract representation, acoustic

models must generally take into account the complex interplay of local and global

dependencies in an acoustic signal. At a local, temporally constrained level, we observe

concrete linguistic events (phonemes), while at a global level the signal is influenced

by factors such as channel and voice properties. Traditional acoustic models reflect

this intuition about global and local dependencies by first applying a normalization

phase, a global operation that aims at producing invariance with respect to channel

and speaker characteristics. After this, traditionally a hidden Markov model is applied

over polyphones, modeling only local dependencies (beads-on-a-string view [Ost99]).

This restriction has in part been motivated by the intuition that global effects should

no longer affect the signal at this stage.

However, the empirical success of RNNs for acoustic modeling [SSB15] has

challenged this intuition and indicated that consideration of the global context is still
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beneficial at this stage. Unfortunately, RNNs suffer from slow computation speed and

may not be able to optimally exploit long-range context. Self-attentional architectures

[CDL16, PTDU16, LFdS+17] have recently shown promising results as an alternative

to RNNs for modeling discrete sequences [VSP+17]. These models relate different

positions in a sequence by computing pairwise similarities, in order to compute a higher

level representation of the sequence. Self-attention is attractive (1) computationally

because it can be efficiently implemented through batched tensor multiplication, and

(2) from a modeling perspective because it allows direct conditioning on both short

range-context and long-range context, without the need to pass information through

many intermediate states as is the case with RNNs.

In the following, we explore self-attentional architectures for acoustic modeling,

by replacing the LSTM-based encoder component of our baseline in Section 4.1 with

self-attention.

4.2.1 Challenges and Benefits

In order to make self-attentional architectures work for acoustic modeling, several

challenges must be addressed. First, self-attention computes the similarity of each

pair of inputs, so that the amount of memory grows quadratically with respect to the

sequence length. This is problematic for modeling acoustic sequences, because these can

get very long, e.g. our training utterances contain up to 2026 frames (800 on average).

To address this issue we apply downsampling through tensor reshaping before feeding

a sequence into the self-attentional layers.

The second challenge is incorporating positional information into the model.

Unlike an RNN, self-attention has no inherent mechanism of modeling sequence

position. Vaswani et al. propose an additive trigonometric position encoding, which

is problematic in the case of acoustic modeling because our inputs are fixed speech

features rather than flexibly learned word embeddings [VSP+17]. While concatenating

positional embeddings instead provides some remedy, we find it necessary to design a

hybrid self-attention/RNN architecture to obtain good results.

The third challenge is effective modeling of context relevance. Speech frames contain

much less information than words and it is therefore more difficult to estimate the

importance of pairs of frames with respect to each other. Based on the intuition

that locality of context plays a special role in acoustic modeling, we propose to apply

diagonal Gaussian masks with a trainable shape parameter to attention heads. This

gives attention heads more control over context relevance and improves word error
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rates consistently, by up to 1.59%. We observe that while bottom layer attention heads

converge toward diversity in context range, higher layers use long-range context.

Attention mechanisms improve upon the often criticized poor interpretability of

neural end-to-end models because they enforce an explicit expression of dependencies.

Our self-attentional model brings this interpretability inside the encoder, making

it possible to examine how speech is encoded before making the final recognition

decisions. An analysis (Section 4.2.6) reveals that different attention heads measure

similarity along different linguistically plausible dimensions such as phoneme clusters,

indicating that they function in part to reduce acoustic variability by establishing more

representative averaged forms of matching acoustic events across the utterance.

4.2.2 Basic Self-Attentional Acoustic Model

Self-attention is applied to a sequence of state vectors and transforms each state into

a weighted average over all the states in the sequence, with more relevant states being

given more influence. The underlying intuition is that states at each time step should

be conditioned on the most relevant states across the whole sequence. Our basic

form of self-attention follows Vaswani et al. [VSP+17], where relevance is measured by

computing dot product similarity after applying a linear projection to both vectors. For

acoustic sequences, neighboring frames are naturally similar if they represent parts of

the same acoustic event. When an event with similar acoustic characteristics appears

at different places in an utterance, those occurrences would be deemed relevant, as

well. Following [VSP+17] we use 8 attention heads where each head can compute this

similarity independently.

Our model is specifically computed as follows (Figure 4.3):

Qi = XWQ
i (4.6)

Ki = XWK
i (4.7)

Vi = XWV
i (4.8)

headi = softmax(
QiK

T
i√
d

)Vi ∀i (4.9)

MultiHeadAtt = concat(head1, head2, . . .) (4.10)

MidLayer = LayerNorm [MultiHeadAtt +X] (4.11)

SAL = LayerNorm [FF (MidLayer) + MidLayer] (4.12)
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Layer norm

Multi-head attention

Feed-forward layer

Layer norm

+

+

Figure 4.3: Block diagram of the core self-attentional encoder model. Note that a typical
model will stack several of such blocks.

Here, X∈Rl×d, Qi,Ki, Vi∈Rl×d/n denote inputs and their query/key/value

transformations for attention heads indexed by i∈{1, · · · , 8}, sequence length l,

and hidden dimension d. SAL denotes the final output of the self attention layer.

WQ
i ,W

K
i ,W

V
i ∈ Rd×d/n are parameter matrices. LayerNorm is according to [BKH16].

FF is a position-wise feed-forward network intended to introduce additional depth and

nonlinearities, defined as

FF(x)= max (0, xW1 + b1)W2 + b2.

4.2.3 Tailoring Self-Attention to Speech

4.2.3.1 Downsampling

To introduce downsampling so that the model described in Section 4.2.2 fits in memory,

we apply a tensor reshaping operation before every self-attention block. This reduces

the sequence length by a factor of a and increases the vector state dimension by the

same factor:
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X ∈ Rl×d →reshape X̂ ∈ R
l
a
×ad

We then compute (4.6) through (4.12) as before, with the shape of weight matrices

adjusted to WQ
i ,W

K
i ,W

V
i ∈ Rda×d/n. This reduces the memory consumption of the

attention matrix by factor a2. It is crucial to apply reshapes also before the bottom

layer so that the large bottom attention matrix is scaled down. Note that this approach

is very similar to downsampling as in the pyramidal LSTM, except that it is applied to

a sequence feature matrix instead of per-timestep, and also applied before the bottom

layer.

4.2.3.2 Position Modeling

Position information is crucial in sequence-to-sequence models, but self-attention is

completely agnostic to sequence positions. Prior works added trigonometric position

encodings [VSP+17] or learned position embeddings [GAG+17] to input vectors, but we

found that this approach does not work well for acoustic sequences. This is intuitive,

as the inputs are fixed feature vectors rather than trainable word embeddings, making

it difficult for the model to separate position and content for each state.

Concatenated Position Representation A straight-forward solution to enable

separation of position and content for fixed inputs is to concatenate position

representation instead of using a sum. We explore three variants: First,

concatenating trigonometric encodings [VSP+17] to the input feature vectors.

Second, concatenating learned embeddings [GAG+17] to inputs. Third,

concatenating separately learned position embeddings to the queries and keys

(Q,K in Equations 4.6 and 4.7) so that the key and query position can be taken

into account when computing relevance at each layer.

Hybrid Models RNNs are effective at keeping track of positional information. We

can exploit this by introducing recurrent layers into our encoder. We explore two

alternatives:

Stacked hybrid model. Here, we stack 2 LSTM/NiN blocks (Fig. 4.1) without

downsampling, followed by a final LSTM, on top of our self-attention layers. This

approach does not make the self-attention layers themselves position-aware, but

the final encoder states are position-aware. Reversing the order of self-attention

and LSTM/NiN is also conceivable but would compromise speed because slow

recurrent computations are applied before downsampling.
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Interleaved hybrid model. Another option is to replace the feed-forward

operation (FF in Equation 4.12) by an LSTM. Note that this introduces LSTMs

before the sequence is fully downsampled and therefore compromises some of the

speed gains. On the other hand, it allows the higher self-attention layers to take

advantage of position information encoded by lower interleaved LSTMs.

4.2.3.3 Attention Biasing

Self-attention allows direct conditioning on the whole sequence, but it is unclear to

what extent this is beneficial for our acoustic model. While context required to model

polyphones may span only a relatively small temporal window, remaining channel and

speaker properties may require long-range context. To account for the special role of

context locality in acoustic modeling, we introduce an explicit way of controlling the

context range by using a bias matrix M ∈ Rl×l and computing

headi = softmax(
QiK

T
i√
d

+M)Vi.

By setting values around the diagonal of this mask to a higher value, we can bias the

self-attention toward attending in a local range around each frame.

Local Masking We can apply hard masking by setting M as an inversely banded

matrix of bandwith b ∈ Nodd with

Mjk =

0 |j − k| < b
2

-∞ else
.

As a result, all attention weights outside the band are set to 0, so that the

self-attention is restricted to a local region of size b. The hyperparameter b can

be set prior to training such that the model effectively attends to a range similar

to polyphone context in hidden Markov models.

Gaussian Bias For more flexibility, we use a soft Gaussian mask by defining

Mjk =
−(j − k)2

2σ2
.

σ is a trainable standard deviation parameter. It is learned separately for each

attention head, so that the context range can differ between attention heads. Note

that compared to the standard formulation of a Gaussian curve the exponential
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function and the normalizer term are dropped, as these are already accounted

for by the surrounding softmax operator that this term appears inside. Besides

more modeling expressiveness, the learned variances can also be inspected and

may help us to understand and interpret the model.1

4.2.4 Experimental Setup

We focus our experiments on the TEDLIUM corpus (Section 3.2), with the development

split used as validation data. In addition to the basic settings described in Section 4.1.1,

the model uses variational recurrent dropout with probability 0.2 and target character

dropout with probability 0.1 [GG16]. We apply label smoothing [SVI+16] and fix the

target embedding norm to 1 [NC18]. For inference, we use a beam size of 20 and length

normalization with exponent 1.5. Self-attention layers use a hidden dimension of 256

and feed-forward dimension of 256, and attention dropout with probability 0.2. When

LSTMs are part of the encoder, we use bidirectional LSTMs with 256 hidden units

per direction. Concatenated position representation vectors are of size 40. We set the

batch size dynamically, with the average set to 24 (18 for LSTM-free models).

The vocabulary consists of the 26 English characters, apostrophe, whitespace, and

special start-of-sequence and unknown-character tokens.

4.2.5 Quantitative Results

4.2.5.1 Comparison to Baselines

The first set of experiments compares the proposed hybrid models to the baselines.

The results are summarized in Table 4.4. We observe similar word error rates, with the

interleaved model outperforming the stacked model and outperforming the pyramidal

LSTM baseline on the development data but not the test data. The LSTM/NiN baseline

was strongest. In terms of training speed, the stacked model is fastest by a large margin,

followed by the interleaved model and the LSTM/NiN model. To confirm that the

attention mechanism is actually contributing to the hybrid model and not just passing

on activations, we performed a sanity check by training a stacked hybrid model with

attention scores off the diagonal set to −∞, and observed a drop of 1.25% absolute

WER.

1To overcome trainability issues and encourage the optimizer to adjust the variance parameter, we
found it necessary to re-parametrize it using τ2 = σ and optimize τ via back-propagation.
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Model Dev WER Test WER Training speed (char/sec)

Pyramidal 15.83 16.16 1.1k
LSTM/NiN 14.57 14.70 1.1k
Stacked hybrid 16.38 17.48 2.4k
Interleaved hybrid 15.29 16.71 1.5k

Table 4.4: Accuracy and speed of conventional and self-attentional acoustic encoders.
Training speed was measured on a GTX 1080 Ti GPU.

4.2.5.2 Position Modeling

Next, we evaluate the different approaches to position modeling (Section 4.2.3.2).

The results are summarized in Table 4.5. When using additive positional encodings

the model diverged, while concatenating embeddings converged, albeit to rather poor

optima. The key/query positional embeddings in isolation diverged, and combination

with concatenated input embeddings did not improve results. Only the hybrid models

were able to obtain results comparable to the baselines. We also tried combining

hybrid models with positional embeddings, but did not see improvements over the

model without positional embeddings.

Model Dev WER Test WER

Additive (trigonometric) diverged
Concatenative (trigonometric) 30.27 38.60
Concatenative (embedding) 29.81 31.74
Stacked hybrid 16.38 17.48
Interleaved hybrid 15.29 16.71

Table 4.5: Results on position modeling for self-attentional acoustic encoder.

4.2.5.3 Attention Biasing

This set of experiments tests the effect of introducing explicit attention biases that

enable the model to control its context range (Section 4.2.3.3). The local diagonal

mask was set to constrain the context to a window of 5 time steps, and Gaussian

biasing variances were initialized to 9 (small setting) or 100 (large setting). Results are

summarized in Table 4.6. For the stacked model, it can be seen that the biasing

helps in general. The strongest model variant was the learnable Gaussian mask.

Interestingly, it was important to initialize the Gaussian to possess a large variance.

We hypothesize that this improves gradient flow early on in the model training, similar
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to how initializing LSTM forget gate biases to 1 (no forgetting) improves results

[JZS15]. The interleaved hybrid model shows similar trends. Note that the sometimes

inconsistent ordering between development and test set results can be explained by

the fact that the TEDLIUM development set is relatively small with only five hundred

utterances.

Model Dev WER Test WER

Stacked hybrid 16.38 17.48
+ Local masking 15.42 16.17
+ Gauss mask (initially small) 16.05 16.96
+ Gauss mask (initially large) 14.90 15.89

Interleaved hybrid 15.29 16.71
+ Local masking 15.44 16.19
+ Gauss mask (initially small) 16.43 16.89
+ Gauss mask (initially large) 15.00 15.82

Table 4.6: Results on self-attentional acoustic encoder with attention biasing.

The Gaussian mask allows inspecting its trainable variance parameter. Fig. 4.4

shows how the parameter evolves when initialized to a large value. It can be seen that

in the first layer, diversity seems to be desirable, with some attention heads focusing

on a small local context, and others on larger contexts. In contrast, the second layer

does not appear to benefit from limiting its context. This partly confirms the idea

of hierarchical modeling, where the modeling granularity increases across layers, but

also shows that even at the bottom layer a controlled amount of long-range context is

desirable.

4.2.6 Interpretability of Attention Heads

We hypothesize that certain attention heads respond to certain types of acoustic events.

To test this hypothesis, we correlate the average attention that each attention head

places on frames with the corresponding phoneme labels obtained via forced decoding.

We re-train the stacked hybrid model with phonemes instead of characters as targets,

and use encoder-decoder attention scores, summed over phoneme types, to obtain a

soft alignment of phoneme labels for each frame. This gives us a measure for how much

each frame in the sequence corresponds to the phoneme type under inspection.

