
Sample-Incremental Meta-Learning:
Weight-Mapping with Deep Learning

Master’s Thesis of

Christian Huber

at the Interactive Systems Lab

Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT)

Reviewer: Prof. Dr. Alex Waibel

Second reviewer: PD Dr. Gudrun Thäter

Advisor: M.Sc. Juan Hussain

26. November 2019 – 25. May 2020

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, May 25, 2020

. .

(Christian Huber)

Abstract

We propose a new incremental learning scheme which is based on a meta-learning ap-

proach. The knowledge of the system is stored in the weights of a base-model and a

mapping-model is learned to adjust these weights when new data is available to improve

the performance of the system. Di�erent methods of training the system are compared and

analyzed. During inference the system requires only little data. For a linear base-model

this approach outperforms �ne-tuning and it also works for more complex base-models.

i

Zusammenfassung

Wir stellen ein neues inkrementelles Lernschema vor, das auf einem Meta-Learning-Ansatz

basiert. Das Wissen über das System wird in den Gewichten eines Basis-Modells gespeichert

und ein Mapping-Modell wird gelernt, um diese Gewichte anzupassen, wenn neue Daten

verfügbar sind, um die Leistung des Systems zu verbessern. Verschiedene Methoden zum

Training des Systems werden verglichen und analysiert. Während der Inferenz benötigt

das System nur wenige Daten. Bei einem linearen Basis-Modell übertri�t dieser Ansatz

Fine-tuning, und er funktioniert auch bei komplexeren Basis-Modellen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1

1.2. Goals . 1

1.3. Outline . 2

2. Theory 3
2.1. Neural networks . 3

2.1.1. Perceptron . 3

2.1.2. Activation functions . 4

2.1.3. Multi-layer perceptron . 5

2.1.4. Loss functions . 5

2.1.5. Backpropagation algorithm . 6

2.1.6. Weight initialization . 7

2.1.7. Generalization . 8

2.1.8. Deeper networks . 8

2.2. Image classi�cation . 9

2.2.1. Convolution layers and pooling layers 9

2.2.2. Residual connections and batch normalization 10

2.3. Recurrent neural networks . 11

2.3.1. Elman RNN . 11

2.3.2. Long short-term memory . 12

2.4. Encoder-decoder models . 13

2.4.1. RNN Encoder-decoder model . 13

2.4.2. Attention-based encoder-decoder model 14

2.4.3. Transformer model . 14

3. Related work 17
3.1. Incremental learning . 17

3.1.1. Incremental class learning . 18

3.2. Meta-learning . 19

3.2.1. Examples for meta-learning algorithms 20

v

Contents

4. Methods: Sample-incremental meta-learning 21
4.1. Classi�cation model . 21

4.2. Meta-model . 22

4.3. Mapping-model . 23

4.4. Inference . 25

4.5. Training . 25

4.6. Dataset . 30

5. Results 31
5.1. Evaluation of training and �ne-tuning . 31

5.2. Comparison between training methods 32

5.3. Distribution change in the input data . 35

5.3.1. Illustrative example . 37

5.4. More complex base-models . 40

6. Conclusion 41
6.1. Review . 41

6.2. Future work . 41

Bibliography 43

A. Appendix 51
A.1. Hyperparameters . 51

A.2. Training/Fine-tuning meta-models . 52

A.3. Detailed results . 53

A.3.1. Comparison between training methods 53

A.3.2. Distribution change in the input data 55

A.3.3. More complex base-models . 57

vi

1. Introduction

1.1. Motivation

In the last several decades computers have become more and more powerful due to the

increase in transistor density. This is called Moore’s law – rather an observation than a

physical law. Furthermore, concepts and faster algorithms have been developed increasing

the tasks a computer can solve. Such a concept are neural networks. Although �rst

approaches go back to the 1940s, in the last decade they have proven to be powerful when

combined with large datasets and a huge amount of compute.

However, in some aspects neural networks are not yet on a human level of performance.

Two of these aspects are self-assessment and self-description. Humans are able to evaluate

their performance and know if they do not know an answer to a given question are able to

articulate this. Socrates put this in the phrase “I know that i know nothing”. Furthermore,

humans are able to e�ciently learn in an incremental manner with little data given, and

to selectively forget things, e.g. if one is told and explained that some knowledge one

possesses is wrong.

This thesis focuses on incremental learning aspect with little given data.

1.2. Goals

The goal of this thesis is to develop a system for image classi�cation. This system should

be able to learn from little data during inference, e.g. at a certain timestep one image per

class could be given and the system should use this data to improve the performance of

the system. In other words, the system should be able to incorporate new knowledge in

an incremental manner. To implement such a system, neural networks are used, as they

provide state-of-the-art performance for image classi�cation. Furthermore the incremental

learning should be achieved by some mechanism which does not just save all seen data

and retrain a neural network with that data.

1

1. Introduction

1.3. Outline

In the next chapter, the theory used in this work is explained, i.e. concepts of neural

networks and encoder-decoder models. In chapter three, the work related to this thesis

is described, i.e. incremental learning. Furthermore, an introduction to meta-learning is

given. Chapter four speci�es the sample-incremental meta-learning method of this work.

This includes the training and the inference of the system. In Chapter �ve the results of

the experiments are shown. Chapter six contains a review of the work and an outlook to

future work. In the appendix all results are given in detail.

2

2. Theory

In this chapter the methods used in this work are explained. This includes the development

of arti�cial neural networks, the application of neural networks to image classi�cation

and sequence-to-sequence models.

2.1. Neural networks

Neural networks, or more precise arti�cial neural networks, are inspired by biology. The

intention was to model the neurons and synapses of the brain with the goal to reproduce the

functionality. The question was how the brain retrieves, processes and stores information.

Furthermore the model should be able to learn and adapt to new situations.

The �rst approaches describing this were published in the 1940s. McCulloch and Pitts

proposed a mathematical model of the human brain [MP43]. In their model the inputs and

the output of nerves are binary, resulting in binary logic.

2.1.1. Perceptron

In 1958, Rosenblatt introduced the so called perceptron [Ros58]. For an input G ∈ R=,

= ∈ N,F ∈ R= , 1 ∈ R and a function i : R→ R the perceptron (see �gure 2.1) computes

the output ~ ∈ R given by

~ B i (F)G + 1).

𝑦

𝑏

…

𝑤𝑛

𝑤2

𝑤1

𝑥𝑛

𝑥2

𝑥1

∑. 𝜑

Figure 2.1.: Perceptron

3

2. Theory

In this context = is the number of inputs to the perceptron, the elements ofF are called

weights, 1 bias and i activation function.

For a more compact notation, the bias 1 can be omitted by increasing the length ofF and G

by one and setting G0 B 1. Furthermore when using multiple perceptrons, say< ∈ N, one

can describe this by a weight matrix, ∈ R<×(=+1) . The outputs ~ ∈ R< of the perceptrons

are then computed by

~ B i (,G), (2.1)

where the activation function is applied pointwise. The transformation in equation (2.1) is

called layer. In sections 2.2 and 2.4.3 more advanced layers are introduced.

2.1.2. Activation functions

Common activation functions are

i1(G) B
{
0, for G < 0,

1, for G ≥ 0,
Heaviside step function,

i2(G) B
1

1 + 4−G , G ∈ R, Sigmoid function,

i3(G) B
{
0, for G < 0,

G, for G ≥ 0,
Recti�ed linear unit (ReLU).

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.5

1.0

1.5

2.0

φ i
(x
)

i=1: Heaviside step function
i=2: Sigmoid function
i=3: Rectified linear unit

Figure 2.2.: Activation functions

By using the Heaviside step function the perceptron only activates, i.e. it does not output

zero, if the (weighted) input is above some threshold. The ReLU function is similar, but if

the perceptron is activated the output also depends on the (weighted) input. The sigmoid

function maps the input smoothly between zero and one. A further comparison between

these activation functions is discussed later.

4

2.1. Neural networks

2.1.3. Multi-layer perceptron

The perceptron can be used to separate data points. This is done by applying it and

distinguish between values larger or equal and less than zero. A problem that emerges

by using a perceptron with Heaviside step activation function (or any other monotonic

activation function) is that it is only capable of separating linearly separable data, i.e. if

there exists a hyperplane where one part of the data lies on one side and the other one

on the other side. For instance the XOR-data (table 2.1) can not be separated by such a

perceptron.

G ~ G
⊕

~

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.1.: XOR data

To overcome this issue, a so-called feedforward neural network can be used, also called

multi-layer perceptron (MLP). The output of perceptrons is used as input for other percep-

trons. This results in deeper networks, i.e. networks with more than one layer. For instance

the model de�ned by equation (2.1) has one layer and the model de�ned by equation (2.3)

has two layers.

2.1.4. Loss functions

The function represented by a MLP depends on the weights of the MLP. These weights

can be adjusted such that the perceptron approximates a given function or given data.

Dependent on the task which should be learned, a so-called loss function is chosen, which

is minimized during training. The process of adjusting the weights by minimizing the loss

function is called training. The loss function is chosen dependent on the task. For given

inputs G1, . . . , G: ∈ R= , =, : ∈ N, corresponding labels ~1, . . . , ~: ∈ R<,< ∈ N and MLP 5

(with output in R<) the most common loss functions are:

;regression,~ (G) B
<∑
9=1

1

:

:∑
8=1

(5 (G8) − ~8)29 Mean squared error (regression task),

;classi�cation,~ (G) B −
:∑
8=1

<∑
9=1

(~8) 9 log(5 (G8) 9) Cross entropy (classi�cation task),

(2.2)

5

2. Theory

For< = 1 and ~8 = 4;8 , i.e. if the labels are unit vectors, these expression simplify to

;regression,~ (G) =
1

:

:∑
8=1

(5 (G8) − ~8)2,

;classi�cation,~ (G) = −
:∑
8=1

log(5 (G8);8).

In the case of the classi�cation task ~8 is a probability distribution over the < classes,

8 ∈ {1, . . . , :}, (for instance the unit vector corresponding to the class label) and 5 has a

softmax activation function at the �nal layer, i.e.

isoftmax(~)8 B
4~8∑<
9=1 4

~ 9
, ~ ∈ R<, 8 ∈ {1, . . . ,<},

as a �nal activation function, thus the cross entropy loss is well de�ned.

2.1.5. Backpropagation algorithm

To train MLPs e�ciently, the backpropagation algorithm [RHW86] was proposed. If a MLP

is composed of di�erentiable functions, i.e. it uses only di�erentiable activation functions,

the backpropagation algorithm can be used to calculate the derivative of the loss function

w.r.t. each weight. Instead of calculating the derivatives numerically which would su�er

from numerical instability and a high computational complexity, the backpropagation

algorithm computes the derivatives analytically by iteratively applying the chain rule.

Let us illustrate this algorithm for a two-layer perceptron 5 and loss function ;

5 (G) B I3 B i1(,1i2(,2G + 12) + 11), (2.3)

; (G) B (5 (G) − ~)2 = (I3 − ~)2,

for G ∈ R= , = ∈ N,,1 ∈ R1×< ,< ∈ N,,2 ∈ R<×=, 11 ∈ R, 12 ∈ R< , ~ ∈ R and activation

functions i1, i2 : R → R for a regression task. De�ning I0 B ,2G + 12, I1 B i2(I0),
I2 B,1I1 + 11, we get by the chain rule for instance

m;

mI3
= 2(I3 − ~),

m;

mI2
=
m;

mI3

mI3

mI2
=
m;

mI3
· i′

1
(I2),

m;

mI1
=
m;

mI2

mI2

mI1
=,)

1

m;

mI2
,

m;

mI0
=
m;

mI1

mI1

mI0
=
m;

mI1
· i′

2
(I0),

⇒ m;

m,2

=
m;

mI0

mI0

m,2

=
m;

mI0
G) = 2,)

1
(I3 − ~) · i′1(I2) · i′2(I0)G) ,

6

2.1. Neural networks

where · denotes the pointwise multiplication. In the same way the derivatives w.r.t. the

other weights can be computed.

We obtain, that the Heaviside step function does not ful�ll the requirement of being

di�erentiable and is therefore not used in combination with backpropagation. Although

the ReLU activation function is not di�erentiable at G = 0, it is used together with the

backpropagation algorithm. The derivative at G = 0 is set to zero.

With the calculated derivative of the loss function w.r.t. each weight we are able to

minimize the loss function in an iterative way starting with random initial weightsF0:

F=+1 B F= − [∇; (F=), = ∈ N,

where [> 0 is called learning rate,F= are the weights of the MLP after training = steps,

= ∈ N, and ; the loss function. This procedure is called gradient descent. Furthermore,

more advanced methods have been developed to increase the speed of the iteration process,

e.g. stochastic gradient descent, where the gradient is approximated over a small random

part of the training data, and Adam [KB14].

2.1.6. Weight initialization

As stated in the last section the initial weights are drawn randomly from some distribution.

The scaling of these weights is explained in this section.

Let G = (G8)8 ∈ R= , = ∈ N, be an input for a layer with matrix, = (F8, 9)8, 9 ∈ R<×= ,< ∈ N.

Furthermore let G8,F8, 9 be independent with mean zero, all G8 have variance one and the

variance of all F8, 9 be f2. Then one can calculate that the expectation value of (,G)8 is

zero and

V ((,G)8) =
=∑
9=1

V(F8, 9) = =f2.

To prevent exploding or vanishing outputs after the application of, one wants (,G)8 to

have variance one. The equation

f2 =
1

=
. (2.4)

follows. When backpropagating through the matrix multiplication with, one multiplies

with,)
. Therefore one wants a similar equation to hold:

f2 =
1

<
.

7

2. Theory

These constraints are possible only if = =<. A compromise is f2 = 2

=+< which leads to the

following weight initialization:

F8, 9 ∼ *
[
−
√
6

√
= +<

,

√
6

√
= +<

]
, Glorot initialization [GB10].

When using ReLU activation functions it can be better to use f2 = 2

=
or f2 = 2

<
. This

initialization scheme is called He initialization [He+15].

2.1.7. Generalization

When we deploy a model, we want it to generalize well, i.e. have a good performance on

unseen data. To achieve this and prevent the model from just memorizing the data (called

over�tting), the available data is split into (at least) two sets: A training set whose data is

used to adapt the weights of the model and a validation set whose data is used to measure

the performance on data which is not used to learn the weights. The goal is to minimize

the validation loss.

Another method to prevent a model from over�tting is regularization. There are numerous

variants of regularization. A frequently used one is Dropout [Sri+14]. During training

time each neuron is randomly set to zero with probability ? ∈ (0, 1), while during test

time the weights are multiplied by ? . The idea behind setting some neurons randomly

to zero is that the model can not focus on speci�c neurons to calculate the output and

therefore should generalize better.

Another important topic is the available data. The more data is used for training the better

the data distribution is approximated resulting in less over�tting. Therefore the model is

able to perform better and/or a model with more parameters can be trained. Since the data

is limited, the goal is to �nd an architecture which does not have too many parameters

but is able to approximate the given data.

2.1.8. Deeper networks

In the last years neural networks with more and more layers were used. This seems

counterintuitive since it is well known that a MLP with only one hidden layer, i.e. a MLP

with two layers, can approximate any continuous function on a compact set arbitrarily

well. However, [Tel16] suggests that deeper models (w.r.t. the number of layers) can be

better than having more neurons in each layer. Their statement is that for each : ∈ N
“there exist neural networks with Θ(:3) layers, Θ(1) nodes per layer, and Θ(1) distinct

parameters which can not be approximated by networks with O(:) layers unless they are

8

2.2. Image classi�cation

exponentially large — they must possess Ω(2:) nodes”[Tel16]. Therefore it can be better

to make models deeper instead of increasing the number of nodes per layer.

2.2. Image classification

An image can be represented as � ∈ R=×<×3, =,< ∈ N, where �8, 9 is the RGB-value of the

pixel (8, 9), 8 ∈ {1, . . . , =}, 9 ∈ {1, . . . ,<}. In image classi�cation the task is to classify a

given image into a given (�nite) set of classes.

The performance of an image classi�cation model is measured by accuracy, i.e. the

percentage of correctly classi�ed images. For the top-= accuracy an image is considered

correctly classi�ed if the class label of the image is within the = most likely classes of the

probability distribution output of the model. The error rate is de�ned by one minus the

accuracy.

2.2.1. Convolution layers and pooling layers

Major progress in image classi�cation was made in the last decade. In 2012 [KSH12]

published a new architecture. They used a deep network of convolution and pooling

layers and the ReLU activation function. Using these advanced architectures results in a

reduction of learnable parameters compared to a perceptron and the model can be trained

faster.

Convolution layers are the two-dimensional pendent to time-delay neural networks

(TDNNs) [Wai+89] which operate on one-dimensional inputs. Both methods are based

on the same idea to deduce shift-invariant features through local �lters exploiting the

structure of the input. For an input image � ∈ R=×< , =,< ∈ N, and a kernel :4A ∈ R:×: of

weights, : ∈ N odd, the output of the convolution layer (without padding) is de�ned by

(� ∗ :4A) (G,~) B
:∑
8=1

:∑
9=1

� (G + : − 8, ~ + : − 9):4A (8, 9),

G ∈ {1, . . . , = − : + 1}, ~ ∈ {1, . . . ,< − : + 1}.
This formula can be generalized for instance for inputs with more channels, i.e. for inputs

� ∈ R=×<×2 , 2 ∈ N, for padding ? ∈ N, i.e. the input of the layer is padded at all borders

with ? columns/rows of values, e.g. zeros, to obtain an input � ∈ R(=+2?)×(<+2?) , and for

more than one �lter, i.e. :4A ∈ R3×:×: , 3 ∈ N.

Pooling layers are used to reduce the spacial dimension. Due to the structure of images

and the usage of local �lters adjacent outputs of the convolution layer may be similar.

9

2. Theory

For = × =-Pooling, = ∈ N, = ≥ 2, the image is split into = × = blocks and a function

5 : R=×= → R is applied to every block resulting in a smaller spacial dimension. Frequently

used functions 5 are taking the maximum or average of the input.

[KSH12] also chose to use the ReLU activation function instead of the sigmoid activation

function because the ReLU function has better gradient properties. In the backpropagation

algorithm the derivative of the activation function is used. The derivative of the sigmoid

function is

i′
2
(G) = i2(G) (1 − i2(G)), G ∈ R.

We can conclude from this equation, that if |G | is large, then i′
2
(G) is near zero resulting in

small gradients (saturation) and the model does not learn. In praxis “networks with ReLUs

consistently learn several times faster”[KSH12].

2.2.2. Residual connections and batch normalization

In 2015 [He+16] improved the results again by introducing residual connections to the

convolution layers and using batch normalization [IS15]. These concepts work as follows:

Let 6 be a convolution layer with same input and output shape and G an input to the

convolution layer. The output using a residual connection is then G + 6(G). This has

the advantage that the layer 6 only has to learn higher order features pertubating the

input slightly. This helps for deeper network architectures. Another way to look at this

construction is that it helps to maintain the gradient �ow during backpropagation since

that gradient is transmitted undisturbed by the identity part of the residual connection.

In a batch normalization layer the output of another layer is normalized component-wise

to mean zero and variance one. Using batch normalization layers can results in a model

which can be trained faster compared to a model not using batch normalization layers.

Both [KSH12] and [He+16] trained their models on ImageNet [Den+09] achieving top-5

error rate 17.0% and 3.57%, respectively. The task was to classify an image into one of 1000

classes. For comparison the top-5 error rate of humans is around 5.1% [Rus+15].

If the amount of data given for image classi�cation is small, it may be advantageous to use

a model pre-trained on ImageNet and retrain the weights of the last few layers/last layer

on the given data while �xing the rest of the weights.

10

2.3. Recurrent neural networks

2.3. Recurrent neural networks

Feedforward models are not well suited for sequence inputs like sentences or audio. To

overcome this issue, recurrent neural networks (RNNs) have been invented. If a RNN is

applied to an input, it produces a hidden state and an output. The hidden state is used

when the RNN is applied to the next input. This can be seen as a circular connection

between nodes and allows for an internal memory of the network.

2.3.1. Elman RNN

In 1990 Elman proposed a RNN. Nowadays it is called Elman RNN [Elm90]. At each

timestep C ∈ N it takes a vector GC ∈ R=, = ∈ N, and produces a hidden state ℎC ∈ R< ,

< ∈ N, and an output ~C ∈ R: , : ∈ N, provided an initial hidden state ℎ0 ∈ R< , de�ned by

ℎC B iℎ (,ℎGC +*ℎℎC−1 + 1ℎ),
~C B i~ (,~ℎC + 1~),

where,ℎ ∈ R<×=, *ℎ ∈ R<×<, 1ℎ ∈ R< ,,~ ∈ R:×<, 1~ ∈ R: are weights and iℎ and i~
are activation functions.

𝑏𝑦

𝑏ℎ

𝑦1

ℎ1

𝑏𝑦

𝑊𝑦

𝑊ℎ

𝑈ℎ

𝑥1

𝑏ℎ

ℎ0 … ∑. 𝜑ℎ

∑. 𝜑𝑦

𝑦2

ℎ2

𝑊𝑦

𝑊ℎ

𝑈ℎ

𝑥2

𝑏ℎ
∑. 𝜑ℎ

∑. 𝜑𝑦

Figure 2.3.: Unfolded Elman RNN: Labeled arrows indicate a multiplication with

the label, boxes denote an operation applied to the inputs.

Similar to the backpropagation algorithm a method called Backpropagation through time

[Wer+90] was invented to learn the weights of a RNN. The RNN is unfolded through time

as shown in �gure 2.3 and the backpropagation algorithm is applied.

The Elman RNN faces the problem of exploding and vanishing gradients. This occurs

during backpropagation due to the fact that the error is backpropagated multiple times

through the matrix multiplication with *ℎ , e.g. backpropagating from ~C to G1 to calculate

11

2. Theory

the derivative w.r.t.,ℎ this derivative contains C − 1 factors*)
ℎ

. This repeated application

of the same matrix leads to either exploding or vanishing gradients. Exploding gradients

can be dealt with by clipping the gradients if it is to large, for the problem of vanishing

gradients an architectural improvement has been made.

2.3.2. Long short-termmemory

To deal better with vanishing gradients, the Long short-term memory (LSTM) [HS97], a

RNN, was proposed. Instead of the one hidden variable of the Elman RNN, the LSTM has

two hidden variables. The LSTM takes at each timestep C ∈ N an input GC ∈ R= , = ∈ N and

calculates two hidden states ℎC ∈ R< and 2C ∈ R<,< ∈ N, and an output ~C ∈ R: , : ∈ N,

provided the initial hidden states ℎ0 ∈ R< and 20 ∈ R< , de�ned by

©­­­«
5

8

>

6

ª®®®¬ B
©­­­«

i2
i2
i2
tanh

ª®®®¬,
(
ℎC−1
GC

)
,

2C B 5 · 2C−1 + 8 · 6,
ℎC B > · tanh(2C),
~C B i~ (,~ℎC + 1~),

where, ∈ R4<×(<+=) ,,~ ∈ R:×< and 1~ ∈ R: are weights and i~ is an activation function.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017

☉

98

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

Figure 2.4.: LSTM architecture, � denotes the

pointwise multiplication [LJY17].

Compared to the Elman RNN the LSTM has a better gradient �ow since in each timestep

when backpropagating from 2C to 2C−1 one has a pointwise multiplication (with not neces-

sarily equal vectors per timestep) instead of a matrix multiplication with always the same

matrix. Thus the gradient w.r.t. 2C has better properties w.r.t. vanishing gradients. This

carries over to the gradient w.r.t., . Therefore by using LSTMs the model is able to use

the context of longer sequences.

12

2.4. Encoder-decoder models

2.4. Encoder-decoder models

In this section encoder-decoder models are described. An encoder-decoder model is a

special sequence-to-sequence model, i.e. a model that maps an input sequence of arbitrary

length to an output sequence of arbitrary length. Sequence-to-sequence models can be

used for instance in machine translation and speech recognition.