We now correlate these phoneme activations to each of the first layer’s 8 attention

heads. We average the matrices across rows to obtain the overall attention that each
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Figure 4.4: Evolution of Gaussian mask in self-attentional encoder. Shown are the
variance parameters for each of the 8 attention heads over course of training (left: first
layer, right: second layer). As a result of downsampling, each time step corresponds to
2 frames in the first layer and 4 frames in the second layer. Note the somewhat peculiar
bump across all heads toward the end of the training, caused by learning rate decay in
combination with reverting of the model to the best checkpoint.

frame receives. We then compute the Pearson correlation coefficient of the summarized

self-attention and encoder-decoder attention sequences, concatenated over utterances.

Table 4.7 shows the most highly correlated phonemes for each attention head, along

with an attempt to classify these manually according to linguistic categories. This

works remarkably well and we can clearly see a linguistically plausible division of labor,

even though categories are neither exhaustive nor disjunct. Notice that head 2 seems

to always focus on the utterance end where we usually expect silence, and head 8 is

mostly unfocused, which we may interpret as these heads establishing channel and

speaker context.

4.2.7 Related Work

The attention mechanism was popularized by work on visual attention [MHGK14] and

enabled the break-through of sequence-to-sequence models [BCB15]. Self-attention has

been explored in subsequent work all in the NLP domain [CDL16, PTDU16, LFdS+17,

VSP+17].

Binary masks have been employed for various purposes in prior work, such as

preventing a self-attentional decoder to attend to the future during training [VSP+17]

and to implement directional attention [SZL+18]. Our proposed Gaussian masking

approach bears some resemblance to prior work on self-attention [IC17] that uses a

linear distance map instead of a Gaussian and does not include trainable parameters,
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i Top phonemes Entropy Comments

1 S, TH, Z 3.7 sibilants

2 </s> 1.9 silence

3 UW, Y, IY, IX 3.6 ”you” diphthong
B, G, D voiced plosives

M, NG, N nasals

4 XM, AW, AA, AY, L, AO, AH 3.2 A, schwa

5 ZH, AXR, R 3.5 R, ZH

6 ZH, Z, S 3.2 sibilants
IY, IH, Y, UW ”you” diphthong

7 S, </s>, TH, CH, SH, F 3.4 fricative, noise

8 mixed 3.7 unfocused

Table 4.7: Linguistic function of self-attention heads in acoustic encoder. Note that we
conducted a small amount of cherry picking by removing 4 outliers that did not seem to
fit categories (OY from head 1, ZH from head 3, EH and ER from head 7). Entropy is
computed over the correlation scores, truncated below 0.

so that their model is less flexible and interpretable than our approach. Both binary

masked regions and Gaussian masking has also been employed in the context of

tailoring the encoder-decoder cross attention to the ASR task, the former constraining

an attention mechanism to attend to a local region around the previous prediction

[BCS+16], the latter to define smooth attention regions for conducting monotonic

attention [TSN17]. Both treat the attention width as a fixed hyperparameter.

Learnable Gaussian windows have further been explored in the context of time-delay

neural networks [BW91].

Some contemporaneous work investigated improvements to the positional encoding

by integrating relative positions into self-attention [SUV18]. Exploring a similar idea

for self-attentional acoustic models would be an interesting venue for future work,

although relative position information increases the memory requirements further and

may therefore not be straight-forwardly applicable to this task.

Beyond the NLP domain, there has been contemporaneous work on self-attention

for acoustic modeling [PHG+18] which also employs a hybrid RNN/self-attention

architecture and employs a masking technique similar to our more basic local masking

variant (Section 4.2.3.3). Other contemporaneous work also moves beyond the NLP

domain by exploring self-attention for graph-models [VCC+18].
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4.3 Chapter Summary

In this chapter we identified the development of a strong all-neural speech recognition

system as a necessary first step for advancing the state-of-the-art in speech translation.

We first reported our steps taken to produce and analyze such a system using available

recent modeling techniques. We then explored a novel approach of using self-attention,

which has been found very powerful for text translation tasks, for acoustic modeling.

Adopting self-attention to acoustic modeling is challenging for computational and

modeling reasons. We investigate ways to address these challenges and obtain our

best results when using a hybrid model architecture and Gaussian biases that allow

controlling context range. This model is almost as good as a strong LSTM-based

baseline at much faster computation speed. We highlight interpretability as an

advantage over conventional models. Future work may investigate self-attentional

models for other sequences of low-information states such as characters, and attempt

transferring results on controlling context range and interpretability to text modeling.
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Chapter 5

Tight Coupling in Cascaded

Systems

On our quest toward end-to-end speech translation models, we now examine two

strategies in which encoder-decoder models can be extended to achieve tight integration

in a cascaded speech translation scenario. The cascaded scenario can be formally

described as a decomposition

Pr(T | X) =
∑
S∈H

Pr(T | S,X)Pr(S | X) ≈
∑
S∈H

pmt(T | S)pasr(S | X).

As before, T is the desired translation, X the audio signal, S the source side transcript,

and H denotes the speech recognizer’s hypothesis space. According to the cascading

scenario, the task is decomposed into separately trained recognition and translation

models, pasr and pmt. Note also that we made a reasonable but not always correct

independence assumption between the translation and the acoustic signal given the

source-side transcript. Exhausting the whole transcript hypothesis space, as indicated

by the sum operator, is computationally prohibitive and leads to the question of how

to find suitable approximations.

In this chapter, we assume a cascaded scenario in which the output of a speech

recognizer is given and needs to be translated as accurately as possible. Our first

proposed innovation aims at making the translation component in a cascade more

robust toward errors in the speech recognizer output. In this case, H is approximated

in its simplest form, considering only the first-best ASR output S′. The aim is a model

probust(T | S′) that minimizes the compounding effect of recognition errors. The result

will be a very simple method that can be easily applied in many situations. The second
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innovation aims at a tight coupling between ASR and MT by using word lattices as a

powerful interface that allows the translation model to peek into the hypothesis space

of the ASR system. In other words, we approximate H by pruned speech recognition

lattices L, and then train a modified encoder-decoder model plat2seq(T | L) to directly

translate these rich lattice inputs.

5.1 Robust Neural Machine Translation

A speech translation cascade requires applying a machine translation model on

erroneous outputs from an automatic speech recognizer. Ideally, we would like the

translation process to ignore or even to correct the corrupted inputs. Translation

models are usually trained on well-formed parallel sentences that do not exhibit such

noise. This results in a harmful mismatch between training and test data, and further

aggravates the difficulty of transforming malformed inputs in the first place. The now

prevalent encoder-decoder models [KB13, SVL14, BCB15] have been identified to be

especially sensitive to noisy data [CKF+16, HNvG17, BB18], and more specifically to

corrupted inputs due to erroneous ASR [RDBF17].

Robustness at test-time may be improved by inducing suitable forms of noise

during the training process. The spectrum of suitable approaches ranges from

general-purpose regularizers,1 such as dropout [SHK+14], to task-specific approaches

that alter the training data to resemble the corrupted inputs at test-time. Task-specific

approaches can make stronger assumptions about the data distribution and are

potentially more effective or provide additive gains when combined with general-purpose

methods. As a disadvantage, they are also more complex and may require task-specific

knowledge or resources. Another tradeoff to consider concerns trainability. Neural

sequence-to-sequence models are known to suffer from explaining-away effects, where

models may learn to generate outputs by relying on the target-side context while

ignoring the source-side context [YBD+17, Koe17], especially when the source side

provides only a weak or noisy signal. As a result, the careful calibration of type and

amount of the induced noise may be necessary.

One way of inducing speech-translation-specific noise is to train on actual ASR

outputs paired with the correct translations. Unfortunately, such data is scarce,

and exploiting it may not be straightforward (see [PKL+13] and Section 5.1.2.1; but

1In this context, we use the notions of good generalization (avoiding overfitting, e.g. via
regularization) and robustness (stability w.r.t. noisy data) loosely interchangeably. In fact, both are
strongly linked in the sense that in general, good generalization implies robustness [CMX11].
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[CHHL17]). Alternatively, it has been proposed to synthesize realistic ASR error

patterns and suitable translations thereof, and augment the training data accordingly

[TMD14, RGLF15]. However, this approach has not yet been shown to transfer to

neural machine translation (see discussion in Section 5.1.2.4), and is relatively complex,

requiring the availability of resources such as pronunciation dictionaries and suitable

language models.

In this section, we seek to improve the robustness of a neural machine

translation model applied to speech recognition input by exploring tradeoffs between

general-purpose and task-specific methods. For this purpose, we introduce a simple

noise model that is inspired by the word error rate which categorizes the common ASR

error types into substitutions, insertions, and deletions. Accordingly, our noise model

artificially corrupts the source side of a parallel training corpus by randomly introducing

substitutions, insertions, or deletions. Our noise model is simpler than the prior

approaches [TMD14, RGLF15], but nonetheless effective, and provides a flexible test

bed that allows exploring the middle ground between task specificity and generality in

the context of neural sequence-to-sequence models. In addition, we discuss preliminary

efforts toward refining the noise model to capture more task-specific intuitions similar

to these prior approaches.

Our approach is methodologically inspired by reward-augmented maximum

likelihood (RAML) [NBC+16]. We use a similar sampling procedure on the source side,

instead of the target side as in RAML. However, RAML is very differently motivated,

aiming at fixing exposure bias whereas we are concerned with noise from upstream

components. Moreover, sampling according to RAML is biased toward producing fewer

deletions than substitutions and insertions, which our noise model purposefully avoids.

5.1.1 Noised Sequence-to-Sequence Training

This section proposes our noise model that will be applied to every input sentence of

the training data. The general idea follows the intuitions behind the WER, according

to which ASR errors can be categorized into substitutions, insertions, and deletions.

Design goals are flexibility to capture various levels of refinement, and convenient

control of the amount of noise and other properties. We first describe the vanilla

model, and then present several refinements.
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5.1.1.1 Vanilla Noise Model

The vanilla noise model, outlined in Algorithm 1, can be summarized as follows. For

each sentence, we first decide on the number of edits, while considering the desired

amount of overall noise. The edits are then randomly divided into substitutions,

insertions and deletions. Finally, for each edit a position is randomly chosen along

with a new word for substitutions and deletions.

More formally, let hyperparameter τ∈[0, 1] denote the amount of noise to be

induced, let V be a sampling vocabulary, and assume a sentence of length n as

〈w0=sos, w1, · · · , wn, wn+1=eos〉. We first draw the number of edits e (line 1). The

Poisson distribution is a suitable choice because it is defined over non-negative integers

and has probability mass centered around its mean. For simplicity, we allow a maximum

of n edits for a sentence of length n. Thus, we sample according to a n-truncated Poisson

distribution [Moo52], defined as

pλ(k) ∝ exp(−λ)
λk

k!

with support k ∈ {0, · · · , n}, where we set λ := τ · n. The mean of this distribution is

approximately λ. Because of the finite support, this distribution reduces to a categorical

distribution and is thus trivial to sample from.

Next, we draw the number of substitutions ns, number of insertions ni, and number

of deletions nd such that ns+ni+nd = e and ns, ni, nd ∈ N0 (line 2). This defines a

space over 〈ns, ni, nd〉, known as the discrete 3-simplex [Cos71]. We sample from a

uniform distribution over this space (Section 5.1.1.1).

We then draw without replacement a position for each substitution, insertion, and

deletion (lines 3, 4, 5). Finally, we corrupt the original sentence accordingly (lines 6

through 16), sampling new words for substitutions and insertions uniformly from the

sampling vocabulary (lines 7 and 14).

Sampling from the Discrete Simplex In order to determine the number of edit

operations n1, · · · , nd for each operation type (here: ns, ni, nd, corresponding to

substitutions, insertions, and deletions), we uniformly sample

〈n1, · · · , nd〉 ∼ DiscrSimplex (d, e)

such that
∑d

i=1 nd = e and ni ∈ N0. This can be accomplished by slightly

adjusting the sampling approach for the continuous simplex [ST04] to the discrete
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Algorithm 1 Vanilla Noise Model.
– given magnitude of noise: τ ∈ [0, 1]
– given sentence 〈w0=sos, w1, · · · , wn, wn+1=eos〉
– given vocabulary V

1: sample distance e ∼ TruncPoisson (τ · n, n)
2: sample 〈ns, ni, nd〉 ∼ DiscrSimplex (3, e)
3: sample substitution positions s1, · · · , sns uniformly without replacement from
{1, · · · , n}

4: sample insertion positions i1, · · · , ini uniformly without replacement from
{0, · · · , n}

5: sample deletion positions d1, · · · , dnd
uniformly without replacement from

{1, · · · , n} \ {s1, · · · , sns}
6: for i← 1 · · ·ns do
7: uniformly sample w̃ ∼ V
8: replace wi ← w̃ . substitution
9: end for

10: for i← 1 · · ·nd do
11: replace wi ← ε . deletion
12: end for
13: for i← ni · · · 1 do
14: uniformly sample w̃ ∼ V
15: insert w̃ between wi and wi+1 . insertion
16: end for
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simplex as follows. Sample auxiliary random variables x1, · · · , xd−1 uniformly

without replacement from {1, 2, · · · , e+d−1}. Let x0=0, xd=e+d. Finally,

let ni = xi−xi−1−1,∀i∈{1, 2, . . . , d}. Proof of correctness directly follows

argumentation in [ST04].

5.1.1.2 Refinements

The following discusses several simple steps, all aiming at making the sampled noise

more similar to the ASR outputs. For more elaborate refinements, we refer to prior

work [TMD14, RGLF15].

Sampling Vocabulary: Linguistic Conditioning The vanilla model draws

substitutions and insertions uniformly from the vocabulary (lines 7 and 14),

causing a large portion of induced noise to be drawn from the long tail of rarely

occurring words. As a more linguistically informed strategy, we can draw from a

unigram instead of a uniform distribution over the vocabulary, replacing lines 7

and 14 accordingly.

Sampling Vocabulary: Acoustic Conditioning Preferably, substitutions would

be chosen based on acoustic similarity to the original input. Here, we use negative

character edit distance as an approximation for acoustic similarity, and sample

according to exponentiated distances p(w̃ | w) ∝ exp(−dist(w, w̃)), replacing lines

7 and 14.

Sampling Positions ASR tends to err more often for certain types of words than

others. For example, shorter tend to be confused more often because these

words can suffer from linguistic and acoustic ambiguity. We can model this

by substituting or deleting short words more often, again working with an

exponentiated distribution p(pos = j) ∝ exp(−|wj |) (lines 3 and 5).

Proportion of Error Types ASR usually produces more substitutions than

insertions and deletions. We may wish to reflect this in our noise distribution, for

example by drawing edit operations from a 7-simplex and assigning 1 bucket to

insertions, 1 bucket to deletions, and 5 buckets to substitutions1 (lines 1 and 2).

1This particular choice of distribution is motivated by our experimental data containing about 5
times as many substitutions as insertions or deletions.
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5.1.2 Experiments

We conduct experiments on Fisher-Callhome (Section 3.3). We use only the 138,819

training sentences of the Fisher/train part of the corpus and omit the much smaller

Callhome/Train. We use Fisher/Dev as held-out testing data for most of our

experiments, which has a WER of 41.3%.