2.4.1. RNN Encoder-decoder model

[Cho+14] and [SVL14] published the RNN encoder-decoder model. The model is based on

a RNN used as encoder and a RNN used as decoder and trained on a machine translation

task. Due to the reasons discussed above LSTMs are used over Elman RNNs.

The model uses a source vocabulary and a target vocabulary. A vocabulary is a �nite sets

of tokens (identi�ed with {1, . . . , :}, : ∈ N). The model is trained with data consisting

of an input sequence of tokens in the source vocabulary (Ĝ1, . . . , Ĝ)),) ∈ N, and a target

sequence of tokens in the target vocabulary (Î1, . . . , Î) ′−1),) ′ ∈ N. The target sequence is

padded with a start of sequence token Î0 and an end of sequence token Î) ′ to (Î0, . . . , Î) ′).
These sequences are transformed into sequences of vectors (G1, . . . , G)), GC ∈ R=, = ∈ N,

C ∈ {1, . . . ,) }, and (I0, . . . , I) ′), IC ∈ R=
′
, =′ ∈ N, C ∈ {0, . . . ,) ′}, via an embedding layer

(one vector of weights is assigned to each token in the vocabularies).

The model (see �gure 2.5) then processes the input sequence (G1, . . . , G)) and encodes it

with a RNN 5 (given ℎ0 ∈ R=ℎ)

ℎC B 5 (GC , ℎC−1), C ∈ {1, . . . ,) },

into �xed-length vector B0 B ℎ) . Another RNN 6 takes B0 as the initial hidden state and

the target sequence (I0, I1, . . . , I) ′) and decodes it (except I) ′) into a sequence (~1, . . . , ~) ′),
~C ∈ R< , C ∈ {1, . . . ,) ′}, where< ∈ N is the size of the target vocabulary. Both RNNs can

be jointly trained to minimize

) ′∑
C=1

;classi�cation,4ÎC
(~C), (2.5)

where the output layer of the RNN 6 uses a softmax activation function, ;classi�cation,· is

de�ned in equation (2.2), and 4; , ; ∈ N, denotes the ;-th unit vector. Equation (2.5) can

be interpreted that at each timestep the model is trained to predict the next token of the

sequence provided the sequence until the current position.

During test time the input sequence is used to calculate ℎ) . Next, ℎ) and the start of

sequence token I0 is given to the RNN 6, the output ~1 is calculated, from the distribution

~1 is sampled and the embedding of the sampled token is fed back to the RNN to calculate

13

2. Theory

~2. This is iterated until the end of sequence token is sampled. The sampled tokens form

the output sequence. There are also more sophisticated decoding schemes, e.g. beam

search.

2.4.2. Attention-based encoder-decoder model

One problem resulting from the construction in section 2.4.1 is that each input sequence is

encoded into a �xed-length vector regardless of its length. This results in an information-

�ow bottleneck. [BCB14] proposed as solution an attention mechanism (see �gure 2.5).

The core idea is that ℎ 9 contains information about the sequence (G1, . . . , G 9), but should

focus on the part of the sequence near G 9 . Based on the vector B8−1 the model is able to

attend to these ℎ 9 ‘s allowing the model to search for parts of the source sequence that

seem relevant in the current step. Mathematically this is done by

48, 9 B E) tanh(,B8−1 +*ℎ 9),

U8, 9 B
exp(48, 9)∑)
:=1

exp(48,:)
, 8 ∈ {1, . . . ,) ′}, 9 ∈ {1, . . . ,) },

28 B
)∑
9=1

U8, 9ℎ 9 ,

where E ∈ R=0 , =0 ∈ N, is a weight vector and,,* ∈ R=0×=ℎ are weight matrices. For

�xed 8 the 48, 9 ‘s form an alignment model between B8−1 and the ℎ 9 ‘s. The RNN 6 of the

attention-based encoder-decoder model has as input in addition to B8−1 also 28 .

…

𝑖 = 𝑇' 𝑖 = 2 𝑖 = 1

𝑐𝑖

𝛼𝑖,𝑇−1

𝛼𝑖,𝑇

𝛼𝑖,2

𝛼𝑖,1

𝑠𝑇'−1 𝑠2 𝑠1

𝑦𝑇'

𝑧𝑇'−1

𝑦2

𝑧1

𝑦1

𝑧0

ℎ𝑇 = 𝑠0

𝑥𝑇

ℎ2 ℎ1

𝑥1

ℎ0 f

𝑥2

f f 𝑔 𝑔 … 𝑔
ℎ𝑇−1

…

Sum

m

…

Figure 2.5.: Attention-based RNN encoder-decoder model

2.4.3. Transformer model

In 2017 [Vas+17] published the transformer model, an encoder-decoder model. The idea

of using an attention mechanism is pursued resulting in an attention layer. Similar to the

14

2.4. Encoder-decoder models

RNN encoder-decoder model the transformer model consists of an encoder and a decoder

(see �gure 2.7), but it uses these attention layers instead of RNNs.

The attention layer has two matrices as input. One representing the memory " ∈ R)×31 ,
31 ∈ N,) ∈ N, to which the layer attends and one the context � ∈ R) ′×32 , 32 ∈ N,) ′ ∈ N.

The �rst step of the attention layer is to apply linear transformations to � to obtain a

matrix denoted by & ∈ R) ′×3: (Query), 3: ∈ N, and to " to obtain matrices denoted by

 ∈ R)×3: and + ∈ R)×3E (Key and Value), 3E ∈ N. The output of the attention layer is

then given by

Attention(&, ,+) B softmax(&
)

√
3:
)+ ,

where the softmax is taken w.r.t. the rows of the matrix. The factor
1√
3:

is a scaling factor.

The intuition behind this construction is that �rst the input gets transformed into Query

and Key, projecting the features in a space where the dot product is a good similarity

measure, and then mix similar information from context and memory.

𝑣2 𝑣1 𝑘2 𝑘3 𝑘1 𝑣3

𝑞3 𝑞2 𝑞1

𝑚1 𝑚2 𝑚3 𝑐1 𝑐2 𝑐3

𝑐2
′

∙ ∙ ∙

× × ×

softmax (and scaling)

+

𝑐1
′ 𝑐3

′

… …

… …

Figure 2.6.: Attention layer for memory and context sequences of

length three. Index 8 denotes the 8-th row of the corresponding matrix.

This described attention layer is permutation invariant, i.e. the layer is not able to distin-

guish the order of the input sequence. For instance, if in �gure 2.6 the vectors<1 and<3

are interchanged the output would be the same. Of course the order of the input sequence

may be relevant, therefore a positional encoding is added to the input sequence.

The encoder consists of multiple encoder layers. Each encoder layer consists of a self-

attention layer, i.e. an attention layer where as memory and context matrices the output of

15

2. Theory

the previous encoder layer (or the input sequence for the �rst encoder layer) is used, and

a pointwise feedforward network. Both layers are employed with residual connections

and a layer normalization [BKH16].

The decoder mimics a language model and consists of multiple decoder layers. Each

decoder layer consists of a masked self-attention layer, an encoder-decoder attention layer,

and a pointwise feedforward network. The masked self-attention layer has as memory

and context matrices the output of the previous decoder layer (or the target sequence

for the �rst decoder layer). The encoder-decoder attention layer has the output of the

encoder as memory and the output of the masked self-attention layer as context. Similar

to the encoder residual connections and layer normalization are used. By masking out

subsequent positions in the masked self-attention layer it is ensured that the model is

autoregressive, i.e. one output of the decoder only depends on the encoder output and

target sequence up to the current position, and during inference the target sequence can

be decoded iteratively similarly to the RNN encoder-decoder model.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.7.: Transformer architecture [Vas+17].

Instead of one attention layer it can be bene�cial to use multiple attention layers (with

smaller dimensions) on the same input, stack the outputs and apply a linear transformation

to the stacked outputs. This is called multi-head attention and allows the model to attend

to multiple parts of the input sequence.

16

3. Related work

In the last decade major progress has been made with neural networks, surpassing human

performance in many tasks, e.g. image classi�cation [He+16] and object detection [Rus+15]

and games like go [Sil+17b], chess and shogi [Sil+17a], where reinforcement learning is

applied. However, the applied methods have the drawback that a lot of data is needed, the

model gets trained, then deployed and is �xed. For the reinforcement learning methods

the whole environment can be simulated and all possible actions are known a priori.

On the other hand, humans face di�erent tasks each day and are able to adapt rapidly

with only little data given. For neural networks this is still a very challenging problem.

Retraining a neural network on a new task results in catastrophic forgetting [Fre99] of the

old task. Therefore more advanced techniques have been developed.

3.1. Incremental learning

This section will give an introduction to incremental-learning methods for image classi�-

cation. The problem can be described as follows (similar to [De +19]):

At each timestep C ∈ N training data -C and labels .C are given (sampled from sets XC ,YC ,
i.e. (-C , .C) ∼ (XC ,YC)) and can be used to learn the system. The goal is to minimize the

following error

)∑
C=1

E(XC ,YC) [; (5C (XC , \),YC)]

with limited or no access to the data with C <) , where) is the number of seen tasks so

far. The symbol ; denotes a loss function, 5C (G, \) represents the output of the network for

task C and an input G , and \ are the parameters of the network.

Following [Hsu+18] the methods for incremental learning can be categorized dependent on

the data (-C , .C)C into methods for incremental domain learning, methods for incremental

class learning and methods for incremental task learning.

17

3. Related work

In incremental domain learning the distribution of the training data -C changes but the

classes remain the same, e.g. a class in -C could be vehicles, in timestep one one gets

bicycles, in timestep two one gets motorcycles etc.

In incremental class learning the class labels (.C)C are disjoint but the goal is to train a

system which classi�es all classes seen so far (without the information of which task the

input to classify is), e.g. in timestep one one gets di�erent vehicles, in timestep two one

gets di�erent animals. After learning with the animal data one wants a classi�er which

distinguishes between all vehicles and animals.

In incremental task learning the class labels (.C)C are disjoint and the goal is to train a

classi�er for each seen task, e.g. for the example above the information if the input is a

vehicle or an animal is provided. Therefore incremental class learning can be seen as a

superset of incremental task learning.

3.1.1. Incremental class learning

According to [De +19] methods for incremental class learning can be divided into replay-

based methods, regularization-based methods and parameter isolation-based methods. For

more details refer to [De +19] or the corresponding source.

In replay-based methods, e.g. [Reb+17], [LR17], a subset of the samples of old tasks is

stored. These samples can be stored as raw data and used for retraining the network when

new tasks arrive. This is called rehearsal. It is also possible to store the data compressed

in a generative model, e.g. [Shi+17], [VT18], and use images generated by this generative

model while training on new tasks, called pseudo rehearsal. For example [Shi+17] works

as follows: For the initial task a generative model and a classi�cation model are trained.

When a new task arrives, samples from the latest generative model are mixed with current

data to train a new generative model. Next, samples of the latest generative model together

with labels produced by applying the latest classi�cation model to them and the current

data are used to train the new classi�cation model. Since generative models are trained

this method requires a certain amount of data per task.

In regularization-based methods no samples of the old tasks are stored. Reasons to do this

are privacy issues and memory e�ciency. Instead of storing samples the output of the

previous model is used as soft labels for the previous task, e.g. [LH17], [Zha+20]. There

are also methods penalizing the change of important parameters of certain tasks during

learning of new tasks, e.g. [Kir+17].

In parameter isolation-based methods, e.g. [ML18], “di�erent subsets of the model pa-

rameters are dedicated to each task”[De +19]. This can mean that for new tasks new

branches are created or freezing parts of the parameters during training of new tasks.

Most parameter isolation-based methods need a task oracle, i.e. they are restricted to

18

3.2. Meta-learning

incremental task learning. An exception is for instance [Raj+19]. In [WSS89] a parameter

isolation-based method is used to fuse two classi�ers using additional connections called

“connectionist glue”. However, the resulting classi�er is trained with all data used to train

the two classi�ers.

The methods used in incremental domain learning are similar to the methods used in

incremental class learning. State-of-the-art are rehearsal-based methods ([Shi+17], [VT18])

with generative models [Hsu+18].

3.2. Meta-learning

In this section an introduction to meta-learning similar to [Ber+18] is given since our

method is based on a meta-learning approach.

The meta-learning method consists of a base-model and a meta-model. The base-model is

used within one episode, i.e. an image classi�cation task with a small amount of given data.

The meta-model learns from many such episodes to learn the structure of the problem

and leverage this to improve the performance of the base-model.

Mathematically this can be done by denoting the set of training episodes by � and the set

of validation episodes by �′. An episode E of these sets consists of inputs G ∈ R< ,< ∈ N,

and corresponding outputs ~ ∈ R= , = ∈ N, and can be partitioned in a training set E1 and

a test set E2: E = E1 ¤∪ E2.

Let

ql : R< → R4, feature extractor,

4 ∈ N, be a feature extractor depending on weights l . We denote the base-model (depen-

dent on episodic-speci�c weights lE) by

5lE : R
4 → R=, base-model,

the meta-model by Λd and a loss function by ! : R= × R= → R. The meta-model depends

on weights d and maps the features of the inputs and the corresponding labels to episodic-

speci�c weights ln . If the functions ql , 5ln and Λd are di�erentiable one can learn the

weights l and d by minimizing the training error

1

|� |
∑
E∈�

1

|E2 |
∑
(G,~)∈E2

!(5ln (ql (G)), ~), where ln = Λd (ql (E1)), (3.1)

with backpropagation, where ql (E1) B {(ql (G), ~) | (G,~) ∈ E1}. The meta-model has

as input the training part of an episode and the error is calculated with the test part. The

performance of the meta-model is evaluated by the validation error which is obtained by

replacing � by �′ in equation (3.1).

19

3. Related work

3.2.1. Examples for meta-learning algorithms

In this section a few meta-learning algorithms with their meta-models are described. For

more details refer to [Ber+18] or the corresponding source.

In [And+16] an optimizer is learned. The meta-model works as follows: From the input

data the gradient of the loss function w.r.t. the weights of the neural network is computed

and given to an coordinate-wise LSTM. The LSTM outputs updates for the weights, then

these updates are applied resulting in new weights. This process is iterated for a certain

number of steps.

[RL16] is similar to [And+16]. However the loss and the old weights are additionally given

to the LSTM and the LSTM outputs not weight updates but new weights. Furthermore the

initial hidden state of the LSTM consists of learned parameters of the meta-model.

In [Ber+16] the meta-model uses a single image as input and maps it to weights of a network.

This network uses an image as input and evaluates if it is similar to the input image of

the meta-model. To reduce the number of parameters of the meta-model, factorizations of

linear transformations and convolution layers are proposed.

In [FAL17] initial weights of a network are learned such that these weights are adjustable

on new tasks with only a few steps of an optimizer using the gradient of the loss function

w.r.t. the weights. Therefore the meta-model is the application of the optimizer with the

computed initial weights.

20

4. Methods: Sample-incremental
meta-learning

In this work we consider an incremental-learning method for image classi�cation. More

speci�cally, we want to obtain an image classi�er from little data (for a �xed number of

classes) whose performance can be improved with more data in an incremental manner.

In [Hsu+18] this type of incremental learning is called incremental domain learning. To

achieve this we use a meta-learning method (see section 3.2). The core idea of our method

is that we train a mapping-model which adjusts weights of a base-model to incrementally

incorporate new knowledge.

The sample-incremental meta-learning approach of this work consists of a meta-model (see

section 4.2) which outputs weights of a base-model given little data and the base-model is

used together with a feature extractor to classify input images into = ∈ N classes.

The meta-model consists of a mapping-model (see section 4.3) which is used for incremental

learning to improve the performance of the system. In section 4.4 this incremental learning

during inference is described in detail. In section 4.5 the methods to train the meta-model

are speci�ed.

4.1. Classificationmodel

We use an on ImageNet pretrained ResNet34 model [He+16] with removed last layer

as feature extractor and a linear transformation as base-model. The composition of the

feature extractor and the base-model is called classi�cation model (see �gure 4.1).

ResNet models with more layers are not used since they have a larger feature dimension

2048 instead of 512 and therefore the used meta-model would have to be larger. More

complex base-models are discussed in section 5.4.

21

4. Methods: Sample-incremental meta-learning

Classification model

Image

Resize and

normalization

3 x 𝒅 x 𝒅

ResNet feature

extractor

𝒆

Linear

(with bias)

𝒏

Episodic-specific weights can be

identified with a matrix
𝒏 x (𝒆 + 𝟏)

Figure 4.1.: Classi�cation model

The feature extractor uses an input dimension 3 = 224 and outputs a feature vector of

dimension 4 = 512.

4.2. Meta-model

In the following we describe the meta-model. It is designed to take features of input images

as input and map them to weights which can be used for the base-model.

As presented in section 3.2 the meta-model learns from many episodes. We write such an

episode E as

E =
{
(G8,1, 41)8, . . . , (G8,=, 4=)8 | 8 ∈ {1, . . . , :}

}︸ ︷︷ ︸
=E1

¤∪ E2 (4.1)

for some : ∈ N, i.e. the episode is split such that the training set of the episode is balanced

over the di�erent classes. Images are denoted by G8, 9 ∈ R3×3 , 8 ∈ {8, . . . , :}, 9 ∈ {1, . . . , =},
the ;-th unit vector is denoted by 4; , ; ∈ {1, . . . , =}, and = denotes the number of classes.

From the �rst part E1 of E in equation (4.1) the input for the meta-model Λd is created.

The images G8, 9 , 8 ∈ {8, . . . , :}, 9 ∈ {1, . . . , =}, are given to the feature extractor ql and

matrices B8 containing the feature vectors in the rows are calculated:

B8 B
(
ql (G8,1) | . . . |ql (G8,=)

))
, 8 ∈ {1, . . . , :}.

The meta-model Λd (see �gure 4.2) is based on a mapping-model "d2 : R
=×4 × R=×(4+1) →

R=×(4+1) (described in section 4.3) and it depends on weights d . These weights d consist of

weights d1 ∈ R=×(4+1) , which are used as initial weights for the mapping, and the weights

d2 of the mapping-model. The initial weights d1 are similar to an initial hidden state of a

RNN consisting of learned weights.

22

4.3. Mapping-model

𝜔2𝜔1

Model

𝜔𝑘

𝑥1,1, … , 𝑥1,𝑛

𝜙𝜔

𝑀𝜌2
𝜌1 𝑀𝜌2

𝑥2,1, … , 𝑥2,𝑛

…

𝜙𝜔

𝑀𝜌2

𝑥𝑘,1, … , 𝑥𝑘,𝑛

𝜙𝜔
Meta-model

𝑛: Number of classes
𝑘: Number of train samples
per class for the meta-model
𝑥𝑖,𝑗: Input 𝑖 of class 𝑗

𝑀𝜌2: Mapping-model

𝜔𝑘−1

𝑠2𝑠1 𝑠𝑘

Figure 4.2.: Meta-model Λd

The outputs l8 , 8 ∈ {1, . . . , :}, of the meta-model Λd are de�ned by

l0 B d1,

l8 B "d2 (B8, l8−1).

The idea behind the approach of the mapping-model is that the mapping-model gets

weights as input and additional data (features) and should adjust these weights such

that they correspond to weights one would obtain by adding the additional data to the

knowledge the system already has. Therefore the output weights of the mapping-model

should perform better for the classi�cation than the input weights.

The labels of the input feature vectors are encoded in the order of them and exactly one

input sample of each class is used for the mapping-model input. Furthermore the weights

d1 are randomly initialized similar to an initialization of the base-model (see section 2.1.6).

We use as initialization scheme an uniform distribution with variance as in equation (2.4).

4.3. Mapping-model

The mapping-model "d2 has as input a matrix of feature vectors (one feature vector per

class) and a matrix of weights of the base-model and maps them to a matrix of weights

which again can be used as weights for the base-model (see �gure 4.3).

23

4. Methods: Sample-incremental meta-learning

Mapping model

𝑠𝑖: 𝑛 x 𝑒 𝜔in: 𝑛 x (𝑒+1)

𝑛 x 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛 x 𝑑𝑚𝑜𝑑𝑒𝑙

Linear Linear

𝑛 x 𝑑𝑚𝑜𝑑𝑒𝑙

𝜔out: 𝑛 x (𝑒+1)

Linear

• Map the weights of the Classification
model plus the given training images
to weights of the Classification model
− First map the given training

images with (resizing,
normalizing and) ResNet152 to
feature vectors

− Then send the data through the
Mapping model

𝑠enc: 𝑛 x 𝑑𝑚𝑜𝑑𝑒𝑙

Transformer Encoder

Transformer Decoder

memory

Sum

𝑛 x 𝑑𝑚𝑜𝑑𝑒𝑙

context

Figure 4.3.: Mapping-model "d2 : Green boxes denote the applied functions, black

boxes contain the shape of the processed data (and the names if they are present).

More abstractly this can be seen as

Benc = encode(B8),
lout = decode(context = lin,memory = Benc) + Benc,

(4.2)

where B contains the feature vectors and lin and lout are the matrices of input weights

and output weights, respectively.

A transformer model is used within the mapping-model since this mapping can be seen as

a sequence-to-sequence task. The sequence of feature vectors is used as source sequence

and the sequence of weights (corresponding to each class) are used as target sequence.

The transformer decoder in the model has a self-attention layer instead of a masked self-

attention layer since during inference no decoding is done but a forward path through the

transformer is done and therefore it is not necessary to mask the target sequence. The

output of the encoder and decoder are summed to achieve a better alignment between the

source and target sequence.

Furthermore it is important to pay attention to the scaling of the output. Since the output

of the mapping-model consists of weights it should be scaled such that applying the linear

24

4.4. Inference

transformation with these weights to feature vectors should result in a reasonably scaled

output. Therefore we scale the output weights of the mapping-model such that they have

the same variance as the initial weights d1.

4.4. Inference

During inference the model is able to learn with one sample per class as input to the

meta-model Λd . As a result one gets episodic-speci�c weights l1 and is able to use them

together with the weights l of the feature extractor for the classi�cation model. Given

an image G to classify the system outputs the following probability distribution over the

classes:

5l1
(ql (G))

If more samples per class are available one can use the mapping-model again to get episodic-

speci�c weights l8 , for 8 > 1. This is possible in an incremental manner, i.e. if the samples

are delivered one after each other the ones already processed by the mapping-model do

not need to be stored. An illustrative example can be found in �gure 5.9. Furthermore

this mapping is a lot faster than �ne-tuning or retraining a complete model since only a

forward path of the mapping-model has to be performed.

4.5. Training

The meta-model and the feature extractor can be trained with di�erent loss functions and

data. In the following we will consider these methods.

For all following training methods the validation error is calculated (similar to equa-

tion (3.1)) by

1

|�′|
∑
E∈� ′

1

:

:∑
8=1

1

|E2 |
∑
(G,~)∈E2

!�� (5l8 (ql (G)), ~). (4.3)

Training method 1:

For training method 1 (see �gure 4.4) the cross entropy loss is chosen.

Training method 1.1:

The output weights l8 of the meta-model are used in the base-model and the base-model

is trained with the data (ql (G), ~) for (G,~) ∈ E2, i.e. the test part of E. This means that

every l8 is trained with the same data and this data is not used as input of the meta-model.

25

4. Methods: Sample-incremental meta-learning

The training error is similar to the validation error (equation (4.3)) and de�ned by

1

|� |
∑
E∈�

1

:

:∑
8=1

1

|E2 |
∑
(G,~)∈E2

!�� (5l8 (ql (G)), ~),

where the weights d of the meta-model are learned (the weights l8 depent on d).