For preprocessing, we tokenized and lowercased source and target sides. We removed

punctuation from the reference transcripts on the source side for consistency with the

automatic transcripts which also do not contain punctuation. Although punctuation is

removed, we use the manual segmentation as given in the corpus, and leave dealing with

noisy segmentation boundaries to future work. Our source-side vocabulary contains

all words from the automatic transcripts for Fisher/Train, replacing singletons by an

unknown word token, totaling 14,648 words. Similarly, on the target side we used

all words from the reference translations of Fisher/Train, replacing singletons by the

unknown word, yielding 10,800 words in total.

We use a standard attentional encoder-decoder architecture with one encoder

and decoder layer. Basic training settings are given in Section 4.1.1. We used

128-dimensional word embeddings. We use variational dropout [GG16] in encoder and

decoder LSTMs (p=0.5). To obtain a more noise-robust baseline, we also apply word

type dropout [GG16] to the source word embeddings (p=0.1).

For all experiments, we first pretrained a model using reference transcripts only,

starting from an initial learning rate of 0.0003, restarting Adam and halving learning

rates when perplexities did not improve for 2 consecutive epochs [DN17]. We then

fine-tuned the model weights by training on noisy data according to the proposed noise

model. Fine-tuning used an initial learning rate of 0.00001 and the same learning rate

decay and restarting strategy as during pretraining. The pretraining-finetuning scheme

was used in part to make experimental effort manageable, and in part because we

observed better BLEU scores in preliminary experiments.

5.1.2.1 Main Results

Figure 5.1 compares our baseline model against several models trained using our noise

model. VanillaNoise induces varying amounts of noise using the basic model and

yields substantial improvements over the Baseline, which is trained only on clean data.

UnigramNoise replaces the uniform sampling distribution with a unigram distribution

and yields similar gains. Perhaps surprisingly, DeletionNoise, a simplified model

that induces only deletions, produces strong results as well. We present a possible
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5. TIGHT COUPLING IN CASCADED SYSTEMS

explanation later. Note that improvements are achieved only for small to moderate

amounts of noise. For τ = 0.4, which is close to the WER of the test data, results are

rather poor. This indicates that we are facing a trade-off between better trainability

for small values for τ , and better distributional similarity with the test data for higher

values for τ . We also trained a model by fine-tuning on actual 1-best transcripts rather

than using the proposed noise model. Results are rather poor at 32.55 BLEU points,

which may be explained by the amount of noise being so high that trainability is

compromised, and possibly by some proneness to overfitting because the same noise is

used in every epoch.

Figure 5.1: BLEU scores for noised training with inputs from ASR. We evaluate on
Fisher/Dev with 4 reference translations and vary the amount of the induced training
noise.

Figure 5.2 shows the performance of the same models when using clean reference

transcripts as inputs. Translation of clean inputs is improved for one configuration

of inducing noise, in which case the induced noise can be understood to act as

a general-purpose regularizer.1 However, note that the performance drops quickly

when increasing the noise parameter τ , again highlighting both the importance of

distributional similarity between training and test data, and potential trainability

issues.

Figure 5.3 evaluates models in terms of n-gram precision, which we compute

identically to the BLEU score but drop the brevity penalty. Comparing results to

1This explanation is supported by prior work relating data noising to traditional smoothing methods
[XWL+17].
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Figure 5.2: BLEU scores for noised training with clean inputs. We evaluate on Fisher/Dev
with 4 reference translations and vary the amount of the induced training noise.

Figure 5.1, we can clearly observe some interactions that lead to trading off precision for

recall. Most notably, DeletionNoise performs substantially worse than VanillaNoise

and UnigramNoise when measuring only precision. Closer analysis showed that models

generally tend to produce shorter outputs the more noise is contained in the inputs.

The BLEU metric’s brevity penalty is known to punish such short outputs quite

severely. DeletionNoise, on the other hand, is trained on inputs where words are

deleted. In other words, the training-time inputs are shorter than the test-time inputs,

counteracting the tendency to produce shorter outputs and thereby avoiding a severe

brevity penalty. While this helps BLEU score, arguably producing shorter outputs for

noisier inputs is a desirable behavior that we would also expect from a human translator,

and BLEU may thus not be a sufficient ground for model selection in our task.

5.1.2.2 Impact of ASR Quality

For this experiment, we combined all available test data (Fisher/Dev, Fisher/Dev2,

Fisher/Test, Callhome/Devtest, Callhome/Evltest), and divided it into bins according

to ASR WER. Figure 5.4 shows the length ratio of translations produced for these

inputs for two different models. It can be seen that both Baseline and UnigramNoise

produce length ratios close to 1.0 for clean inputs. However, when inputs contain even

moderate amounts of noise, uncertainty in Baseline seems to become problematic and

outputs quickly become rather short. UnigramNoise on the other hand appears to
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Figure 5.3: n-gram precision for noisy inputs over various training noise settings. We
evaluate on Fisher/Dev and vary the amount of the induced training noise. n-gram
precision is computed as BLEU score with removed brevity penalty.

handle noisier inputs much more gracefully, while also exhibiting a tendency for shorter

outputs when inputs are noisy.

While this demonstrates a greater robustness of the noise-induced model, it also

raises the question as to what extent shorter outputs for noisy inputs are desirable.

Consider the example of a simultaneous interpreter who’s job is to produce a translation

of some on-going speech in real-time. Interpreters often face cognitive limits where

they are either too slow to deliver a complete translation, or fail to understand the

speech correctly. In such cases, trained interpreters usually resort to compensatory

strategies. According to a study by Al-Khanji et al. [AKESH00], human interpreters

resort to strategies that reduce preciseness or omit information about ten times as

often as they substitute information with misleading content. We may view a speech

translation system as similarly facing“cognitive constraints”, which may arguably better

be compensated for by strategies of omission rather than substitution.1 This claim

would also need to be investigated from a usability perspective, however.

1Consider a typical example we found in an English ASR transcript, Boesch as ever his son decides
to have a feast. While the first 3 or 4 words are clearly recognition mistakes (caused by a rare name in
the audio), the rest makes sense and a human might choose to only translate the latter part. Another
example is buildings and boundaries around the location very part, where the last 2 words are easily
recognizable as mistakes and could be dropped before translating. However, an experienced translator
might guess correctly that very part should be replaced by where to park.

54



5.1 Robust Neural Machine Translation

0.5

0.6

0.7

0.8

0.9

1

1.1

Clean 20-40% 40-60% 60-80% >80%

Baseline Unigram noise @ !=0.2

len_ratio

Figure 5.4: Translation length ratio for noised training against ASR accuracy. We bin
the test inputs according to their WER.

5.1.2.3 Large System Results

We have used the proposed approach in two evaluation systems, a multilingual

translation model submitted to IWSLT 2017 and a deep transformer model submitted to

IWSLT 2018. These are large-scale systems with respect to both model size and training

data size. Details can be found in the system description papers [PSS+17, SPN+18].

For simplicity, we have constrained ourselves to the deletion-only setting with τ = 0.01.

The results in Table 5.1 show improvements between 0.2 and 0.5 BLEU points and

demonstrate that our approach scales to larger systems.

System Original data Noised data

tst2013 (English to German) [PSS+17] 17.9 18.4
tst2013 (German to English) [PSS+17] 15.7 16.0
tst2014 (German to English) [SPN+18] 19.1 19.3

Table 5.1: BLEU scores for noised training in evaluation systems.

5.1.2.4 Negative Results for Model Refinements

Our analysis so far only considered the unigram-sampling refinement of the vanilla

noise model. We also tested acoustic conditioning, better sampling positions, and more

realistic proportion of error types (Section 5.1.1.2), but did not observe noticeable

improvements and do not explore the details here. Future work may attempt using even
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more realistic error patterns along the lines of prior work [TMD14, RGLF15]. However,

a possible difficulty when trying this may be that, unlike phrase-based machine

translation, neural machine translation has been known to be ineffective at learning

from rare training examples [Koe17]. Permutations of error patterns potentially consist

mainly of such hard-to-learn rarely occurring patterns. Counteracting this by increasing

the amount of noise may lead to trainability issues as observed in our experiments as

well. Instead, it may be necessary to represent knowledge about confusability more

explicitly and efficiently in the model.

5.1.3 Related Work

The most closely related works aim at synthesizing ASR error patterns in order to

train an SMT model to translate erroneous ASR outputs. [TMD14, RGLF15]. Unlike

neural models, SMT models are effective at translating even rare phrases by simply

looking up their translation in the phrase table. This makes them suitable for learning

many possible permutations of error patterns. We argue that this is not the case for

sequence-to-sequence models, which provides an explanation for why we did not observe

gains from model refinements that make our error model more similar to these prior

approaches (Section 5.1.2.4).

Inducing noise in the training inputs can be seen as a form of data augmentation,

which has been used in several applications such as acoustic modeling [JH13], computer

vision [ZBH+17], language modeling [XWL+17], and statistical machine translation

where data can be augmented by paraphrases [CBKO06]. It has been described as more

powerful than general-purpose regularization in the context of deep learning [ZBH+17].

Note that these approaches aim at inducing label-preserving noise, in contrast to our

noise model which may alter or destroy the meaning of an input despite keeping targets

unchanged. Data augmentation has also been used to improve robustness to noisy

inputs as in our work, such as research on speech recognition under noisy conditions

[IKS+13].

Several works have identified noisy or mismatched text inputs as a challenge for

neural models: [KK17] mention domain mismatch as a challenge for neural machine

translation, [CKF+16] show that NMT suffers from noisy training data, Li et al. show

that recurrent neural networks can be sensitive to corrupted input sequences [LMJ17].

A growing body of work is dedicated to robustness when dealing with social media

content, which may include phenomena such as spelling mistakes, abbreviations, and

internet slang. Prior to our work, Heigold et al. [HNvG17] analyze this issue for neural
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machine translation of such data, and following our contribution several researchers

have proposed additional solutions [CTM+18, BB18]. The latter work demonstrates

the importance of using natural (as opposed to synthetic) noise to make models robust

to realistic noisy test-time conditions. Michel et al. [MN18] have created a suitable

data set and benchmark to facilitate comparability of future work.

5.2 Neural Lattice-to-Sequence Models

Previous research on traditional phrase-based or tree-based statistical machine

translation has used word lattices (e.g. Figure 5.5) as an effective tool to pass on

uncertainties from up-stream components [Ney99, CNO+04]. This prevents the system

to commit to early decisions and allows passing alternative hypotheses between models.

Several works have shown quality improvements by translating lattices, compared

to translating only the single best upstream output. Examples include translating

lattice representations of ASR output [SJVS04, ZKYL05, MHN08], multiple word

segmentations, and morphological alternatives [DMR08].

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 1 

.4 

.6 

1 1 

.2 

.8 1 

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 

1 

Figure 5.5: An example lattice with posterior scores. The lattice contains 3 possible
paths. Translating the whole lattice potentially allows for recovering from errors in the
corresponding 1-best hypothesis.

The recent neural encoder-decoder models [KB13, SVL14, BCB15] force us to

rethink approaches to handling lattices, because their recurrent design no longer allows

for efficient lattice decoding using dynamic programming as was used in the earlier

works.

As a remedy, prior work [STX+17] proposed replacing the sequential encoder

by a lattice encoder to obtain a lattice-to-sequence (lat2seq) model. This was

achieved by extending the encoder’s Gated Recurrent Units (GRUs) [CMG+14] to be

conditioned on multiple predecessor paths. The authors demonstrate improvements

in Chinese-to-English translation by translating lattices that combine the output of
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multiple word segmenters, rather than a single segmented sequence.

However, this model does not address one key aspect of lattices that we argue is

critical to obtaining good translation results: their ability to encode the certainty or

uncertainty of the paths through the use of posterior scores. Specifically, we postulate

that these scores are essential for tasks that require handling lattices with a considerable

amount of erroneous content, such as those produced by ASR systems. In this chapter,

we propose a lattice-to-sequence model that accounts for this uncertainty. Specifically,

our contributions are as follows:

• We employ the popular child-sum TreeLSTM [TSM15] to derive a lattice encoder

that replaces the sequential encoder in an attentional encoder-decoder model. We

show empirically that this approach yields only minor improvements compared to

a baseline that is fine-tuned on sequential recognition outputs. This finding stands

in contrast to the positive results by Su et al. [STX+17], as well as Ladhak et al.

on a lattice classification task [LGD+16], and suggests higher learning complexity

of our speech translation task.

• We hypothesize that lattice scores are crucial in aiding training and inference,

and propose several techniques for integrating lattice scores into the model: (1)

We compute weighted child-sums,1 where hidden units in the lattice encoder

are conditioned on their predecessor hidden units such that predecessors with

low probability are less influential on the current hidden state. (2) We bias

the TreeLSTM’s forget gates for each incoming connection toward being more

forgetful for predecessors with low probability, such that their cell states become

relatively less influential. (3) We bias the attention mechanism to put more

focus on source embeddings belonging to nodes with high lattice scores. We

demonstrate empirically that the third proposed technique is particularly effective

and produces strong gains over the baseline. According to our knowledge, this is

the first attempt of integrating lattice scores at the training stage of a machine

translation model.

• We exploit the fact that our lattice encoder is a strict generalization of a sequential

encoder by pretraining on sequential data, obtaining faster and better training

convergence on large corpora of parallel sequential data.

1This is reminiscent of the weighted pooling strategy [LGD+16] for spoken utterance classification.
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5.2.1 Attentional Lattice-to-Sequence Model

The encoder-decoder model described in Section 2.1 assumes sequential inputs and is

therefore limited to taking a single output of an up-stream model as input. Instead, we

wish to consume lattices to carry over uncertainties from an up-stream model.

5.2.1.1 Lattices

Lattices (e.g. Figure 5.5) represent multiple ambiguous or competing sequences in a

compact form. They are a more efficient alternative to enumerating all hypotheses as

an n-best list, as they allow for avoiding redundant computation over subsequences

shared between multiple hypotheses. Lattices can either be produced directly, e.g. by

an ASR dumping its pruned search space [PKL+13], or can be obtained by merging

several n-best sequences [DMR08, STX+17].

A word lattice G = 〈V,E〉 is a directed, connected, and acyclic graph with nodes

V and edges E. V⊂N is a node set, and (k, i)∈E denotes an edge connecting node k

to node i. C(i) denotes the set of predecessor nodes for node i. We assume that all

nodes follow a topological ordering, such that k<i ∀ k∈C(i). Each node i is assigned a

word label w(i).1 Every lattice contains exactly one start-of-sequence node with only

outgoing edges, and exactly one end-of-sequence node with only incoming edges.

5.2.1.2 Lattices and the TreeLSTM

One thing to notice here is that lattice nodes can have multiple predecessor states.

In contrast, hidden states in LSTMs and other sequential RNNs are conditioned on

only one predecessor state (h̃j in left column of Table 5.2), rendering standard RNNs

unsuitable for the modeling of lattices. Luckily the TreeLSTM [TSM15], which was

designed to compose encodings in trees, is also straightforward to apply to lattices; the

TreeLSTM composes multiple child states into a parent state, which can also be applied

to lattices to compose multiple predecessor states into a successor state. Table 5.2,

middle column, shows the TreeLSTM in its child-sum variant that supports an arbitrary

number of predecessors. Conditioning on multiple predecessor hidden states is achieved

by simply taking their sum as h̃i. Cell states from multiple predecessor are each passed

through their own forget gates fjk and then summed.

Encoding a lattice results in one hidden state for each lattice node. Our lat2seq

1It is perhaps more common to think of each edge representing a word, but we will motivate why
we instead assign word labels to nodes in Section 5.2.1.3.
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Sequential LSTM TreeLSTM Proposed LatticeLSTM

recurr. h̃i = hi−1 h̃i =
∑

k∈C(i) hk h̃i =
∑

k∈C(i)

w
Sh
b/f,k

Zh,k
hk (5.2)

forget

gate
fi = σ

(
Wfxi + Ufh̃i + bf

) fik = σ(Wfxi+

Ufhk + bf)

fik = σ(Wfxi + Ufhk+[
lnwb/f,kSf − Zf,k

]
+ bf)

(5.3)

input

gate
ii = σ

(
Winxi + Uinh̃i + bin

)
as sequential as sequential

output

gate
oi = σ

(
Woxi + Uoh̃i + bo

)
as sequential as sequential

update ui = tanh
(
Wuxi + Uuh̃i + bu

)
as sequential as sequential

new

cell
ci = ii � ui + fi � ci−1

ci = ii � ui+∑
k∈C(i) fik � ck

as TreeLSTM

new

hidden
hi = oi � tanh(ci) as sequential as sequential

attent. αij ∝ exp (s (·)) αij∝ exp [s (·) +Sa lnwm,i] (5.4)

Table 5.2: Formulas for sequential, tree, and proposed lattice LSTMs. TreeLSTM are
according to Tai et al. [TSM15]. Also shown is the conventional vs. proposed integration
into the attention mechanism (bottom row). Inputs xj are word embeddings or hidden
states of a lower layer. W· and U· denote parameter matrices, b· bias terms.

framework uses this network as encoder, computing the attention over all lattice nodes.1

In other words we replace Equation 2.1 by the following:

−→
h i = LatticeLSTM

(
xi, {
−→
h k | k∈C(i)}

)
(5.1)

Similarly, we encode the lattice in backward direction and replace Equation 2.2

accordingly. Figure 5.6 illustrates the result. The computational complexity of the

encoder is O(|V | + |E|), i.e. linear in the number of nodes plus number of edges in

the graph. The complexity of the attention mechanism is O(|V |M), where M is the

output sequence length. |V | depends on both the expected input sentence length and

the lattice density.

5.2.1.3 Node-labeled Lattices

At this point, we take a step back to motivate our choice of assigning word labels to

lattice nodes, which is in contrast to the prior work [LGD+16, STX+17] who assign

1This is similar in spirit to prior work [EHT16] that used the TreeLSTM in an attentional
tree-to-sequence model to translate sentences given in form of a syntax tree.
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Lattice-to-Sequence Models

�1

He   loved    to     eat He

‘d love

loved

to

eat

+

<s>   Er    …

 Er   liebte
+

<s>          Er     …

 Er           liebte

Figure 5.6: Network structure for the lat2seq model. For simplicity, only a single,
unidirectional encoder is shown, while in practice we use bidirectional encoders with
multiple layers.

word labels to edges. Recurrent states in edge-labeled lattice encoders are conditioned

not only on multiple predecessor states, but must also aggregate words from multiple

incoming edges. This implies that hidden units may represent more than one word

in the lattice. Moreover, in the edge-labeled case the hidden units that are in the

same position in the forward and backward encoders represent different words, but

are nevertheless concatenated and attended to jointly. For these reasons we find our

approach of encoding word-labeled lattices more intuitively appealing when used as

input to an attentional decoder, although empirical justification is beyond the scope

of this work. We also note that it is easy to convert an edge-labeled lattice into a

node-labeled lattice using the line-graph algorithm [HB78], which we utilize in this

work.
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5.2.2 Integration of Lattice Scores

This section describes a key ingredient of our lattice-to-sequence model: integration

of lattice scores encoding input uncertainty. These lattice scores assign different

probabilities to competing paths, and are often provided by up-stream statistical

models. For example, an ASR may attach posterior probabilities that capture acoustic

evidence and linguistic plausibility of words in the lattice. In this section, we describe

our method, first explaining how we normalize scores to a format that is easily usable

in our method, then presenting our methods for incorporating these scores into our

encoder calculations.

5.2.2.1 Lattice Score Normalization

Lattice scores that are obtained from upstream systems (such as ASR) are typically

given in forward-normalized fashion, interpreted as the probability of a node given its

predecessor. Here, outgoing edges sum up to one, as illustrated by the left-most scores

in Figure 5.7. However, in some of our methods it will be necessary that scores be

normalized in the backward direction, so that the weights from incoming connections

sum up to one, or globally normalized, so that the probability of the node is the marginal

probability of all the paths containing that node.

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 1  1  1 

.4  .4  1 

.6 .6 1 

1  .4  .45 1  .88  .88 

.2  .12  1 

.8  .48  .55 1  .12  .12 

0: <s> 

1: ah 5: qué 
8: </s> 

2: hay 4: qué 

3: que 

6: bueno 

7: bueno 

1  1  1 

Figure 5.7: Lattice with normalized scores. The black scores are forward-normalized,
blue scores are marginal scores, and green scores are backward-normalized.

Let wf ,i, wm,i, wb,i denote forward-normalized, marginal, and backward-normalized

scores for node i respectively, illustrated in Figure 5.7. Given wf ,i, we can compute

marginal probabilities recursively by multiplying a predecessor’s marginal by the

forward probability to the current node and summing over all predecessors:

wm,i =
∑
k∈C(i)

wm,k·wf ,i.

This corresponds to the the forward algorithm [Rab89]. Then, we can normalize
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backward using

wb,i =
wm,i∑

k∈C′(i)wm,k
,

where C ′(i) denotes the successors of node i. All 3 forms are employed in the sections

below.

Furthermore, when integrating these scores into the lat2seq framework, it is

desirable to maintain flexibility over how strongly they should impact the model. For

this purpose, we introduce a peakiness coefficient S. Given a lattice score wb,i in

backward direction, we compute wSb,i/Zi. Zi=
∑

k∈C(i)wk is a re-normalization term

to ensure that incoming connections still sum up to one. In the forward direction, we

compute wSf,i/Zi and normalize analogously over outgoing connections. Setting S=0

amounts to ignoring the scores by flattening their distribution, while letting S→∞
puts emphasis solely on the strongest nodes. S can be optimized jointly with the other

model parameters via back-propagation during model training.

5.2.2.2 Integration Approaches

We suggest three methods to integrate these scores into our lat2seq model, with

equations shown in the right column of Table 5.2. These methods can optionally be

combined, and we conduct an ablation study to assess the effectivity of each method

in isolation (Section 5.2.4.3).

The first method consists of computing a weighted child-sum (WCS), using lattice

scores as weights when composing the hidden state h̃i. This is based on the intuition

that predecessor hidden states with high lattice weights should have a higher influence

on their successor than states with low weights. The precise formulas for WCS are shown

in (5.2).

The second method biases the forget gate fik for each predecessor cell state such

that predecessors with high lattice score are more likely to pass through the forget gate

(BFG). The intuition for this is similar to WCS; the composed cell state is more highly

influenced by cell states from predecessors with high lattice score. BFG is implemented

by introducing a bias term inside the sigmoid as in (5.3).

In the cases of both WCS and BFG, all hidden units have their own independent

peakiness. Thus Sh and Sf are vectors, applied element-wise after broadcasting the

lattice score. The re-normalization terms Zh,k and Zf,k are also vectors and are applied

element-wise. We use backward-normalized scores wb,i for the forward-directed encoder,

and forward-normalized scores wf ,i for the backward-directed encoder.
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In the third and final method, we bias the attentional weights (BATT) to put more

focus on lattice nodes with high lattice scores. This can potentially mitigate the

problem of having multiple contradicting lattice nodes that may confuse the attentional

decoder. BATT is computed by introducing a bias term to the attention as in (5.4).

Attentional weights are scalars, so here the peakiness Sa is also a scalar. We drop the

normalization term, relying instead on the softmax normalization. Both BFG and BATT

use the logarithm of lattice scores so that values will still be in the probability domain

after the softmax or sigmoid is computed.

5.2.3 Pretraining

We use a two-step training process where the model is first pretrained on sequential

data, then fine-tuned on lattice data. We found this important for achieving good

results, because this allowed initializing the weights based on clean translation data

before fine-tuning on noisy lattices which can be difficult from a trainability perspective

(Section 5.1). Moreover, the pretraining allows for efficient training using batched

computation as is commonly used with sequence-to-sequence models.

The fine-tuning on parallel data with lattices on the source side can be much slower

because batch computations are not trivial to exploit here, due to the changing network

structure from sentence to sentence. However, auto-batching [NGD17] can be used as a

remedy to make lattice training almost as fast as sequential training. In either case, we

found it important to use (potentially simulated) minibatch training when fine-tuning

in order to stabilize the training.

At test time, the model is able to translate both sequential and lattice inputs and can

therefore be used even in cases where no lattices are available, at potentially diminished

accuracy.

5.2.4 Experiments

5.2.4.1 Setting

We conduct experiments on Fisher-Callhome (Section 3.3) which includes automatic

transcripts and lattices. The lattices contain on average 3.4 (Fisher/Train) or 4.5

(Callhome/Train) times more words than their corresponding reference transcripts.

For preprocessing, we tokenized and lowercased source and target sides. We removed

punctuation from the reference transcripts on the source side for consistency with

the automatic transcripts and lattices. All models are pretrained and fine-tuned on

Fisher/Train unless otherwise noted. Our source-side vocabulary contains all words
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from the automatic transcripts for Fisher/Train, replacing singletons by an unknown

word token, totaling 14,648 words. Similarly, on the target side we used all words from

the reference translations of Fisher/Train, replacing singletons by the unknown word,

yielding 10,800 words in total.

Our implementation is based on DyNet [NDG+17]. We used a standard attentional

model with default parameters: a layer size of 256 per encoder direction and 512 for

the decoder, word embedding size of 512. We used 2 encoder and decoder layers for

better baseline performance. For the sequential baselines, the LSTM variant in the left

column of Table 5.2 was employed. Forget gates were initialized to 1, following [JZS15].

We used Adam [KB14] for training, with an empirically determined initial learning

rate of 0.001 for pretraining and 0.0001 for fine-tuning. We halved the learning rate

when the dev perplexity (on Fisher/Dev) gets worse. Pretraining and fine-tuning

on 1-best sequences were performed until convergence, and training on lattices was

performed for 2 epochs.1 Minibatch size was 1000 words for pretraining, and 20

sentences for lattice training. Unless otherwise noted, peakiness coefficients were jointly

optimized during training. We repeated training 3 times with different random seeds for

parameter initialization and data shuffling, and report averaged results. The decoding

beam size was 5.

5.2.4.2 Main Results

We compare 4 systems: Performing pretraining on the sequential reference transcripts

only (R), fine-tuning on 1-best transcripts (R+1), fine-tuning on lattices without scores

(R+L), and fine-tuning on lattices including lattice scores (R+L+S). At test time, we

try references, lattice oracles,2 1-best transcripts, and lattices as inputs to all 4 systems.

The former 2 experiments give upper bounds on achievable translation accuracy, while

the latter 2 correspond to a realistic setting. Table 5.3 shows the results on Fisher/Dev2

and Fisher/Test.

Before even considering lattices, we can see that 1-best fine-tuning boosted BLEU

scores quite impressively (1-best/R vs. 1-best/R+1), with gains of 1.3 and 0.7 BLEU

points. This stands in contrast to [PKL+13] who find the 1-best transcripts not to be

helpful for training a hierarchical machine translation system. Possible explanations are

learning from repeating error patterns, and improved robustness to erroneous inputs.

On top of these gains, our proposed set-up (lattice/R+L+S) improves BLEU scores

1For comparison, we tried training on lattices from scratch, which converged at a dev perplexity
that was 10% worse than with the pretraining plus fine-tuning strategy.

2The path through the lattice with the best WER.
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Test-time Trained on Trained on

inputs R R+1 R+L R+L+S R R+1 R+L R+L+S

Reference 53.9 53.8 53.7 54.0 52.2 51.8 52.2 52.7

Oracle 44.9 45.6 45.2 45.2 44.4 44.6 44.6 44.8

1-best 35.8 37.1 36.2 36.2 35.9 36.6 36.2 36.4

Lattice 25.9 25.8 36.9 38.5 26.2 25.8 36.1 38.0

Fisher/Dev2 Fisher/Test

Table 5.3: BLEU scores for lattice-to-sequence models and baselines. BLEU scores
are computed using 4 references. Models are pretrained only (R), fine-tuned on either
1-best outputs (R+1), lattices without scores (R+L), or lattices with scores (R+L+S).
Statistically significant improvement (paired bootstrap resampling, p < 0.05) over
1-best/R+1 is in bold.

Test-time Trained on

inputs R R+1 R+L R+L+S

Reference 7.1 6.5 6.8 6.7

Oracle 13.4 9.5 10.6 10.6

1-best 24.7 13.7 16.4 16.3

Lattice 23.4 15.7 13.0 12.6

Table 5.4: Perplexity results for lattice-to-sequence models and baselines. Perplexities
are computed on Fisher/Dev2. Models are pretrained only (R), fine-tuned on either 1-best
outputs (R+1), lattices without scores (R+L), or lattices with scores (R+L+S).

by another 1.4. Removing the lattice scores (lattice/R+L) diminishes the results and

performs worse than the 1-best baseline (1-best/R+1), indicating that the proposed

lattice score integration is crucial for good performance. This demonstrates a clear

advantage of our proposed method over that of [STX+17].1

As can be seen in the table, models fine-tuned on lattices show reasonable

performance for both lattice and sequential inputs (1-best/R+L, lattice/R+L,

1-best/R+L+S, lattice/R+L+S). This is not surprising, given that the lattice training

data includes lattices of varying density, including lattices with very few paths or even

only one path. On the other hand, without fine-tuning on lattices, using lattices as input

1Our model makes it also possible to integrate posterior scores into sequential 1-best translation,
but this did not yield any gains compared to not using the scores and is not explored further here.
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performs poorly (lattice/R and lattice/R+1). A closer look revealed that translations

were often too long, potentially because implicitly learned mechanisms for length control

were not ready to handle lattice inputs.