Model

𝑥

𝐿𝐶𝐸 𝐿𝐶𝐸 …

𝑦

𝐿𝐶𝐸

𝑓∙

𝜙𝜔
𝑓∙𝑓∙

…

𝑛: Number of classes
𝑘: Number of train samples
per class for the meta-model
𝑥𝑖,𝑗: Input 𝑖 of class 𝑗

𝑀𝜌2: Mapping-model

𝜔 and 𝜌 can be jointly trained

𝜔2𝜔1 𝜔𝑘

𝑥1,1, … , 𝑥1,𝑛

𝜙𝜔

𝑀𝜌2
𝜌1 𝑀𝜌2

𝑥2,1, … , 𝑥2,𝑛

… 𝑀𝜌2

𝑥𝑘,1, … , 𝑥𝑘,𝑛

𝜙𝜔
Meta-model

Sum

𝐿

𝜙𝜔
𝑠2𝑠1 𝑠𝑘

Figure 4.4.: Training method 1: The output of the meta-model is given to the

base-model and the base-model is trained with a cross entropy loss.

The intuition behind this training method is that the weights in l8 depend on the inputs

G 9,1, . . . , G 9,= , 9 ∈ {1, . . . , 8}, and therefore when all weights get trained with the same

data, weights with a higher index 8 should deliver a better performance. As a result the

mapping-model should learn to approximate an incremental-learning function.

Training method 1.2:

The output weights l8 of the meta-model are given to the base-model and the base-model

is trained with the data ((ql (G), ~) for (G,~) ∈
{
(G 9,1, 41), . . . , (G 9,=, 4=) | 9 ∈ {1, . . . , 8}

}
,

8 ∈ {1, . . . , :}. This means that the weights are trained with the input to the meta-model

and weights l8 with higher index 8 are trained with more data.

26

4.5. Training

The following expression is minimized w.r.t. d :

1

|� |
∑
E∈�

1

:

:∑
8=1

1

8

8∑
9=1

1

=

=∑
;=1

!�� (5l8 (ql (G 9,;)), 4;)︸ ︷︷ ︸
C!8

. (4.4)

In this approach the base-model with the weights l8 is trained with only the data available

to the weightsl8 through the meta-model. Therefore the mapping-model is trained to map

the input weights to weights which arise when adding the mapping-model feature inputs to

the training set, i.e. the mapping-model is trained to approximate an incremental-learning

function.

Training method 2:

This method is based on training method 1.2 and starts with a precomputation step. For

each episode E weights l̃8 , 8 ∈ {1, . . . , :}, are precomputed by minimizing the following

validation error w.r.t. l̃8

1

8

8∑
9=1

1

=

=∑
;=1

!�� (5l̃8 (ql (G 9,;)), 4;), training error,

1

|E2 |
∑
(G,~)∈E2

!�� (5l̃8 (ql (G)), ~), validation error.

This is equivalent to the training of the base-model. As initial weights for l̃8 the weights

l̃8−1 after the precomputation step are used, 8 ∈ {1, . . . , :}, and l̃0 is randomly initialized.

For the training method 2 (see �gure 4.5) the mean squared error is chosen. For this method

a �xed feature extractor is needed and it is not possible to jointly train meta-model and

feature extractor. After the precomputation step the meta-model is trained to minimize

1

|� |
∑
E∈�

1

:

:∑
8=1

!"(� (l8, l̃8)︸ ︷︷ ︸
C!8

(4.5)

w.r.t. d .

27

4. Methods: Sample-incremental meta-learning
Model

𝑛: Number of classes
𝑘: Number of train samples
per class for the meta-model
𝑥𝑖,𝑗: Input 𝑖 of class 𝑗

𝑀𝜌2: Mapping-model

𝜔 and 𝜌 can be jointly trained

𝜔2𝜔1 𝜔𝑘

𝑥1,1, … , 𝑥1,𝑛

𝜙𝜔

𝑀𝜌2
𝜌1 𝑀𝜌2

𝑥2,1, … , 𝑥2,𝑛

… 𝑀𝜌2

𝑥𝑘,1, … , 𝑥𝑘,𝑛

𝜙𝜔
Meta-model

𝜙𝜔

𝐿𝑀𝑆𝐸 𝐿𝑀𝑆𝐸 𝐿𝑀𝑆𝐸
෥𝜔1 ෥𝜔2 ෥𝜔𝑘

Sum

𝐿

…

𝑠2𝑠1 𝑠𝑘

Figure 4.5.: Training method 2: The output of the meta-model is trained with the

precomputed weights and a mean squared error.

One problem that emerges from the construction in the �rst two training methods is a

vanishing or exploding gradient (see �gure 4.6) since the same model is applied multiple

times similar to an Elman RNN (see section 2.3).

1 2 3 4 5 6 7 8 9 10
i

10−11

10−9

10−7

10−5

10−3

St
an
da
rd
 d
ev

ia
tio

n
of
 ∂L

i

∂ρ
1

Vanishing gradient problem
training method 1.2
training method 2

Figure 4.6.: Vanishing gradient problem: Standard deviation (averaged over 128

episodes) of the 8-th loss part !8 w.r.t. d1. For hyperparameters see appendix A.1.

Despite this vanishing-gradient problem the model is able to learn due to bootstrapping

since there is not only the :-th part !: of the loss but also the rest.

28

4.5. Training

Training method 3:

This method is based on training method 2 but avoids the vanishing-gradient problem via

teacher forcing. The precomputation step of training method 2 is adopted. During training

the output of the mapping-model is not given back to the mapping-model. Instead the

precomputed ground truth is given to the mapping-model. The weights l8 (to compute

the training error) are de�ned by

l8 B "d2 (B8, l̃8−1), 8 ∈ {1, . . . , :},

and l̃0 B d1.

Training method 3.1: (see �gure 4.7)

As in training method 2 the meta-model is trained to minimize the term in equation (4.5).

Training method 3.2: (see �gure 4.8)

As in training method 1.2 the meta-model is trained to minimize the term in equation (4.4).

Model

𝑛: Number of classes
𝑘: Number of train samples
per class for the meta-model
𝑥𝑖,𝑗: Input 𝑖 of class 𝑗

𝑀𝜌2: Mapping-model

𝜔 and 𝜌 can be jointly trained

𝜔𝑖

𝑥𝑖,1, … , 𝑥𝑖,𝑛

𝜙𝜔

𝑀𝜌2
෥𝜔𝑖−1

𝐿𝑀𝑆𝐸
෥𝜔𝑖

𝑠𝑖

Figure 4.7.: Training method 3.1: Teacher

forcing and a mean squared error are used.

Model

𝑛: Number of classes
𝑘: Number of train samples
per class for the meta-model
𝑥𝑖,𝑗: Input 𝑖 of class 𝑗

𝑀𝜌2: Mapping-model

𝜔 and 𝜌 can be jointly trained

𝑥𝑖,1, … , 𝑥𝑖,𝑛

𝑥

𝐿𝐶𝐸𝑦

𝑓∙𝜙𝜔

𝜔𝑖𝑀𝜌2

𝑠𝑖

෥𝜔𝑖−1

𝜙𝜔

Figure 4.8.: Training method 3.2: Teacher

forcing is used, the outputl8 is given to the

base-model and the base-model is trained

with a cross entropy loss.

29

4. Methods: Sample-incremental meta-learning

training method loss mode precomputation

1.1 CE chain no

1.2 CE chain no

2 MSE chain yes

3.1 MSE teacher forcing yes

3.2 CE teacher forcing yes

Table 4.1.: Summary of the training methods. Note that for the training

methods 1.1 and 1.2 the training data is used in di�erent ways.

4.6. Dataset

For training data a subset of ImageNet [Den+09], mini-ImageNet [Vin16], is used. It

consists of 100 classes with 600 colored images of size 84 x 84 per class. The classes are

split into 64, 16 and 20 classes for training, validation and test, respectively. This dataset

is more complex than the CIFAR dataset [KH10] but smaller than ImageNet allowing for

faster experiments.

The episodes are sampled from this data by randomly choosing = classes of the respective

set and within this classes the data is randomly split into training and test sets.

30

5. Results

In this chapter the methods introduced in chapter 4 are compared with each other and to

training and �ne-tuning. For the training method the weights of the last step are taken (or

initialized randomly at the begin, respectively) and trained with all the data the meta-model

had as input, i.e. all of the old images are saved and used for updating the weights. This is

used as a baseline. For the �ne-tuning method the weights of the last step are taken (or

initialized randomly at the begin, respectively) and trained with the current input of the

meta-model, i.e. none of the old images are saved.

As mentioned in section 3.1, rehearsal-based methods ([Shi+17], [VT18]) with generative

models [Goo+14] deliver state-of-the-art performance. However, these methods need a

lot of data for the generative model to train, e.g. [VT18] trains with approximately 6000

samples per class, and can therefore not be compared to our method which learns with

only one sample per class.

The number of classes= = 4 is chosen for the following experiments. The shown accuracies

are obtained by testing the methods using the mini-ImageNet testset, i.e. the classes used

during testing are not seen during training of the meta-model. For hyperparameters/results

not mentioned in this chapter see appendix A.1/appendix A.3.

5.1. Evaluation of training and fine-tuning

Since during inference (see section 4.4) only one image per class is needed/used to improve

the performance of the system, no validation set is available. To compare our methods to

training and �ne-tuning in a meaningful way also no test part (of the episode) should be

provided during inference. Therefore during training the number of epochs to train/�ne-

tune during inference are calculated:

Weights l0 of the base-model are initialized randomly. To get weights l8 from the weights

l8−1 which have the best accuracy in the last step, 8 ∈ {1, . . . , :}, the base-model is trained

with the data B 9 , 9 ∈ {1, . . . , 8}, or �ne-tuned with the data B8 for the training or �ne-tuning

method, respectively. This is done until test accuracy does not increase anymore for a

certain number of epochs 4Change(= 5000). This procedure is calculated for 100 episodes.

31

5. Results

Next, the numbers of epochs needed to train/�ne-tune the model to obtain the weights

l8 from l8−1 are averaged over the episodes and this number of epochs is used during

inference to obtain the weights l8 from l8−1.

This can be seen as a meta-model. As a result no test set is needed during inference

to get the best point of stopping the training/�ne-tuning. These numbers of epochs to

train/�ne-tune can be seen in the �gures 5.1, 5.2 and in appendix A.2.

1 3 5 7 9 11 13 15 17 19
i

1

3

5

7

9

11

Ep
oc

hs

Training/Fine-tuning meta-model
training
fine-tuning

Figure 5.1.: Training/Fine-tuning meta-

model 1: Number of epochs (in 1k) used for

the training method comparison experiment

(�gures 5.3 and following).

1 3 5 7 9 11 13 15 17 19
i

1
3
5
7
9

11
13
15
17

Ep
oc

hs

Training/Fine-tuning meta-model
training
fine-tuning

Figure 5.2.: Training/Fine-tuning meta-

model 2: Number of epochs (in 1k) used for

the input distribution change experiment

(�gures 5.7 and following).

One can see that the number of epochs decreases for larger 8 (if there is no distribution

change in the data) and for the �ne-tuning method there are less epochs required compared

to the training method.

Note that the : in this context can be di�erent to the : in the context of our own methods

since we can evaluate our methods independently from the : used during training.

5.2. Comparison between trainingmethods

Training method 1:

The weights of the feature extractor are �xed since training the weights of the feature

extractor jointly with the meta-model gave no performance bene�t for training method 1.

A reason could be that the meta-model is trained with the miniImageNet data and not the

full imageNet data.

32

5.2. Comparison between training methods

Training method 1.1:

The training method 1.1 is evaluated for : ∈ {5, 10, 20} and |E2 | ∈ 4 · {10, 40, 105, 230, 480},
i.e. 10,40,105,230 or 480 training images per class. The value : = 20 with 480 training

images per class performed best.

1 3 5 7 9 11 13 15 17 19
i

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

Ac
cu

ra
cy

Accuracy w.r.t. training samples per class

training
fine-tuning
own (k=5, |2|/4=40)

own (k=5, |2|/4=230)
own (k=10, |2|/4=40)
own (k=20, |2|/4=480)

Figure 5.3.: Evaluation of training method 1.1

One can see that the usage of more data delivers slightly better accuracy but training

method 1.1 is substantially worse than �ne-tuning.