Table 5.4 reports perplexities for Fisher/Dev2. Unlike the corresponding BLEU

scores, the lattice encoder appears stronger than the 1-best baseline in terms of

perplexity even without lattice scores (lattice/R+L vs. 1-best/R+1). To understand

this better, we computed the average entropy of the decoder softmax, a measure of how

much confusion there is in the decoder predictions, independent of whether it selects the

correct answer or not. Over the first 100 sentences, this value was 2.24 for 1-best/R+1,

2.39 for lattice/R+L, and 2.15 for lattice/R+L+S. This indicates that the decoder is

more confused for lattices without scores, while integrating lattice scores removes this

problem. These numbers also suggest that it may be possible to obtain further gains

using methods that stabilize the decoder.

5.2.4.3 Ablation Experiments

Next, we conduct an ablation study to assess the impact of the three proposed extension

for integrating lattice scores (Section 5.2.2.2). We train models with different peakiness

coefficients S, either ignoring lattices scores by fixing S=0, using lattice scores as-is by

fixing S=1, or optimizing S during training. Table 5.5 shows the results. Overall, joint

training of S gives similar results as fixing S=1, but both clearly outperform fixing S=0.

Removing confidences (setting S=0) in one place at a time reveals that the attention

mechanism is clearly the most important point of integration, while gains from the

integration into child-sum and forget gate are smaller and not always consistent.

We also analyzed what peakiness values were actually learned. We found that all 3

models that we trained for the averaging purposes converged to Sa=0.62. Sh and Sf

had per-vector means between 0.92 and 1.0, at standard deviations between 0.02 and

0.04. We conclude that while the peakiness coefficients were not particularly helpful in

our experiments, stable convergence behavior makes them safe to use, and they might

be helpful on other data sets that may contain lattice scores of higher or lower reliability.

5.2.4.4 Callhome Experiments

In this experiment, we test a situation in which we have a reasonable amount of

sequential data available for pretraining, but only a limited amount of lattice training

data for the fine-tuning step. This may be a more realistic situation, because speech

translation corpora are scarce. To investigate in this scenario, we again pretrain our
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BATT

Sa

BCS

Sh

BFG

Sf

Fisher
/Dev2

Fisher
/Test

0 0 0 36.9 36.1
1 1 1 38.2 37.4
* * * 38.5 38.0

0 1 1 37.2 36.2
1 0 1 37.9 37.5
1 1 0 38.2 37.8

0 * * 37.0 36.3
* 0 * 38.3 37.9
* * 0 38.1 37.5

1-best/R+1 37.2 36.6

Table 5.5: Lattice-to-sequence ablation experiments. BLEU scores (4 references) are
evaluated for different configurations of the peakiness coefficients Sa,Sh,Sf . 0/1 means
fixing to that value, * indicates optimization during training. Statistically significant
improvement over 1-best/R+1 is in bold.

Test-time Trained on
inputs R R+1 R+L R+L+S

Reference 24.7 24.3 24.8 24.4
Oracle 15.8 16.8 16.3 15.9

1-best 11.8 13.3 12.4 12.0
Lattice 9.3 7.1 13.7 14.1

Table 5.6: Lattice-to-sequence experiments on Callhome. BLEU scores are on
Callhome/Evltest using1 reference. All models are pretrained on Fisher/Train references
(R), and potentially fine-tuned on Callhome/Train. The best result using 1-best or lattice
inputs is in bold. Statistically significant improvement over 1-best/R+1 is in bold.

models on Fisher/Train, but then fine-tune them on the 9 times smaller Callhome/Train

portion of the corpus. We fine-tune for 10 epochs, all other settings are as before.

We use Callhome/Evltest for testing. Table 5.6 shows the results. The trends are

consistent to Section 5.2.4.2: The proposed model (lattice/R+L+S) outperforms the

1-best baseline (1-best/R+1) by 0.8 BLEU points, which in turn beats the pretrained

system (1-best/R) by 1.5 BLEU points. Including the lattice scores is clearly beneficial,

although lattices without scores also improve over 1-best inputs in this experiment.
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5.2.4.5 Impact of Lattice Quality

Next, we analyze the impact of using lattices and lattice scores as the ASR WER

changes. For this purpose, we concatenate all development and test data sets from

Table 3.5 and divide the result into bins according to the 1-best WER. We sample 1000

sentences from each bin, and compare BLEU scores between several models.

The results are shown in Figure 5.8. For very good WERs, lattices do not improve

over 1-best inputs, which is unsurprising. In all other cases, lattices are helpful. Lattice

scores are most beneficial for moderate WERs, and not beneficial for very high WERs.

We speculate that for high WERs, the lattice scores tend to be less reliable than for

lower WERs.
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Figure 5.8: Lattice-to-sequence results over varying 1-best WER.

5.2.4.6 Example Translations

We list several cherry-picked examples for cases where using lattices improved the

translation, as well as where lattices hurt accuracy.

Example 1: Erroneous 1-best

In this example, ideal is contained in lattice but not 1-best transcript, and consequently

correctly translated only in the lattice/R+L+S setting.

1-best/R+1 input: y y eso es algo que a mi me parece contraproducente verdad

porque uno piensa y cuando ya a todos uno quisiera tal vez un mundo ya el
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de que una vez que cadena cuerpos trabajarán por el bienestar de de todos

1-best/R+1 output: and , and that ’s something that seems to me , right ? because

one thinks , and when you think , and when everyone would like perhaps a world

already , the one time that the chain changes for the

lattice/R+L+S partial input:

mundo 

ideal 

el 

de 

ya 

…	
…	

lattice/R+L+S output: and , and that ’s something that seems to me , right ?

because one thinks , and when you see , when you go to a ideal world , you see

that they are illegals for the , well , they are all foreigners

Example 2: Redundant Lattice Content

Another frequent pattern was a word appearing (once) in the 1-best transcript, but

multiple times in the lattice, and only the lattice/R+L+S model translating this word.

1-best/R+1 input: los que van porque que es un d́ıa los que van porque no tiene alicia

derrita jugar y los que śı caray profesionalmente porque hay ciertos counselor

bueno creo que soy josé playa que

1-best/R+1 output: the ones that go , because it ’s a day that they go , because they

don ’t have alicia , play and the ones that are italian , because there are some

<unk> , well , i think i ’m jose

lattice/R+L+S partial input:

yo 

por
que 

…	

…	
caray …	

caballo 

vaya 

…	

…	

profesion-
almente 

profesion-
almente 

profesion-
almente 

profesion-
almente 
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lattice/R+L+S output: the ones that go , because it ’s a day that they go because

you don ’t want to play and play , and the ones that influenced professionally

, because there are certain things , well , i think that i ’m jose

Example 3: Lattice Context

In this example, the lattice/R+L+S system correctly produced <unk> as translation to

the unknown input word móviles, while the 1-best/R+1 system produced a seemingly

random word instead. A possible explanation is the added context helping the lat2seq

system to know when to be unsure.

1-best/R+1 input: śı śı bueno contar otro que usaban los teléfonos satélite los los

móviles no funcionaban bien porque pero a veces si funcionaban śı

1-best/R+1 output: yes , well , tell me that i used to use satellite phones , the kids

didn ’t work well , because sometimes it worked , yes

lattice/R+L+S partial input:

no …	los …	 los móviles 

lattice/R+L+S output: yes , yes , well , with the other that i used to use the satellite

phones , the , the 〈unk〉 didn ’t work well because , but sometimes it worked , yes

Counter Example

In this example, the lattice (but not the 1-best transcript) contained then word san,

which tricked the lat2seq decoder to produce san francisco.

1-best/R+1 input: pero los demás aqúı están también śı está bien está tranquilo para

acá

1-best/R+1 output: but the rest here are also , yes , it ’s ok , it ’s quiet for here

lattice/R+L+S partial input:

también 
…	

en …	 san 

están …	

también 

sí 

lattice/R+L+S output: but the rest here in san francisco is very quiet here
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5.2.5 Related Work

Ney [Ney99] and Casacuberta et al. [CNO+04] showed that tight integration of ASR

and MT components are beneficial for the speech translation task. However, the

employed FST formalism proved somewhat limiting, and follow-up work proposed

improvements upon this in the context of traditional statistical MT models [SJVS04,

ZKYL05, MHN08, BF05].

Lattices have also been found useful for other tasks, including translation of multiple

word segmentations, and morphological alternatives [DMR08] and speech disfluency

removal [CNW14].

Prior to our work, two papers have used lattices in the context of neural models.

Ladhak et al. [LGD+16] proposed a lattice classification model by extending vanilla

RNNs accordingly, while Su et a. [STX+17] have extended gated recurrent units (GRUs)

in order to obtain a lattice-to-sequence model for the purpose of passing Chinese word

segmentation lattices to a translation model. Both of these fail to incorporate lattice

scores in an appropriate way into the model, which we have shown to be critical for

exploiting lattices for speech translation purposes. Our work is the first to extend

LSTMs, the most widespread RNN variant, to support lattice inputs. It is also the first

work to integrate lattices into the training phase of a speech translation system.

5.3 Chapter Summary

In this chapter, we explored effective ways of coupling a neural machine translation

model tightly to a preceding speech recognition stage in a cascaded speech translation

scenario.

We first identified robustness to noisy inputs as a challenge for neural

sequence-to-sequence models, and proposed to introduce randomized noise into the

training by using a simple generative noise model. We found that this improves

robustness when properly calibrating type and amount of noise, and that type and

amount of noise at training and test time affect the length of the outputs. We

highlighted the trade-off between trainability and distributional data similarity, and

found that the amount of induced noise must be much smaller than the expected noise at

test time for good results. Future work may investigate appropriate trade-offs between

precision and recall when translating noisy inputs from a usability perspective, use our

method for different tasks such as translating user-generated content, and experiment

with more refined types of noise or other ways of modeling acoustic similarity in the
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context of neural machine translation of ASR outputs.

Next, we investigated translating uncertain inputs from an error-prone up-stream

component using a neural lattice-to-sequence model. Our proposed model takes word

lattices as input and is able to take advantage of lattice scores. It is the first time that

lattices have been incorporated already at the training stage of a speech translation

system. In our experiments, we have found consistent improvements over translating

1-best transcriptions and that consideration of the lattice scores, especially in the

attention mechanism, is crucial for obtaining these improvements.
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Chapter 6

End-to-End Models

In the previous chapters, we introduced several ways to make use of the flexibility of

encoder-decoder models to tighten the coupling between ASR and MT models and

consequently to improve speech translation. We will now turn to the one-model

approach in which we tackle speech translation by training a single model in an

end-to-end fashion, i.e. by optimizing all parameters jointly. Mathematically, rather

than decomposing as before, we model P (T | X) directly.

Why might this be a good idea? There are a number of reasons:

• The joint optimization of parameter has generally been observed to be helpful in

machine learning.

• Direct modeling allows exploiting end-to-end training data, which may be

available in some situations but cannot be used for cascaded model training.

• This approach offers a way to circumvent error propagation. Error propagation

can lead to compounding follow-up errors caused by a lack of robustness in the

translation component or, relatedly, by the resulting mismatch between training

and testing conditions.

• The assumption that P (T | X,S) = P (T | S), i.e. the independence assumption

between the translation and the audio signal given the source-language transcript,

is not always correct. For example, some languages do not require a question mark

when writing but do indicate interrogative statements through prosody, in which

access to prosodic information can contain important information for the correct

translation of a sentence. The one-model approach ensures that such information

is accessible by the translation model.
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• From a psychological point of view, it can be argued that the one-model approach

is closer to how the human brain would perform a similar task. Inspiration from

human cognitive processing can be helpful, given how effective humans are at

handling spoken language. For instance, it has been noted that for many spoken

texts, there is no such thing as the one correct interpretation, only a number of

different reasonable interpretations [Buc01]. Lexical ambiguity is very common

[RDJ05] and humans are able to maintain multiple interpretations and to revise

earlier decisions while listening. This is also described as top-down or interactive

processing [Buc01]. Humans are able to hold multiple syntactic interpretations

valid until they can be resolved. This is, however, a highly demanding cognitive

action [JC92]. The human ability to hold multiple interpretations implies

that a hidden representation in continuous space may be of advantage for a

computational model to represent a space of alternative possible interpretations.

Also note that the high cognitive demands for humans implies a reasonable

chance for computational models to outperform humans. This is especially

true in highly demanding situations such as simultaneous interpretation. The

above observations are underpinned by Seleskovitch, a professional interpreter

and instructor for interpreters, who advocates retaining the meaning of the

source language utterance, rather than the lexical items. Seleskovitch argues

that concepts (semantic storage) are far easier to remember than words (lexical

storage). Semantic storage also allows the interpreter to access concepts already

stored in the brain, which allows the interpreter to naturally employ the brain’s

natural language-generation ability, by which humans convert concepts to words

[Sel78].

6.1 Chapter Overview

Recent work showed that it is feasible to employ a single sequence-to-sequence model for

speech translation [DAC+16, WCJ+17, BBKP18, AC18], offering appealing properties

such as prevention of error propagation and joint model training. Despite these

promises, two problems persist: First, reports on whether direct models (Fig. 6.1)

outperform cascaded models are inconclusive, with some work in favor of direct models

[WCJ+17], some in favor of cascaded models [KSN17, BBKP18], and one work in

favor of direct models for two out of three tested language pairs [AC18]. Second,

cascaded and direct models have been compared under identical data situations, but

this is an unrealistic assumption: In practice, cascaded models can be trained on
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Figure 6.1: Conceptual diagrams for various speech translation approaches. Cascade
is a traditional approach that applies machine translation to the output of a separately
trained speech recognizer. All other models are end-to-end trainable: The direct model is
a standard attentional encoder-decoder model. The basic 2-stage model uses two attention
stages and passes the decoder states of a source-text decoder to a translation component.
Our proposed attention-passing model operates in between, applying two attention stages
but passing the more robust context vectors to the translation component, instead of
passing the decoder states.

much more abundant independent ASR and MT corpora, while end-to-end models

require hard-to-acquire end-to-end corpora of speech utterances paired with textual

translations.

Our first contribution is a closer investigation of these two issues. Regarding

the question of whether direct models or cascaded models are generally stronger,

we hypothesize that direct models require more data to work well, due to the more

complex mapping between inputs (source speech) and outputs (target text). This

would imply that direct models outperform cascades when enough data is available, but

under-perform in low-data scenarios. We conduct experiments and present empirical

evidence in favor of this hypothesis. Next, for a more realistic comparison with regards

to data conditions, we train a direct speech translation model using more auxiliary

ASR and MT training data than end-to-end data. This can be implemented through

multi-task training [WCJ+17, BBKP18]. Our results indicate that the auxiliary data

is beneficial only to a limited extent, and that direct multi-task models are still heavily

dependent on the end-to-end data.
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As our second contribution, we apply a two-stage model [TLS+17, KSN17] as

an alternative model to our problem, hoping that such models may overcome the

data-efficiency shortcoming of the direct model. Basic two-stage models (Fig. 6.1)

consist of a first-stage attentional sequence-to-sequence model that performs speech

recognition and then passes the decoder states as input to a second attentional model

that performs translation. This architecture is closer to cascaded translation while

maintaining end-to-end trainability. Introducing supervision from the source-side

transcripts midway through the model creates inductive bias that guides the

complex transformation between source speech and target text through a reasonable

intermediate representation closely tied to the source text. The architecture has been

proposed by Tu et al. [TLS+17] to realize a reconstruction objective, and a similar

model was also applied to speech translation [KSN17] to ease trainability, although no

experiments under varying data conditions have been conducted. We hypothesize that

such a model may help to address the identified data-efficiency issue: Unlike multi-task

training for the direct model that trains auxiliary models on additional data but then

discards many of the additionally learned parameters, the two-stage model uses all

parameters of sub-models in the final end-to-end model. Empirical results confirm that

the two-stage model is indeed successful at improving data-efficiency, but suffers from

some degradation in translation accuracy under high data conditions compared to the

direct model. One reason for this degradation is that this model re-introduces the

problem of error-propagation, because the second stage of the model depends on the

decoder states of the first model stage which often contain errors.

Our third contribution, therefore, is an attention-passing extension of the two-stage

model (Fig. 6.1) that, instead of passing on possibly erroneous decoder states from the

first to the second stage, passes on only the computed attention context vectors. We

can view this approach as replacing the early decision on a source-side transcript by

an early decision only on the attention scores needed to compute the same transcript,

where the attention scores are expectedly more robust to errors in transcript decoding.

We explore several variants of this model and show that it outperforms both the direct

model and the vanilla two-stage model, while maintaining the improved data-efficiency

of the latter. Through an analysis, we further observe that there is a trade-off between

sensitivity to error propagation and data-efficiency.
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6.2 Baseline Models

This section introduces a direct and a two-stage model for performing end-to-end speech

translation. Both are based on the attentional encoder-decoder architecture [BCB15]

with character-level outputs, and use the encoder architecture described in Section 4.1.

Note that we do not use the self-attentional acoustic model of Section 4.2 here because

some of our more elaborate models do not fit in GPU memory with these. These models

are limited1 by the fact that they can only be trained on end-to-end data which is much

harder to obtain than ASR or MT data used to train traditional cascades.2 Section 6.3

will introduce multi-task training as a way to overcome this limitation.

6.2.1 Direct Model

The sequence-to-sequence model with audio inputs described in Section 4.1 can be

trained as a direct speech translation model by using speech data as input and the

corresponding translations as outputs. Such a model does not rely on intermediate ASR

output and is therefore not subject to error propagation. However, the transformation

from source speech inputs to target text outputs is much more complex than that of

an ASR or MT system taken individually, which may cause the model to require more

data to perform well.

To make matters precise, given L audio encoder states e1:L using the audio encoder

as described previously, the direct model is computed as

si = LSTM ([Weyi−1; ci−1] , si−1; θlstm) (6.1)

ci = Attention (si, e1:L; θatt) (6.2)

s̃i = tanh (Ws [si; ci] + bs) (6.3)

p (yi | y<i, e1:L) = SoftmaxOut (s̃i; θout) . (6.4)

Here, W∗, b∗, and θ∗ are the trainable parameters, yi are output characters, and

SoftmaxOut denotes an affine projection followed by a softmax operation. si are decoder

states with s0 initialized to the last encoder state, and ci are attentional context vectors

1Prior work noted that in severe low-resource situations it may actually be easier to collect speech
paired with translations than transcriptions [DAC+16]. However, we focus on well-resourced languages
for which ASR and MT corpora exist and for which it is more realistic to obtain good speech translation
accuracy.

2As a case in point, the largest available speech translation corpora [PKL+13, KBK18] are an order
of magnitude smaller than the largest speech recognition corpora [CMW04, PCPK15] (∼ 200 hours vs
2000 hours) and several orders of magnitude smaller than the largest machine translation corpora, e.g.
those provided by the Conference on Machine Translation (WMT).
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with c0=0. In equation 6.2, we compute Attention (·) =
∑L

j=1 αijej with weights αij

conditioned on ej and si, parametrized by θatt, and normalized via a softmax operation.

6.2.2 Basic Two-Stage Model

As an alternative to the direct model, the two-stage model uses a cascaded information

flow while maintaining end-to-end trainability. Our main motivation for using this

model is the potentially improved data-efficiency when adding auxiliary ASR and MT

training data (Section 6.3). This model is similar to the architecture first described by

Tu et al. [TLS+17]. It combines two encoder-decoder models in a cascade-like fashion,

with the decoder of the first stage and the encoder of the second stage being shared

(Fig. 6.2). In other words, while a cascade would use the source-text outputs of the first

stage as inputs into the second stage, in this model the second stage directly computes

attentional context vectors over the decoder states of the first stage. The inputs of

the two-stage model are speech frames, the outputs of the first stage are transcribed

characters in the source language, and the outputs of the second stage are translated

characters in the target language.

Again assuming L audio encoder states e1:L, the first stage outputs of length N are

computed identically to equations 6.1–6.4, except that input feeding (conditioning the

decoding step on the previous context vector) is not used in the first stage decoder to

keep components compatible for multi-task training (Section 6.3.2).:

ssrci = LSTM
(
W src

e ysrci−1, s
src
i−1; θ

src
lstm

)
(6.5)

csrci = Attention (ssrci , e1:L; θsrcatt) (6.6)

s̃srci = tanh (W src
s [ssrci ; csrci ] + bsrc

s ) (6.7)

p (ysrci | y<i, e1:L) = SoftmaxOut (s̃srci ; θsrcout) (6.8)

Next, the second stage proceeds similarly but using the stage 1 decoder states as

input:

strgj = LSTM
([
W trg

e ytrgi−1; c
trg
j−1

]
, strgj−1; θ

trg
lstm

)
(6.9)

ctrgj = Attention
(
strgj , ssrc1:N ; θtrgatt

)
(6.10)

s̃trgj = tanh
(
W trg

s

[
strgj ; ctrgj

]
+ btrg

s

)
(6.11)

p
(
ytrgj | y<j , s

src
1:N

)
= SoftmaxOut

(
s̃trgj ; θtrgout

)
(6.12)
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Basic two-stage model
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Figure 6.2: Basic two-stage model. The decoder states of the first stage double as encoder
states for the second stage.

6.2.3 Cascaded Model

We finally employ a traditional cascaded model as a baseline, whose architecture is kept

as similar to the above models as possible in order to facilitate meaningful comparisons.

The cascade consist of an ASR component and an MT component, which are both

attentional sequence-to-sequence models according to equations 6.1–6.4, trained on the

appropriate data. The ASR component uses the acoustic encoder of Section 4.1, while

the MT model uses a bidirectional LSTM with 2 layers as encoder.

6.3 Incorporating Auxiliary Data

The models described in Section 6.2 are trained only on speech-to-translation pairs (and

transcripts in the case of Section 6.2.2), which is a severe limitation. To incorporate

auxiliary ASR and MT data into the training we make use of a multi-task training

strategy. Such a strategy trains auxiliary ASR and MT models that share certain

parameters with the main speech translation model. We implement multi-task training

by drawing several minibatches, one minibatch for each task, and performing an update
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based on the accumulated gradients across tasks. Note that this results in a balanced

contribution of each task.1

6.3.1 Multi-Task Training for the Direct Model

Multi-task training for direct speech translation models has previously been used

[WCJ+17, BBKP18], although not for the purpose of adding additional training

utterances that are not shown to the main speech translation task.2 We distinguish

five model components: a source speech encoder, a source text encoder (a two-layer

bidirectional LSTM working on character level), a source text decoder, a target

text decoder, and a general-purpose attention mechanism. The latter is a standard

MLP-based attention mechanism whose trainable parameters we opt to share across

all tasks, i.e. the attention mechanism learns to relate both source-text and target-text

decoder states to both source-text and source-speech encoder states. There are four

ways in which these components can be combined into a complete sequence-to-sequence

model (see Figure 6.3), corresponding to the following four tasks:

ASR: Combines source speech encoder, general-purpose attention, source text

decoder. This is similar to the auxiliary ASR task used by Weiss et al. [WCJ+17]

and can be trained on common ASR data.

MT: Combines source text encoder, general-purpose-attention, target text decoder.

The addition of an MT task has been mentioned by Bérard et al. [BBKP18] and

allows training on common MT data.

ST: Combines source speech encoder, general-purpose-attention, target text decoder.

This is our main task and requires end-to-end data for training.

Auto-encoder (AE): Combines source text encoder, general-purpose attention,

source text decoder. The AE task can be trained on monolingual corpora in

the source language and may serve to tighten the coupling between components

and potentially improves the parameters of the general-purpose attention model.

We have observed slight improvements by adding the AE task in preliminary

experiments and will therefore use it throughout this chapter.

1We also experimented with a final fine-tuning phase on only the main task [NC17], but discarded
this strategy for lack of consistent gains.

2Note that [BKL+19] do experiment with additional speech recognition data, although, differently
from our work, for purposes of cross-lingual transfer learning.
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source text decoder target text decoder 

general-purpose attention 

source speech encoder source text encoder 

Figure 6.3: Direct multi-task model with shared model components.

6.3.2 Multi-Task Training for the Two-Stage Model

Including an auxiliary ASR task is straight-forward with the two-stage model by simply

computing the cross-entropy loss with respect to the softmax output of the first stage,

and dropping the second stage.

The auxiliary MT task computes only the second stage, replacing the inputs ssrc1:N

by states easr1:N computed as:

easri = LSTM
(
W src

e ytranscri , esrci−1; θ
src
lstm

)
. (6.13)

That is, instead of computing the second-stage inputs using the first stage, we

compute these inputs through a conventional encoder that encodes the reference

transcript ytranscr1:N and uses the same embeddings matrix and unidirectional LSTM as

the first stage decoder.

Note that there is no equivalent to the auto-encoder task of the direct multi-task

model here.

Why might this architecture help to make better use of auxiliary ASR and MT

data? Note that in the direct model only roughly half of the model parameters are

shared between the main task and the ASR task, and likewise for main and MT tasks

(Section 6.3.1). Additional data would therefore only have a rather indirect impact on

the main task. In contrast, in the two-stage model all parameters of the auxiliary tasks

are shared with the main task and therefore have a more direct impact, potentially

leading to better data efficiency.

Note that relatedly to our multi-task strategy, Kano et al. [KSN17] have decomposed

their two-stage model in a similar way to perform pretraining for the individual stages.

This model can thus incorporate additional auxiliary data in a similar fashion, although

no experiments in this direction are presented in the paper.
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6.4 Attention-Passing Model

We have so far described a direct model that has the appealing property of avoiding

error propagation in a principled way but may not be particularly data efficient, and

have described a two-stage model that addresses the latter disadvantage. Unfortunately,

the two-stage model re-introduces the error propagation problem back into end-to-end

modeling, because the second stage heavily depends on the potentially erroneous

decoder states of the first stage. We therefore propose an improved attention-passing

model in this section that is less impacted by error propagation issues.

Attention-passing model

�2

<s>      h   …

  h        a   …

+

<s>     h        i

  h       i     </s>

+

t=1
t=2 t=3

t=1 t=2 t=3

Figure 6.4: Attention-passing model architecture.
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6.4.1 Preventing Error Propagation

The main idea behind the attention-passing model is to not feed the erroneous first-stage

decoder states to the second stage, but instead pass on only the context vectors that

summarize the relevant encoded audio at each decoding step. The first stage decoder

is unfolded as usual by employing discrete source-text representations, but the only

information exposed to the translation stage are the per-timestep context vectors

created as a by-product of the decoding. Figure 6.4 illustrates this idea. Intuitively, we

expect this to help because we no longer make an early decision on the identity of the

source-language text, but only on the corresponding attentions. This is motivated by

our observation that recognition attentions are sufficiently robust against recognition

errors (Section 6.5.7).

Formally, the first stage remains unchanged from equations 6.5–6.8. The context

vectors csrci then form the input to the second stage:

xtrg
i = LSTM

(
csrci ,xtrg

i−1; θ
src
lstm

)
(6.14)

strgj = LSTM
([
W trg

e ytrgi−1; c
trg
j−1

]
, strgj−1; θ

trg
lstm

)
(6.15)

ctrgj = Attention
(
strgj ,xtrg

1:N ; θtrgatt

)
(6.16)

s̃trgj = tanh
(
Ws,trg

[
strgj ; csrcj

]
+ btrg

s

)
(6.17)

p
(
ytrgj | y<j , s

src
1:N

)
= SoftmaxOut

(
s̃trgj ; θtrgout

)
(6.18)

6.4.2 Decoder State Drop-Out

In addition to the modifications described in Section 6.4.1, we introduce a block

drop-out operation [AMB+16] on the decoder states (see Figure 6.5), replacing

equation 6.7 by

s̃srci = tanh (W src
s [BDrop {ssrci } ; csrci ] + bsrc

s ) .

The block drop-out operation, denoted as BDrop, replaces the whole vector by zero with

a certain probability (here: 0.5). This results in the context vectors csrci becoming the

only information available to the output layer whenever the decoder states are dropped

out. The motivation for this is to force the model to maximize the informativeness of

the context vectors, which are later relied upon as sole inputs to the second stage. Our

experiments show that this strategy improves the model accuracy (see Table 6.2).
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Attention-passing model + block dropout
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Figure 6.5: Attention-passing model with block drop-out.

6.4.3 Multi-Task Training

Similar to the basic two-stage model, the attention-passing model as a whole is trained

on speech-transcript-translation triplets, but can be decomposed into two sub-models

that correspond to ASR and MT tasks. In fact, the ASR task is unchanged with the

exception of the new block dropout operation. The MT task is obtained by replacing

equation 6.14 by

xtrg
i = LSTM

(
Wey

src
i ,xtrg

i−1; θ
src
lstm

)
,

i.e. by using the transcript character embeddings as inputs instead of the context vectors

used when training the main task. Note that the LSTMs in equations 6.5 and 6.14 are

shared in order to have a match between stage 1 decoder and stage 2 encoder as with
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the basic model.

6.4.4 Cross Connections

As a further extension to the attention-passing model of Section 6.4.1, we can introduce

cross connections that concatenate the dropped-out first stage hidden decoder states

to the second-stage encoder inputs (see Figure 6.6). This causes equation 6.14 to be

replaced by

xtrg
i = LSTM

(
Affine [csrci ; BDrop {ssrci }] ,x

trg
i−1; θ

src
lstm

)
(6.19)

This extension moves the model closer to the basic two-stage model, while the

inclusion of the context vectors and the block drop-out operation on the hidden decoder

states ensure that the second stage decoder does not rely too strongly on the first stage

outputs.

6.4.5 Additional Loss

We further experiment with introducing an additional loss aimed at making the LSTM

inputs between first stage decoder and second stage encoder RNN more similar. Recall

that in our attention-passing model, both RNNs share parameters (equations 6.5 and

6.14), so that similar inputs at both times are desirable. The loss is defined as follows:

Ladd = ||csrci −Wey
src
i ||2.