Training method 1.2:

The training method 1.2 is performed for : ∈ {5, 10, 20}.

33

5. Results

1 3 5 7 9 11 13 15 17 19
i

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu
ra
cy

Accuracy w.r.t. training samples per class

training
fine-tuning
own (k=5)

own (k=10)
own (k=20)

Figure 5.4.: Evaluation of training method 1.2

Compared to training method 1.1 this method performs signi�cantly better, but is still

worse than �ne-tuning. Furthermore, there is little di�erence between di�erent values of

: .

Training methods 2 and 3:

These training methods are also evaluated for : ∈ {5, 10, 20} (see �gure 5.5). For training

method 2 and 3.2 the value : = 5 performed best. For training method 3.1 the values : = 5

and : = 20 performed similarly well and better than : = 10.

34

5.3. Distribution change in the input data

1 3 5 7 9 11 13 15 17 19
i

0.86

0.88

0.90

0.92

0.94

0.96
Ac

cu
ra

cy
Accuracy w.r.t. training samples per class

training
fine-tuning

own (2, k=5)
own (3.1, k=5)

Figure 5.5.: Evaluation of training methods 2 and 3

We obtain that training methods 2 and 3.1 work similarly well and better than �ne-tuning.

Due to the bootstrapping mentioned in section 4.5 training method 2 needs approximately

an order of magnitude more training steps than training method 3.1. Training method 3.2

has a worse performance than the other two (see appendix A.3).

5.3. Distribution change in the input data

A very interesting aspect of incremental learning is the case where the distribution of

the input data changes during the incremental-learning process. This can happen, for

instance, when the classes consist of multiple subclasses and in the �rst few training steps

the given samples belong to the �rst subclasses and afterwards to other subclasses.

In the following such an experiment is performed. Each of the = = 4 classes consists of

four subclasses which are assembled randomly. The learning process is arranged such

that in the �rst �ve learning steps the samples are chosen from the �rst subclasses of each

class. For the second �ve learning steps the samples are chosen from the second subclasses

of each class and so forth. After �ve learning steps the input distribution of the samples

changes. An illustrative example is given in section 5.3.1.

In this experiment we additionally compare our method to �ne-tuning where additional

connections and neurons are added similar to [WSS89]. Whenever the input distribution

changes a hidden layer with two neurons is added, employed with a ReLU activation

35

5. Results

function (see �gure 5.6). The number of weights in the original network is approximately

twice the number of weights added when adding a new hidden layer.

+

𝑒
𝑛

𝑒
𝑛

Linear

Linear

Linear

Linear

Figure 5.6.: A vertical line denotes a vector. Left: Original base-model: Linear

transformation from the feature vector dimension 4 = 512 to the number of

classes = = 4, Right: Additional hidden layer added. The output of the original

transformation and the output of the new hidden layer(s) are summed.

We tried two versions of this approach: A parameter isolation-based method (�ne-tuning

+ GLUE + freeze), where only the last added (hidden) layer is �ne-tuned and the others

are frozen, and a version (�ne-tuning + GLUE) where all weights are �ne-tuned. The �rst

version performed poorly, the second version performed approximately as well as the

�ne-tuning method (see appendix A.3). The additional connections and neurons did not

have a positive impact on the performance. A reason could be that during �ne-tuning not

enough data is available to leverage the increased capacity of the network.

1 3 5 7 9 11 13 15 17 19
i

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Accuracy w.r.t. training samples per class
training
fine-tuning

own (3.1)

Figure 5.7.: Evaluation of distribution change in the input data: Accuracy evaluated

on the subclasses of which samples are used as input to the meta-model, i.e. for

8 ∈ {1, . . . , 5} evaluated on the �rst subclasses of each class, for 8 ∈ {6, . . . , 10}
evaluated on the �rst and second subclasses of each class and so forth.

36

5.3. Distribution change in the input data

1 3 5 7 9 11 13 15 17 19
i

0.70

0.75

0.80

0.85

0.90

0.95
Ac

cu
ra
cy

Accuracy w.r.t. training samples per class
training
fine-tuning

own (3.1)

Figure 5.8.: Evaluation of distribution change in the input data: Accuracy evaluated

on the �rst subclass of each class.

The accuracy of the training method decreases for 8 > 5 since the base-model has to deal

with multiple subclasses per class but has the same capacity. For 8 = 6 the �ne-tuning

method performed best in �gure 5.7. This can occur due to the fact that the �ne-tuning

method adapts rapidly to the new task and the accuracy is calculated as the mean of

both tasks accuracy’s. For the training methods (and our training method 3.1 which is

derived from the training method) the training data is not balanced, this e�ect reduces

for 8 ∈ {7, . . . , 10}. We obtain that there is a catastrophic forgetting [Fre99] for 8 > 5 of

the old data for the �ne-tuning method (see �gure 5.8) as expected. Our own method

performs better and the accuracy is between the training method (which does not learn

incrementally) and the �ne-tuning method.

5.3.1. Illustrative example

Let’s say we want to classify the following classes (of the CIFAR-dataset) which are divided

into subclasses:

classes subclasses 1 subclasses 2 subclasses 3 subclasses 4

vehicles bicycle pickup truck motorcycle bus

people boy woman man girl

large carnivores bear wolf tiger lion

food containers bottle plate cup can

Table 5.1.: Illustrative example: Classes

37

5. Results

Ex
am

p
le

: I
n

cr
em

en
ta

lL
ea

rn
in

g
d

u
ri

n
g

in
fe

re
n

ce

𝑀
…

𝑀
𝑀

𝑀

C
la

ss
e

s

V
eh

ic
le

s

Pe
o

p
le

La
rg

e
ca

rn
iv

o
re

s

Fo
o

d
 c

o
n

ta
in

er
s

Su
b

cl
as

se
s

1

B
ic

yc
le

B
o

y

B
ea

r

B
o

tt
le

Su
b

cl
as

se
s

2

P
ic

ku
p

 t
ru

ck

W
o

m
an

W
o

lf

P
la

te

𝜙
𝜙

𝜙
𝜙

𝜙

0
.9

5

0
.0

1

0
.0

3

0
.0

1

L
in
ea
r

𝜙

0
.9

7

0
.0

1

0
.0

1

0
.0

1

L
in
ea
r

𝜙

0
.9

4

0
.0

1

0
.0

3

0
.0

2

L
in
ea
r

F
i
g
u

r
e

5
.9

.:
I
l
l
u

s
t
r
a
t
i
v
e

e
x
a
m

p
l
e
:

I
n

c
r
e
m

e
n

t
a
l

l
e
a
r
n

i
n

g
d

u
r
i
n

g
i
n

f
e
r
e
n

c
e
.
q

d
e
n

o
t
e
s

t
h

e
f
e
a
t
u

r
e

e
x
t
r
a
c
t
o

r
,
"

d
e
n

o
t
e
s

t
h

e
m

a
p

p
i
n

g
-
m

o
d

e
l
,

l
0
=
d
1

a
r
e

l
e
a
r
n

e
d

w
e
i
g
h

t
s

o
f

t
h

e
m

e
t
a
-
m

o
d

e
l
,
t
h

e
p

l
o

t
t
e
d

w
e
i
g
h

t
s

a
r
e

a
s
u

b
s
e
t

o
f

a
l
l

w
e
i
g
h

t
s

o
f

t
h

e
b
a
s
e
-
m

o
d

e
l
.

38

5.3. Distribution change in the input data

1 3 5 7 9 11 13 15 17 19
i

0.90

0.91

0.92

0.93

0.94

0.95

0.96
Ac

cu
ra
cy

Accuracy w.r.t. training samples per class

training
fine-tuning

own (3.1)

Figure 5.10.: Illustrative example: Accuracy evaluated as in �gure 5.7. In this example

CIFAR images are used for the evaluation.

1 3 5 7 9 11 13 15 17 19
i

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

Accuracy w.r.t. training samples per class

training
fine-tuning

own (3.1)

Figure 5.11.: Illustrative example: Accuracy evaluated on the �rst subclass of each

class. In this example CIFAR images are used for the evaluation.

39

5. Results

We obtain that in this speci�c example our method works better than the �ne-tuning

method, in some parts of the incremental-learning process even better than the training

method. This is possible since our method has access to more data during training of the

meta-model than the training method.

5.4. More complex base-models

In the previous sections the base-model is a linear transformation. Therefore, only linearly

separable data is able to be classi�ed. To address this issue a more complex base-model

is used. A linear transformation with 128 output neurons is applied to the output of the

feature extractor, followed by a ReLU activation function and another linear transformation

with = = 4 output neurons.

Among other approaches we tried the following mapping-model (similar to equation (4.2))

which maps the weights of the two linear transformations together with the input features

to other weights of the two linear transformations:

Benc = encode(B8),
[F1,out,F2,out] = decode(context = [l1,in, l2,in],memory = Benc) + [0, Benc],

where B8 contains the feature vectors. The weights of the �rst and second linear transfor-

mation of the base-model are denoted by l1 and l2, respectively. An additional subscript

in/out denotes the input/output of the mapping-model.

For this combination of base-model and meta-model training method 1.2 attained 86.2%

accuracy, the training methods 1.1 and 3.2 attained 51.8% and 75.6% accuracy, respectively.

The training methods 2 and 3.1 did not learn anything useful. For comparison, the training

and �ne-tuning methods attained 95.4% and 93.8% accuracy, respectively. It seems that the

used mapping-model is not capable of mapping the weights appropriately, compared to

the training and �ne-tuning methods.

40

6. Conclusion

6.1. Review

We proposed a new incremental-learning scheme for image classi�cation which requires

only little data during inference and does not store samples. It uses a meta-learning

approach. A mapping-model is learned to adjust weights of a classi�cation model when

new data is available to improve the performance of the system.

The mapping-model we use is based on the transformer architecture. To learn the system,

di�erent training methods have been compared and analyzed.

For a linear base-model our approach outperforms �ne-tuning, for more complex base-

models it also works, but together with the used mapping-model it is not as good as

�ne-tuning.

6.2. Future work

The main point of future work is to use base-models with more layers and to �nd advanced

mapping-models which works with them. More complex base-models are needed to

increase the amount of knowledge that can be stored.

The main focus of this work lies in incremental learning. However, one could also be

interested in the other direction, i.e. one does not want to learn speci�c knowledge but

selectively forget knowledge. This could happen if the system recognizes or is told that

some of the acquired knowledge is outdated or wrong.

A similar approach to the one proposed in this work could be applied. Instead of learning

a mapping-model to map to weights where new knowledge is added, one could train a

mapping-model which maps to weights where the knowledge to forget is removed. This

allows for a selective forgetting.

41

Bibliography

[And+16] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient

descent”. In: Advances in neural information processing systems. 2016, pp. 3981–

3989.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine

translation by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473
(2014).

[Ber+16] Luca Bertinetto et al. “Learning feed-forward one-shot learners”. In: Advances
in neural information processing systems. 2016, pp. 523–531.

[Ber+18] Luca Bertinetto et al. “Meta-learning with di�erentiable closed-form solvers”.

In: arXiv preprint arXiv:1805.08136 (2018).

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geo�rey E Hinton. “Layer normalization”.

In: arXiv preprint arXiv:1607.06450 (2016).

[Cho+14] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-

decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014).

[De +19] Matthias De Lange et al. “Continual learning: A comparative study on how

to defy forgetting in classi�cation tasks”. In: arXiv preprint arXiv:1909.08383
(2019).

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–

255.

[Elm90] Je�rey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),

pp. 179–211.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning

for fast adaptation of deep networks”. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1126–1135.

[Fre99] Robert M French. “Catastrophic forgetting in connectionist networks”. In:

Trends in cognitive sciences 3.4 (1999), pp. 128–135.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the di�culty of training

deep feedforward neural networks”. In: Proceedings of the thirteenth interna-
tional conference on arti�cial intelligence and statistics. 2010, pp. 249–256.