If combined with the cross connections (Section 6.4.4), the formula is adjusted to

Ladd = ||Affine [csrci ; BDrop {ssrci }]−Wey
src
i ||2. We did not find it beneficial to apply a

scaling factor when adding this loss to the main cross-entropy loss in our experiments.
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Attention-passing model + block dropout + cross 
connections
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Figure 6.6: Attention-passing model with cross connections.

6.5 Experiments

We conduct experiments on the Fisher and Callhome Spanish–English Speech

Translation Corpus [PKL+13], a corpus of Spanish telephone conversations that

includes audio, transcriptions, and translations into English. We use the Fisher portion

that consists of telephone conversations between strangers. The training data size is

138,819 sentences, corresponding to 162 hours of speech. ASR word error rates (WER)

on this dataset are usually relatively high due to the spontaneous speaking style and

challenging acoustics. From a translation viewpoint, the data can be considered as

relatively easy with regards to both the topical domain and particular language pair.

The vocabulary consists of the common characters appearing in English and
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Spanish, apostrophe, whitespace, and special start-of-sequence and unknown-character

tokens. The same vocabulary is used on both encoder (for the MT auxiliary task) and

decoder sides. We set the batch size dynamically depending on the input sequence

size such that the average batch size is 24 sentences. We use Adam [KB14] with

initial learning rate of 0.0005, decayed by 0.5 when the validation BLEU score did not

improve over 10 check points initially and 5 check points after the first decay. We

initialize attention-passing models using weights from a basic two-stage model trained

on the same data.

Following Weiss et al. [WCJ+17], we lowercase texts and remove punctuation. As

speech features, we use 40-dimensional Mel filter bank features with per-speaker mean

and variance normalization. We exclude a small number of utterances longer than 1500

frames from the training data to avoid running out of memory. The encoder-decoder

attention is MLP-based, and the decoder uses a single LSTM layer.1 The number of

hidden units is 128 for the encoder-decoder attention MLP, 64 for target character

embeddings, 256 for the encoder LSTMs in each direction, and 512 elsewhere. The

model uses variational recurrent dropout with probability 0.3 and target character

dropout with probability 0.1 [GG16]. We apply label smoothing [SVI+16] and fix the

target embedding norm to 1 [NC18]. For inference, we use beam search with beam size

15 and polynomial length normalization with exponent 1.5.2

All BLEU scores are computed on Fisher/Test and scored against 4 references.

6.5.1 Cascaded vs. Direct Models

We first wish to shed light on the question of whether cascaded or direct models can be

expected to perform better. This question has been investigated previously [WCJ+17,

KSN17, BBKP18, AC18], but with contradictory findings. We hypothesize that the

increased complexity of the direct mapping from speech to translation increases the

data requirements of such models. Table 6.1 compares the direct multi-task model

(Section 6.3.1) against a cascaded model with identical architecture to the respective

ASR- and MT sub-models of the multi-task model. The direct model is trained with

multi-task training on the auxiliary ASR-, MT-, and AE tasks on the same data which

outperformed single-task training considerably in preliminary experiments. As can be

seen, the direct model outperforms the traditional cascaded set-up only when both

1Weiss et al. [WCJ+17] report improvements from deeper decoders, but we encountered stability
issues and therefore restricted the decoder to a single layer.

2For two-stage models, we apply beam search only for the second stage decoder. We do not employ
the two-phase beam search of Tu et al. [TLS+17] because of its prohibitive memory requirements.
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are trained on the full data, but not when using only parts of the training data. This

provides evidence in favor of our hypothesis and indicates that direct end-to-end models

should be expected to perform strongly only in a case where enough training data is

available.

Training sentences Cascade Direct model

139k 32.45 35.30
69k 26.52 24.68
35k 16.84 14.91
14k 6.59 6.08

Table 6.1: BLEU scores (4 references) on Fisher/Test for various amounts of training data.
The direct model performs best in the full data condition, but the traditional cascaded
model is best in all reduced data conditions.

6.5.2 Two-Stage Models

Next, we investigate performance of the two-stage models, for both the basic variant

(Section 6.3.2) and our proposed attention-passing models (Section 6.4). Again,

all models are trained in a multi-task fashion by including auxiliary ASR and MT

tasks based on the same data. Table 6.2 shows the results. The basic two-stage

model performs in between the direct and cascaded models from Section 6.5.1. The

attention-passing model (Section 6.4.1), which is designed to circumvent the negative

effects of error propagation, outperforms the basic variant and performs similarly to

the direct model. The model extensions (Sections 6.4.4 and 6.4.5) further improved the

results, with the best model outperforming the direct model by 1.40 BLEU points and

the basic two-stage model by 2.34 BLEU points absolute. The last row in the table

confirms that the block dropout operation contributed to the gains: removing it led to

a drop by 0.66 BLEU points.

6.5.3 Data Efficiency: Direct Model

Having established results in favor of our proposed model on the full data, we now

examine the data efficiency of the different models. Our experimental strategy is

to compare model performance (1) when trained on the full data, (2) when trained

on partial data, and (3) when trained on partial speech-to-translation data but full

auxiliary (ASR+MT) data.1

1An alternative experimental strategy is to train on the full data and then add auxiliary data from
other domains to the training. We pursue this strategy in Section 6.5.5 as a more realistic scenario,
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Model BLEU

Cascade 32.45
Direct 35.30

Basic two-stage 34.36

Attention-passing 35.31
+ cross connections 36.51
+ cross connections + additional loss 36.70

Best w/o block dropout 36.04

Table 6.2: Results for cascaded and multi-task models under full data conditions.

Figure 6.7 shows the results, comparing the cascaded model against the direct model

trained under conditions (1), (2), and (3).1 Unsurprisingly, the performance of the

direct model trained on partial data declines sharply as the amount of data is reduced.

Adding auxiliary data through multi-task training improves performance in all cases.

For instance, in the case of 69k available speech-to-translation instances, adding the

full auxiliary data helps to reach the accuracy of the cascaded model. However, note

that this is already somewhat disappointing because the end-to-end data, which is not

available to the cascaded model, no longer yields an advantage. Moreover, reducing

the end-to-end data further reveals that multi-task training is not able to close the

gap to the cascade. In the scenario with 35k end-to-end instances and full auxiliary

data, the direct model underperforms the cascade by 9.14 BLEU points (32.50 vs.

23.36), despite being trained on more data. The unsatisfactory data efficiency in this

controlled ablation study is also a strong indicator that the direct model can be expected

to fall behind a cascade that is trained on large amounts of external data. This claim

is verified in Section 6.5.5.

6.5.4 Data Efficiency: Two-Stage Models

We showed that the direct model is poor at integrating auxiliary data and heavily

depends on sufficient amounts of end-to-end training data. How do two-stage models

behave with regards to this data efficiency issue? Figure 6.8 shows that both the basic

and best proposed two-stage models perform reasonably well even when having seen

but point out several problems that lead us to not use this as our main approach: Adding external
auxiliary data (1) leads to side-effects due to domain mismatch and (2) severely limits the number of
experiments that we can conduct due to the considerably increased training time.

1Note that the above hyper-parameters were selected for best full-data performance and are not
re-tuned here.
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Figure 6.7: Data efficiency for direct (multi-task) model, compared against cascade on
full auxiliary data.

much less end-to-end data. We can explain this by noticing that the two-stage model

can be naturally decomposed into an ASR sub-model and an MT sub-model, while

the direct model needs to add auxiliary sub-models to support multi-task training.

Interestingly, the attention-passing model without cross-connections does better than

the direct model with regards to data efficiency, but falls behind the basic and best

proposed two-stage models. This indicates that access to ASR labels in some form

contributes to favorable data-efficiency of speech translation models.

6.5.5 Adding External Data

Our approach for evaluating data efficiency so far has been to assume that end-to-end

data is available for only a subset of the available auxiliary data. In practice, we

can often train ASR and MT tasks on abundant external data. We therefore run

experiments in which we use the full Fisher training data for all tasks as before,

and add OpenSubtitle1 data for the auxiliary MT task. We clean and normalize the

Spanish-English OpenSubtitle 2018 data [Tie09] to be consistent with the employed

Fisher training data by lowercasing and removing punctuation. We apply a basic

length filter and obtain 61M sentences. During training, we include the same number

of sentences from in-domain and out-of-domain MT tasks in each minibatch in order

to prevent degradation due to domain mismatch. Our models converged before a full

1http://www.opensubtitles.org/
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Figure 6.8: Data efficiency across model types. All models use full auxiliary training data
through multi-task training.

pass over the OpenSubtitle data, but needed between two and three times more steps

than the in-domain model to converge.

Table 6.3 shows that all models were able to benefit from the added data. However,

when examining the relative gains we can see that both the cascaded model and the

two-stage models benefitted about twice as much from the external data as the direct

model. In fact the basic two-stage model now slightly surpasses the direct model, and

our best proposed two-stage model is ahead of the basic two-stage model by almost

the same absolute difference as before (2.36 BLEU points). These relative gains show

that our findings from Sections 6.5.3 and 6.5.4, namely that two-stage models are

much more efficient at exploiting auxiliary training data, generalizes to the setting in

which large amounts of out-of-domain data are added to the MT task. Out-of-domain

data is often much easier to obtain, and we can therefore conclude that the proposed

two-stage approach are preferable in many practically relevant situations. Because

these experiments are very expensive to conduct, we leave experiments with external

ASR data for future work.

6.5.6 Error Propagation

To better understand the impact of error propagation, we analyze how improved or

degraded ASR outputs impact the translation results. This experiment is applicable

to the attention-passing model, the two-stage model, and the cascade, but not to the
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Model Fisher Fisher+OpenSub Relative Improvement

Cascade 32.45 34.58 +6.2%
Direct model 35.30 36.45 +3.2%
Basic two-stage 34.36 36.91 +6.9%
Best proposed 36.70 38.81 +5.4%

Table 6.3: BLEU scores when adding auxiliary OpenSubtitles MT training data. The
two-stage models benefit much more strongly than the direct model, with our proposed
model yielding the strongest overall results.

direct model which does not compute ASR outputs during inference. We analyze three

different settings: using the standard decoded ASR labels, replacing these labels with

the gold labels, or artificially degrading the decoded labels by randomly introducing

10% of substitution, insertion, and deletion noise (Section 5.1.1.1). Intuitively, models

that suffer from error propagation issues are expected to rely most heavily on these

intermediate labels and would therefore be most impacted by both degraded and

improved labels.

Table 6.4 shows the results. Unsurprisingly, the cascade responds most strongly

to improved or degraded noise, confirming that it is severely impacted by error

propagation. Our attention-passing approach that does not directly expose the labels

to the translation sub-model is much less impacted. However, the impact is still more

significant than perhaps expected, indicating that improved attention models that are

more robust to decoding errors [CBS+15, TSN17] may serve to further improve our

model in the future. Note that the attention-passing model benefits poorly from gold

ASR labels, which is expected because gold labels only improve the ASR alignments

and by extension the passed context vectors, but these are quite robust against decoding

errors in the first place.

The basic two-stage model is impacted significantly but less strongly than the

cascade, in line with our claim that such models are subject to error propagation despite

being end-to-end trainable. Note that it falls behind the cascade for gold labels, despite

both models being seemingly identical under this condition. This can be explained by

the cascaded model’s use of beam search and greater number of encoder layers.

Somewhat contrary to our expectations, the model with dropped out cross

connections appears equally subject to error propagation despite the block dropout

on these connections, displaying the same accuracy gains across the three different

settings. This suggests future explorations may be able to determine model variants

with an even better trade-off between overall accuracy, data-efficiency, and amount of

degradation due to error propagation.
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ASR labels Gold Decoded Perturbed

Cascade 58.15 (+44%) 32.45 25.67 (-26%)
Basic two-stage 56.60 (+39%) 34.36 28.81 (-19%)
Attention-passing 40.70 (+13%) 35.31 31.96 (-10%)
+ cross connections 58.29 (+37%) 36.70 30.48 (-20%)

Table 6.4: Robustness against error propagation. The table shows the effect of altering
the ASR labels for different models as a measure for robustness. Percentages are relative
to the results for unaltered (decoded) ASR labels.

6.5.7 Robustness of ASR Attentions

Our attention-passing model was motivated by the assumption that attention scores

are relatively robust against recognition errors. We perform a qualitative analysis

to validate this assumption. Figure 6.9 shows the first-stage attention matrix when

force-decoding the reference transcript, while Figure 6.10 shows the same for regular

decoding, which for this utterance produced significant errors. Despite the errors, we

can see that the attention matrices are very similar. We manually inspected the first 100

test attention matrices and confirm that this behavior occurs very consistently. Further

quantitative evidence is given in Section 6.5.6 which showed that the attention-passing

model is much more resistent to error propagation than the other models.
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d    e    ␣    q   u    e    ␣   u    n    i    v    e    r    s    i    d    a   d   〈/s〉
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1.0 s
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Figure 6.9: ASR attentions when force-decoding the oracle transcripts.
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Figure 6.10: ASR attentions after regular decoding.
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6.6 Related Work

Model architectures similar to what we have here referred to as the basic two-stage

model have first been used by Tu et al. [TLS+17] for a reconstruction task, where

the first stage performs translation and the second stage attempts to reconstruct

the original inputs based on the outputs of the first stage. A second variant of a

similar architecture are Xia et al. [XTW+17]’s deliberation networks, where the second

stage refines or polishes the outputs of the first stage. For our purposes, the first

stage performs speech recognition, a natural intermediate representation for the speech

translation task, corresponding to the second stage output. Toshniwal et al. [TTLL17]

explore a different way of lower-level supervision during training of an attentional speech

recognizer by jointly training an auxiliary phoneme recognizer based on a lower layer in

the acoustic encoder. Similarly to the discussed multi-task direct model, this approach

discards many of the learned parameters when used on the main task and consequently

may also suffer from data efficiency issues.

Direct end-to-end speech translation models were first used by [DAC+16], although

the authors did not actually evaluate translation performance. Weiss et al. [WCJ+17]

extended this model into a multi-task model and report excellent translation results.

Our baselines do not match their results, despite considerable efforts. We note

that other research groups have encountered similar replicability issues [BKL+18],

explanations include the lack of a large GPU cluster to perform ASGD training, as

well as to explore an ideal number of training schedules and other hyper-parameter

settings. Bérard et al. [BBKP18] explored the translation of audio books with direct

models and report reasonable results, but do not outperform a cascaded baseline. Kano

et al. [KSN17] have first used a basic two-stage model for speech translation. They use a

pretraining strategy for the individual sub-models, related to our multi-task approach,

but do not attempt to integrate auxiliary data. Moreover, the authors only evaluated

the translation of synthesized speech, which greatly simplifies training and may not

lead to generalizable conclusions. Anastasopoulos et al. [AC18] conduct experiments

on low-resource speech translation and employ a triangle model that can be seen as

a combination of a direct model and a two-stage model, but is not easily trainable

in a multi-task fashion. It is therefore not a suitable choice for exploiting auxiliary

data in order to compete with cascaded models under well-resourced data conditions.

Finally, contemporaneous work explores transferring knowledge from high-resource to

low-resource languages [BKL+19].
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6.7 Chapter Summary

This chapter explored direct and two-stage models for speech translation with the

aim of obtaining models that are strong not only under favorable data conditions,

but are also efficient at exploiting auxiliary data. We started by demonstrating that

direct models do outperform cascaded models, but only when enough data is available,

shedding light on inconclusive results from prior work. We further showed that these

models are poor at exploiting auxiliary data, making them a poor choice in realistic

situations. We motivated the use of two-stage models by their ability to overcome

this shortcoming of the direct models, and found that two-stage models are in fact

more data-efficient, but suffer from error propagation issues. We addressed this by

introducing a novel attention-passing model that prevents error propagation, as well as

several model variants. The best proposed model outperforms all other tested models

and is much more data efficient than the direct model, allowing this model to compete

with cascaded models even under realistic assumptions with auxiliary data available.

Analysis showed that there seems to be a trade-off between data efficiency and error

propagation.

An interesting avenue for future work is the integration of techniques from Chapter 5

into the described two-stage or attention-passing models. The first technique that

addressed robustness (Section 5.1) would be relatively straightforward to integrate, by

introducing substitutions, insertions, and deletions to the attention-passing model’s

intermediate source text decoder labels during training. Integrating the second

technique, lattice translation (Section 5.2), is also conceivable, though more involved.

This would involve creating a lattice representation based on the first-stage decoder’s

output. Creating such lattices would require heuristics, because RNN decoders strictly

speaking do not allow for path recombination. The second-stage model component

would then translate the complete lattice into the target text, as described in this

thesis.

Besides these suggestions, further avenues for future work include testing better

ASR attention models, examining the effect of adding out-of-domain ASR data, and

exploring further model variants.
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Chapter 7

Discussion

7.1 Overview and Comparison

We have introduced several variants of direct and cascaded models in the context of

speech translation. To contrast these against one another, it is instructive to recall the

modeling assumptions and decompositions taken by each. As before, let T denote the

translation, X the audio signal, S the source side transcript, and H the hypothesis

space of all possible transcripts.

We started our explorations in Chapter 4 by looking at direct models for speech

recognition. In particular, encoder-decoder models allow us to model P (S | X) directly,

an important prerequisite on our quest toward end-to-end speech translation. Besides

analyzing state-of-the-art recognition models, we proposed a new self-attentional

architecture that successfully improves upon two major drawbacks of many direct neural

modeling techniques, namely speed and interpretability.

Equipped with this model, we moved to our main task, speech translation.

Chapter 5 looked at cascaded scenarios which are modeled as

Pr(T | X) =
∑
S∈H

Pr(T | S,X)Pr(S | X) ≈
∑
S∈H

pasr(T | S)pmt(S | X).

This decomposition expresses that cascaded speech translation requires estimating two

distinct models, a speech recognizer pasr(S | X) and a machine translation model

pmt(T | S). In this chapter we assumed an already existing model pasr(S | X),

and devised effective ways for modeling pmt(T | S) as well as for approximating the

computationally prohibitive sum over the ASR hypothesis space. Our first solution was
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a noise-robust sequence-to-sequence model probust following the modeling assumptions∑
S∈H

Pr(T | S)Pr(S | X) ≈ Pr(T | S′)Pr(S′ | X) ∝ probust(T | S′),

where S′ = argmaxS∈H pasr(S | X) (the ASR 1-best output) replaces the exhaustive

sum. This method is very simple to implement, but was outperformed by our second

approach, the lattice-to-sequence model plat2seq. Here, our model followed

Pr(T | X) =
∑
S∈H

Pr(T | S,X)Pr(S | X) ≈
∑
S∈L

Pr(T | S)P (S | X) = plat2seq(T | L).

The lattice L approximates the hypothesis space, and the sum is implicitly handled by

the lattice-to-sequence model.

Up to this point, we have investigated ways to tighten the speech translation

cascade using neural models, but have still trained ASR and MT models separately.

In Chapter 6 we proceeded to the one-model approach by exploiting the fact that

encoder-decoder models are flexible enough to model Pr(T | X) directly. We saw

that this direct modeling approach can work when suitable data is available and that

auxiliary ASR and MT data can be incorporated through multi-task training that

jointly trains auxiliary models with partly overlapping parameters. However, we have

also discussed the inconclusive results in prior work on whether the direct approach

outperforms the cascaded approach, and were able to explain this by the increased

data requirements of the former. In addition, we experimentally demonstrated that

the suboptimal data efficiency is a major disadvantage. In particular, direct models

are poor at exploiting auxiliary data and only perform well when large amounts of

end-to-end training data are available, which is rarely the case in practice.

We therefore identified two-stage models as a promising alternative. We

showed empirically that two-stage models improve data efficiency, but unfortunately

re-introduce error propagation into end-to-end models. We showed how to solve both

issues at once by obscuring the discrete source text representation from the translation

stage, and instead passing on the more robust source-text attentions. This approach

combines the modeling advantages of all methods considered in the chapter.

At this point, the question of which of all the investigated approaches in this thesis

should be used in practice arises. First, the noise-robust model’s gains are smaller

than those of the other proposed approaches, but the method is nonetheless appealing

because it is extremely easy to implement, yields consistent gains across very different

model settings, and does not require special training data or special ASR outputs
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(such as lattices). The lattice-to-sequence model, in contrast, leads to much greater

gains. In fact, these numbers are among the strongest in this thesis and approach

those of our best one-model approach that uses additional MT training data. It also

benefits immediately from advancements to the (HMM-based) ASR model, suggesting

that this model may be preferable in cases where a strong ASR system exists. However,

developing a strong HMM-based ASR model can be a major burden, and changes to

the ASR model require laborious updates of the training lattices and retraining of the

lattice-to-sequence model.

The one-model approach, in turn, is conceptually simple and appealing from a

modeling point of view because it allows joint parameter estimation and suffers less

from error propagation. Our proposed method allows overcoming its main weakness

and makes it very data-efficient. It produced the strongest results among all models in

this thesis by being able to exploit auxiliary translation data. The fact that the numbers

were still behind the lattice-to-sequence model under equal data conditions can be

explained by its somewhat inferior ASR modeling component. In the lattice-to-sequence

model, a complicated and highly engineered traditional HMM model, developed by

many contributors from the research community, was used [PKL+13]. In contrast,

our end-to-end models used a completely self-developed ASR component, inevitably

involving much less tuning and engineering. We may think of the lattice-to-sequence

model as using a much larger bag-of-tricks than the end-to-end model. This is

owed to the considerable labor and computational resources required to increase the

bag-of-tricks. However, literature indicates that encoder-decoder based ASR models

may be able to compete with traditional models [CSW+18]. Improvements on this

front are likely to benefit our one-model approaches in an equal fashion. It is therefore

reasonable to assume that the one-model approach will be able to compete with and

potentially outperform cascaded approaches such as the lattice-to-sequence model in

the future.

Besides the engineering effort related to the bag-of-tricks, the other decisive factor is

available data. In particular, when no direct speech translation data is available, more

traditional cascaded approaches remain the only viable choice. Once a certain critical

amount of such data becomes available, end-to-end modeling techniques as developed

in this thesis can become the method of choice.
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7.2 Future Work

7.2.1 Streaming

In practical scenarios, it is necessary to distinguish the pre-segmented and the streaming

scenario. In the pre-segmented case, followed throughout this thesis, we assume that

audio inputs correspond to linguistically sensible sentence-like units which we refer to

as utterances. These occur naturally in many use-cases; for example, a voice query

is usually made in the form of a single utterance, and in simple dialog situations

people may speak a single utterance and then insert a break to listen to a reply.

In the streaming case, we assume a continuous stream of audio, without extrinsic

information on potential segment or utterance boundaries. This occurs in situations

such as public speeches and lectures, as well as more advanced dialogues where speakers

may utter a series of continuous utterances before trading turns. It is relatively straight

forward to turn the streaming scenario into a pre-segmented scenario by applying

an audio segmenter based on detection of silence and other features. However, this

may not be ideal, because silences often do not correspond to linguistically plausible

utterance breaks and therefore may compromise translation quality due to missing

context. In a cascade approach it is possible to re-segment the output of the speech

recognizer before feeding it to the translation component, but in more tightly coupled

models this is not always possible and it would therefore by desirable to find a more

principled solution to this problem. Dealing with streams directly is challenging

on several levels. Computationally, we can only fit a limited amount of audio in

memory, and some components may suffer from super-linear runtime. From a modeling

perspective, certain statistical model such as bidirectional recurrent networks require

a full segment including future context. Linguistically, it is not always clear where to

place a clean-cut utterance boundary, given that spoken language is often malformed

and not grammatically correct.

7.2.2 Creating Data Resources

This thesis demonstrated several ways for exploiting end-to-end speech translation data,

i.e. audio recordings paired with translations and potentially transcriptions. Such

data is still rather scarce: The only two larger publicly available data sets are the

Fisher-Callhome Spanish-English corpus [PKL+13] and the LibriSpeech English-French

corpus [KBK18]. However, it is possible to exploit further data that is already available

in some form, for example English TED talks [TED12] for which translations in many

102



7.2 Future Work

languages exist, European parliamentary speeches that exist in several languages and

have been translated into several European languages, and audio books by extending

the approach of Kocabiyikoglu et al. [KBK18] to other languages.

In cases where no existing data resource can be found, one may resort to cost-efficient

approaches to collecting data [SNF+13, SSN+14, SNNW14a, SNNW14b, SNNW16,

SNN+17] and conducting evaluation [SNN+16] which attempt to minimize the amount

of work that must be performed by humans.

7.2.3 Low resource

As indicated in the introduction, one of the situations where speech translation is

tremendously useful is when there are users with no access to writing (e.g. for lack

of education or lack of a writing system), or without standardized writing system.

Unfortunately, these situations tend to involve the languages for which little or no useful

data is available, posing a major challenge for data-driven approaches as described in

this thesis. To overcome this, solutions on several levels have to be found and combined.

This may include more efficient data collection [SNN+17], exploiting multilingual data

resources, translation by non-bilingual speakers [HBR10], and devising language games

[WLM16].
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Chapter 8

Conclusion

In this thesis, we examined several ways to improve speech translation, a challenging but

important task with many practical applications, through neural modeling techniques.

We identified the problem of error propagation as a central challenge in speech

translation. This challenge motivates our efforts toward end-to-end approaches and

tighter integration of components up to the point where the complete speech translation

pipeline is addressed by a single model. We identified neural encoder-decoder models

as a promising fit for tighter integration and direct modeling.

We started our quest toward end-to-end speech translation by analyzing the

state-of-the-art for encoder-decoder based speech recognition. We showed that it

performs reasonably well to tackle this task, despite still lacking behind somewhat

when compared to highly engineered traditional methods. We then introduced a

new self-attentional acoustic model. We showed that its parallelizable computations

improve computation speed significantly on modern GPU hardware. We also showed

that our model improves interpretability of the acoustic model component, in part

thanks to our introduced trainable Gaussian masking strategy. Self-attentional models

therefore address two of the main drawbacks in common neural end-to-end models,

poor computation speed and poor interpretability.

We then turned to our main task, speech translation. The first set of contributions

targets the cascaded speech translation scenario which features separately trained

ASR and MT components. The first and simplest method we introduced improves

the robustness of the translation component when exposed to errors from the speech

recognition component. This proposed data noising method aims to reduce the impact

of error propagation by training the model to deal with such errors and therefore

preventing error compounding and reducing the mismatch between training and test
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situations. The observed gains are small, but consistently generalize even to large-scale

models. The second contribution removes a limitation of the previous approach, namely

that the translation model only has access to the error-prone first-best output of the

speech recognizer. Instead, a rich lattice structure that efficiently represents the speech

recognition hypothesis space is passed to the translation model. We show how to

extend encoder-decoder models to be able to directly translate such lattices, and observe

substantial gains by doing so. We identified the integration of lattice confidence scores

as an important contributing factor to the success of this approach.

Our final method and the central contribution of this thesis is an end-to-end

model for speech translation. Here, the task is tackled by a single model in which

all parameters are trained jointly. The simplest approach, a direct encoder-decoder

model, had been investigated in prior work but with inconclusive results when compared

to traditional cascaded models. We provided evidence that this is explained by the

increased need for suitable speech translation data for such models, while in practice

such data is scarce. Moreover, we demonstrated that these models are poor at exploiting

the much more abundantly available ASR and MT data. We identified two-stage models

as a remedy. Two-stage models compute separate audio and translation alignments,

introduce a stronger inductive bias to guide the training process, and are much more

effective at exploiting ASR and MT data. Unfortunately, they also suffer from the

problem of error propagation. We therefore introduced a novel technique to prevent

such error propagation, resulting in the best accuracy among all tested models. This

shows for the first time that end-to-end modeling techniques are a generalizably

promising and practically relevant approach to speech translation. We expect that

its main limitation, the still inferior performance of the ASR modeling component, can

be removed by further engineering and tuning efforts, which we identify as important

future work.
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Christian Saam, Sebastian Stüker, and Alex Waibel. A real-world system

for simultaneous translation of German lectures. In Annual Conference of

the International Speech Communication Association (InterSpeech), pages

3473–3477, 2013. 1, 17

[CG98] Stanley F Chen and Joshua Goodman. An Empirical Study of Smoothing

Techniques for Language Modeling. In Association for Computational

Linguistic (ACL), 1998. 12

[CHHL17] Pin-Jung Chen, I-Hung Hsu, Yi-Yao Huang, and Hung-Yi Lee.

Mitigating the Impact of Speech Recognition Errors on Chatbot using

Sequence-to-sequence Model. arXiv:1709.07862, 2017. 47

[CJ17] Jan Chorowski and Navdeep Jaitly. Towards better decoding and language

model integration in sequence to sequence models. In Annual Conference

of the International Speech Communication Association (InterSpeech),

pages 523–527, 2017. 27, 32

[CJLV16] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen,

attend and spell: A neural network for large vocabulary conversational

speech recognition. In Acoustics, Speech and Signal Processing (ICASSP),

2016. 3, 11, 13, 25, 26

[CKF+16] Boxing Chen, Roland Kuhn, George Foster, Colin Cherry, and Fei Huang.

Bilingual Methods for Adaptive Training Data Selection for Machine

Translation. In Association for the Machine Translation in Americas

(AMTA), 2016. 46, 56

[CMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
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Alex Waibel. Lightly Supervised Quality Estimation. In International

Conference on Computational Linguistics (COLING), pages 3103–3113,

2016. 103

[SNN+17] Matthias Sperber, Graham Neubig, Jan Niehues, Satoshi Nakamura,

and Alex Waibel. Transcribing Against Time. Speech Communication,

93C:20–30, 2017. 103

[SNN+18] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stüker, and
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