[Goo+14] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

43

Bibliography

[He+15] Kaiming He et al. “Delving deep into recti�ers: Surpassing human-level per-

formance on imagenet classi�cation”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[He+16] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 770–778.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[Hsu+18] Yen-Chang Hsu et al. “Re-evaluating continual learning scenarios: A cate-

gorization and case for strong baselines”. In: arXiv preprint arXiv:1810.12488
(2018).

[IS15] Sergey Io�e and Christian Szegedy. “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[KH10] Alex Krizhevsky and Geo� Hinton. “Convolutional deep belief networks on

cifar-10”. In: Unpublished manuscript 40.7 (2010), pp. 1–9.

[Kir+17] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-

works”. In: Proceedings of the national academy of sciences 114.13 (2017),

pp. 3521–3526.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. “Imagenet classi-

�cation with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[LH17] Zhizhong Li and Derek Hoiem. “Learning without forgetting”. In: IEEE trans-
actions on pattern analysis and machine intelligence 40.12 (2017), pp. 2935–

2947.

[LJY17] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 10: Recurrent Neural
Networks. 2017. url: http://cs231n.stanford.edu/slides/2017/cs231n_

2017_lecture10.pdf (visited on 01/21/2020).

[LR17] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient episodic memory for

continual learning”. In: Advances in Neural Information Processing Systems.
2017, pp. 6467–6476.

[ML18] Arun Mallya and Svetlana Lazebnik. “Packnet: Adding multiple tasks to a

single network by iterative pruning”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 7765–7773.

[MP43] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent

in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943),

pp. 115–133.

44

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

[Raj+19] Jathushan Rajasegaran et al. “Random path selection for incremental learning”.

In: arXiv preprint arXiv:1906.01120 (2019).

[Reb+17] Sylvestre-Alvise Rebu� et al. “icarl: Incremental classi�er and representation

learning”. In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 2017, pp. 2001–2010.

[RHW86] David E Rumelhart, Geo�rey E Hinton, and Ronald J Williams. “Learning rep-

resentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–

536.

[RL16] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot

learning”. In: (2016).

[Ros58] Frank Rosenblatt. “The perceptron: a probabilistic model for information

storage and organization in the brain.” In: Psychological review 65.6 (1958),

p. 386.

[Rus+15] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.

In: International journal of computer vision 115.3 (2015), pp. 211–252.

[Shi+17] Hanul Shin et al. “Continual learning with deep generative replay”. In: Ad-
vances in Neural Information Processing Systems. 2017, pp. 2990–2999.

[Sil+17a] David Silver et al. “Mastering chess and shogi by self-play with a general

reinforcement learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[Sil+17b] David Silver et al. “Mastering the game of go without human knowledge”. In:

Nature 550.7676 (2017), pp. 354–359.

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks

from over�tting”. In: The journal of machine learning research 15.1 (2014),

pp. 1929–1958.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing systems.
2014, pp. 3104–3112.

[Tel16] Matus Telgarsky. “Bene�ts of depth in neural networks”. In: arXiv preprint
arXiv:1602.04485 (2016).

[Vas+17] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems. 2017, pp. 5998–6008.

[Vin16] O Vinyals. “Matching networks for one shot learning. Vinyals O., Blundell C.,

Lillicrap T. Kavukcuoglu K. & Wierstra D.(2016). Matching networks for one

shot learning”. In: Neural Information Processing Systems conference, Barcelona,
Spain, December. 2016, pp. 5–10.

[VT18] Gido M van de Ven and Andreas S Tolias. “Generative replay with feedback

connections as a general strategy for continual learning”. In: arXiv preprint
arXiv:1809.10635 (2018).

45

Bibliography

[Wai+89] Alex Waibel et al. “Phoneme recognition using time-delay neural networks”.

In: IEEE transactions on acoustics, speech, and signal processing 37.3 (1989),

pp. 328–339.

[Wer+90] Paul J Werbos et al. “Backpropagation through time: what it does and how to

do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[WSS89] Alex Waibel, Hidefumi Sawai, and Kiyohiro Shikano. “Modularity and scaling

in large phonemic neural networks”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 37.12 (1989), pp. 1888–1898.

[Zha+20] Junting Zhang et al. “Class-incremental learning via deep model consolida-

tion”. In: The IEEE Winter Conference on Applications of Computer Vision. 2020,

pp. 1131–1140.

46

List of Figures

2.1. Perceptron . 3

2.2. Activation functions . 4

2.3. Unfolded Elman RNN . 11

2.4. LSTM architecture . 12

2.5. (Attention-based) RNN encoder-decoder model 14

2.6. Attention layer . 15

2.7. Transformer architecture . 16

4.1. Classi�cation model . 22

4.2. Meta-model . 23

4.3. Mapping-model . 24

4.4. Training method 1 . 26

4.5. Training method 2 . 28

4.6. Vanishing gradient problem . 28

4.7. Training method 3.1 . 29

4.8. Training method 3.2 . 29

5.1. Training/Fine-tuning meta-model 1 . 32

5.2. Training/Fine-tuning meta-model 2 . 32

5.3. Evaluation of training method 1.1 . 33

5.4. Evaluation of training method 1.2 . 34

5.5. Evaluation of training methods 2 and 3 35

5.6. Fine-tuning + GLUE . 36

5.7. Evaluation of distribution change in the input data 1 36

5.8. Evaluation of distribution change in the input data 2 37

5.9. Illustrative example: Incremental learning during inference 38

5.10. Illustrative example: Accuracy 1 . 39

5.11. Illustrative example: Accuracy 2 . 39

47

List of Tables

2.1. XOR data . 5

4.1. Summary training methods . 30

5.1. Illustrative example: Classes . 37

A.1. Results: Training/Fine-tuning methods 53

A.2. Results: Training method 1.1 . 53

A.3. Results: Training method 1.2 . 54

A.4. Results: Training method 2 . 54

A.5. Results: Training method 3.1 . 54

A.6. Results: Training method 3.2 . 54

A.7. Results: Best-to-best comparison . 55

A.8. Results: Training/Fine-tuning methods(1) 55

A.9. Results: Training/Fine-tuning methods(2) 56

A.10. Results: Own methods(1) . 56

A.11. Results: Own methods(2) . 56

A.12. Results: Best-to-best comparison(1) . 56

A.13. Results: Best-to-best comparison(2) . 57

A.14. Results: Best-to-best comparison(3) . 57

A.15. Results: Best-to-best comparison(4) . 57

A.16. Results: Training/Fine-tuning methods for the two-layer base-model . . 58

A.17. Results: Own methods for the two-layer base-model 58

49

A. Appendix

A.1. Hyperparameters

Transformer model: 3model = 512, 3 5 5 = 2048 with # = 6 layers and ℎ = 8 heads.

Dropout base-model (before the linear transformation(s)): 0.5, dropout mapping-model:

0.3 (0.1 for the two-layer base-model experiment)

Batch size: The batch size is maximized such that the available memory of the graphics

card is not exceeded.

Optimizer and learning rate: The optimizer is adopted from [Vas+17], the learning rate is

chosen similarly, but with a factor 0.2 andF0A<D?_BC4?B = 133. The learning process is

stopped after the validation error increases.

Features: The feature vectors of the input images are precomputed if the training method

allows.

Evaluation: The accuracies shown in chapter 5 are averaged over 1024 episodes for our own

methods and over 100 episodes for the training/�ne-tuning methods. The precomputation

step is done for 1000 episodes.

Number of classes: = = 4 classes are used since the mini-ImageNet validation dataset

consists of 16 classes and with 4 subclasses per class in one experiment, the maximum

number of classes that can be used with this dataset is 4.

51

A. Appendix

A.2. Training/Fine-tuningmeta-models

The following numbers of epochs are used in the meta-models of the training and �ne-

tuning method:

Training:

First experiment (no change in input distribution):

19600, 8172, 5037, 3659, 2854, 2049, 1767, 1466, 1252, 1156, 1104, 1094, 802, 748, 740, 582,

721, 620, 531, 587

Change in input distribution after every �fth learning step:

19209, 8021, 5424, 3906, 2724, 15005, 7614, 5502, 4563, 3256, 11974, 6969, 5450, 4311, 3547,

10880, 6582, 4895, 4221, 3372

Two-layer base-model (no change in input distribution):

10615, 6212, 4094, 2942, 2124, 1700, 1517, 1305, 978, 880, 843, 755, 678, 827, 609, 560, 564,

459, 515, 457

Fine-tuning:

First experiment (no change in input distribution):

19270, 5874, 2652, 2254, 1037, 1396, 806, 668, 745, 417, 476, 676, 275, 369, 543, 453, 277, 75,

230, 207

Change in input distribution after every �fth learning step:

18445, 6127, 3742, 1751, 1526, 9669, 1954, 580, 311, 107, 5591, 745, 472, 484, 274, 3825, 1042,

290, 243, 42

Fine-tuning + GLUE + freeze (change in input distribution): 18755, 4970, 3774, 2390, 2182,

3013, 650, 34, 5, 3, 563, 125, 46, 34, 37, 807, 143, 146, 308, 37

Fine-tuning + GLUE (change in input distribution): 18223, 4839, 3216, 2450, 1915, 9738,

1060, 1198, 288, 250, 4982, 1042, 261, 134, 182, 2437, 1246, 420, 204, 178

Two-layer base-model (no change in input distribution):

10954, 4327, 2630, 1286, 1303, 794, 1082, 550, 392, 225, 469, 384, 330, 361, 129, 313, 328, 302,

240, 212

52

A.3. Detailed results

A.
3.
De
ta
ile
d
re
su
lt
s

A.
3.
1.
Co
m
pa
ris
on
be
tw
ee
n
tr
ai
ni
ng
m
et
ho
ds

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.1

9
1
.1

9
3
.3

9
4
.3

9
4
.9

9
5
.2

9
5
.5

9
5
.8

9
6
.0

9
6
.0

9
6
.2

9
6
.3

9
6
.4

9
6
.4

9
6
.5

9
6
.5

9
6
.6

9
6
.7

9
6
.7

9
6
.8

9
5
.1

�
n

e
-
t
u

n
i
n

g
8
5
.7

9
1
.5

9
3
.1

9
3
.4

9
3
.6

9
3
.9

9
4
.5

9
5
.0

9
4
.9

9
5
.0

9
5
.0

9
5
.1

9
5
.3

9
5
.1

9
5
.1

9
5
.4

9
5
.5

9
6
.1

9
5
.8

9
5
.8

9
4
.3

T
a
b
l
e

A
.1

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
/
F
i
n

e
-
t
u

n
i
n

g
m

e
t
h

o
d

s

O
w

n
m

e
t
h

o
d

s
:

:
d

a
t
a

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

5
1
0

7
9
.1

8
3
.4

8
5
.3

8
5
.7

8
5
.8

8
6
.1

8
5
.9

8
5
.9

8
6
.0

8
6
.1

8
6
.2

8
6
.2

8
6
.0

8
6
.2

8
6
.0

8
6
.0

8
6
.1

8
6
.2

8
6
.1

8
6
.1

8
5
.5

5
4
0

7
9
.9

8
4
.3

8
6
.2

8
6
.9

8
7
.3

8
7
.5

8
7
.6

8
7
.4

8
7
.6

8
7
.6

8
7
.5

8
7
.6

8
7
.7

8
7
.8

8
7
.7

8
7
.5

8
7
.4

8
7
.5

8
7
.8

8
7
.6

8
6
.9

5
1
0
5

7
9
.6

8
3
.8

8
5
.6

8
6
.0

8
6
.5

8
6
.4

8
6
.6

8
6
.8

8
6
.9

8
6
.7

8
6
.8

8
6
.7

8
6
.6

8
6
.8

8
6
.9

8
6
.7

8
6
.7

8
6
.8

8
6
.6

8
6
.7

8
6
.1

5
2
3
0

80
.1

84
.7

86
.3

8
6
.9

8
7
.1

8
7
.4

8
7
.4

8
7
.4

8
7
.3

8
7
.4

8
7
.4

8
7
.4

8
7
.4

8
7
.5

8
7
.4

8
7
.4

8
7
.5

8
7
.4

8
7
.5

8
7
.3

8
6
.8

5
4
8
0

7
9
.7

8
4
.2

8
6
.1

8
6
.8

8
6
.9

8
6
.9

8
7
.0

8
7
.1

8
7
.0

8
7
.2

8
7
.2

8
7
.2

8
7
.0

8
6
.9

8
7
.0

8
7
.1

8
7
.1

8
7
.2

8
7
.0

8
7
.0

8
6
.5

1
0

1
0

7
8
.3

8
2
.4

8
4
.1

8
4
.9

8
5
.1

8
5
.5

8
5
.4

8
5
.3

8
5
.2

8
5
.3

8
5
.1

8
5
.2

8
5
.3

8
5
.4

8
5
.3

8
5
.3

8
5
.5

8
5
.4

8
5
.4

8
5
.6

8
4
.7

1
0

4
0

80
.1

8
4
.1

8
5
.8

8
6
.7

8
7
.0

8
7
.2

8
7
.3

8
7
.4

8
7
.4

8
7
.3

8
7
.4

8
7
.2

8
7
.4

8
7
.5

8
7
.4

8
7
.3

8
7
.3

8
7
.4

8
7
.3

8
7
.3

8
6
.7

1
0

1
0
5

7
8
.7

8
3
.4

8
5
.3

8
6
.2

8
6
.6

8
6
.8

8
6
.8

8
6
.9

8
6
.8

8
6
.9

8
6
.9

8
7
.1

8
6
.9

8
6
.7

8
6
.8

8
7
.0

8
6
.9

8
6
.9

8
7
.0

8
7
.0

8
6
.2

1
0

2
3
0

7
9
.4

8
3
.8

8
5
.8

8
6
.4

8
6
.9

8
6
.9

8
7
.0

8
7
.0

8
7
.1

8
7
.1

8
7
.2

8
7
.2

8
7
.1

8
7
.3

8
7
.2

8
7
.2

8
7
.4

8
7
.4

8
7
.2

8
7
.2

8
6
.5

1
0

4
8
0

7
9
.6

8
3
.8

8
5
.7

8
6
.6

8
6
.9

8
7
.2

8
7
.3

8
7
.4

8
7
.4

8
7
.4

8
7
.5

8
7
.6

8
7
.4

8
7
.4

8
7
.5

8
7
.4

8
7
.5

8
7
.5

8
7
.5

8
7
.4

8
6
.7

2
0

1
0

7
8
.7

8
3
.1

8
4
.7

8
5
.6

8
5
.9

8
6
.2

8
6
.2

8
6
.3

8
6
.3

8
6
.2

8
6
.2

8
6
.4

8
6
.4

8
6
.4

8
6
.3

8
6
.4

8
6
.3

8
6
.3

8
6
.4

8
6
.4

8
5
.6

2
0

4
0

7
9
.2

8
3
.5

8
5
.2

8
6
.0

8
6
.4

8
6
.5

8
6
.5

8
6
.8

8
6
.7

8
6
.5

8
6
.7

8
6
.7

8
6
.8

8
6
.7

8
6
.7

8
6
.6

8
6
.7

8
6
.6

8
6
.8

8
6
.8

8
6
.0

2
0

1
0
5

7
8
.4

8
3
.4

8
5
.2

8
6
.2

8
6
.6

8
6
.7

8
6
.8

8
6
.9

8
7
.0

8
6
.9

8
7
.1

8
7
.1

8
7
.2

8
7
.0

8
6
.9

8
7
.1

8
7
.1

8
7
.1

8
7
.1

8
7
.1

8
6
.3

2
0

2
3
0

7
9
.8

8
4
.1

8
5
.8

8
6
.6

8
7
.0

8
7
.0

8
7
.1

8
7
.2

8
7
.1

8
7
.3

8
7
.3

8
7
.0

8
7
.1

8
7
.1

8
7
.2

8
7
.1

8
7
.0

8
7
.0

8
7
.1

8
7
.0

8
6
.5

2
0

4
8
0

7
9
.8

8
4
.1

8
6
.2

87
.0

87
.5

87
.8

87
.9

88
.0

88
.2

88
.1

88
.3

88
.3

88
.3

88
.1

88
.3

88
.1

88
.0

88
.1

88
.2

88
.2

87
.3

T
a
b
l
e

A
.2

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
m

e
t
h

o
d

1
.1

53

A. Appendix

:

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

5
82

.7
87

.3
89

.2
90

.1
90

.6
90

.9
91

.0
91

.1
91

.1
91

.1
91

.1
91

.1
91

.1
9
1
.0

9
1
.0

9
1
.0

91
.1

9
1
.0

9
1
.0

9
1
.0

90
.3

1
0

8
2
.5

8
7
.1

8
8
.8

8
9
.8

9
0
.4

9
0
.6

9
0
.8

9
1
.0

91
.1

9
1
.0

91
.1

91
.1

91
.1

91
.1

91
.2

91
.2

91
.1

91
.2

91
.2

91
.2

9
0
.2

2
0

8
2
.3

8
6
.6

8
8
.5

8
9
.6

9
0
.2

9
0
.5

9
0
.6

9
0
.7

9
0
.9

9
0
.9

9
0
.8

9
0
.9

9
1
.0

9
1
.0

9
1
.0

9
1
.0

9
1
.0

9
1
.0

9
1
.0

9
0
.9

9
0
.0

T
a
b
l
e

A
.3

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
m

e
t
h

o
d

1
.2

:

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

5
86

.8
91

.7
93

.5
94

.4
94

.9
95

.2
95

.4
95

.5
95

.6
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
95

.7
94

.8
1
0

8
6
.2

9
1
.2

9
3
.1

9
4
.1

9
4
.7

9
5
.0

9
5
.2

9
5
.4

9
5
.5

9
5
.6

9
5
.6

9
5
.6

9
5
.6

95
.7

95
.7

9
5
.6

9
5
.6

9
5
.6

9
5
.6

9
5
.6

9
4
.6

2
0

8
5
.9

9
0
.6

9
2
.5

9
3
.5

9
4
.1

9
4
.4

9
4
.6

9
4
.8

9
4
.8

9
4
.9

9
4
.9

9
4
.9

9
4
.9

9
4
.8

9
4
.7

9
4
.7

9
4
.6

9
4
.5

9
4
.5

9
4
.4

9
3
.9

T
a
b
l
e

A
.4

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
m

e
t
h

o
d

2

:

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

5
86

.1
91

.0
93

.0
94

.0
94

.6
95

.0
95

.3
95

.5
95

.6
95

.7
95

.7
95

.8
95

.8
95

.8
9
5
.8

95
.9

9
5
.8

9
5
.8

9
5
.8

9
5
.8

94
.7

1
0

8
5
.2

9
0
.2

9
2
.2

9
3
.3

9
4
.0

9
4
.4

9
4
.8

9
5
.0

9
5
.2

9
5
.3

9
5
.4

9
5
.5

9
5
.5

9
5
.6

9
5
.6

9
5
.6

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
4
.3

2
0

8
5
.1

8
9
.9

9
1
.9

9
3
.1

9
3
.7

9
4
.2

9
4
.6

9
4
.9

9
5
.1

9
5
.3

9
5
.5

9
5
.6

9
5
.7

95
.8

95
.9

95
.9

96
.0

96
.0

96
.1

96
.1

9
4
.3

T
a
b
l
e

A
.5

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
m

e
t
h

o
d

3
.1

:

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

5
8
2
.1

86
.3

87
.7

88
.2

88
.5

89
.0

89
.1

89
.3

89
.4

89
.3

89
.3

89
.3

89
.3

89
.1

89
.2

89
.1

89
.2

89
.2

89
.1

89
.2

88
.6

1
0

82
.2

8
6
.2

8
7
.0

8
7
.7

8
7
.7

8
7
.8

8
7
.9

8
7
.8

8
8
.1

8
7
.9

8
7
.9

8
8
.1

8
8
.1

8
8
.0

8
8
.1

8
8
.1

8
7
.9

8
7
.9

8
8
.0

8
7
.9

8
7
.5

2
0

8
1
.9

8
5
.7

8
7
.5

8
8
.0

8
8
.4

8
8
.8

8
8
.8

8
8
.7

8
8
.7

8
8
.8

8
8
.8

8
8
.8

8
8
.9

8
8
.8

8
9
.0

8
9
.0

8
8
.9

8
8
.8

8
8
.8

8
8
.9

8
8
.2

T
a
b
l
e

A
.6

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
m

e
t
h

o
d

3
.2

54

A.3. Detailed results

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.1

9
1
.1

9
3
.3

9
4
.3

9
4
.9

9
5
.2

9
5
.5

9
5
.8

9
6
.0

9
6
.0

9
6
.2

9
6
.3

9
6
.4

9
6
.4

9
6
.5

9
6
.5

9
6
.6

9
6
.7

9
6
.7

9
6
.8

9
5
.1

�
n

e
-
t
u

n
i
n

g
8
5
.7

9
1
.5

9
3
.1

9
3
.4

9
3
.6

9
3
.9

9
4
.5

9
5
.0

9
4
.9

9
5
.0

9
5
.0

9
5
.1

9
5
.3

9
5
.1

9
5
.1

9
5
.4

9
5
.5

96
.1

9
5
.8

9
5
.8

9
4
.3

2
,
k

=
5

86
.8

91
.7

93
.5

94
.4

94
.9

95
.2

95
.4

95
.5

95
.6

95
.7

95
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

9
5
.7

94
.8

3
.1

,
k

=
5

8
6
.1

9
1
.0

9
3
.0

9
4
.0

9
4
.6

9
5
.0

9
5
.3

95
.5

95
.6

95
.7

95
.7

95
.8

95
.8

95
.8

9
5
.8

95
.9

9
5
.8

9
5
.8

9
5
.8

9
5
.8

94
.7

3
.1

,
k

=
2
0

8
5
.1

8
9
.9

9
1
.9

9
3
.1

9
3
.7

9
4
.2

9
4
.6

9
4
.9

9
5
.1

9
5
.3

9
5
.5

9
5
.6

9
5
.7

95
.8

95
.9

95
.9

96
.0

9
6
.0

96
.1

96
.1

9
4
.3

T
a
b
l
e

A
.7

.:
R

e
s
u

l
t
s
:

B
e
s
t
-
t
o

-
b

e
s
t

c
o

m
p

a
r
i
s
o

n

A.
3.
2.
Di
st
rib
ut
io
n
ch
an
ge
in
th
e
in
pu
td
at
a

F
o

r
e
a
c
h

m
e
t
h

o
d

i
n

t
h

i
s

s
e
c
t
i
o

n
t
h

e
r
e

a
r
e

t
w

o
t
a
b
l
e
s
.

I
n

t
h

e
�

r
s
t

o
n

e
t
h

e
a
c
c
u

r
a
c
y

i
s

e
v
a
l
u

a
t
e
d

o
n

d
a
t
a

f
r
o

m
t
h

e
s
u

b
c
l
a
s
s
e
s

o
f

t
h

e
c
l
a
s
s
e
s

a
l
r
e
a
d

y
s
e
e
n

a
s

i
n

p
u

t
t
o

t
h

e
m

e
t
a
-
m

o
d

e
l
.

I
n

t
h

e
s
e
c
o

n
d

o
n

e
t
h

e
a
c
c
u

r
a
c
y

i
s

e
v
a
l
u

a
t
e
d

o
n

l
y

o
n

d
a
t
a

f
r
o

m
t
h

e
�

r
s
t

s
u

b
c
l
a
s
s
e
s

o
f

t
h

e

c
l
a
s
s
e
s

a
n

d
t
h

e
r
e
f
o

r
e

i
t

c
a
n

b
e

e
v
a
l
u

a
t
e
d

h
o
w

m
u

c
h

o
f

t
h

e
o

l
d

d
a
t
a

e
a
c
h

m
e
t
h

o
d

f
o

r
g
e
t
s
.

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.3

9
1
.8

9
3
.9

9
4
.7

9
5
.1

7
8
.2

8
5
.9

8
8
.6

8
9
.7

9
0
.2

7
7
.4

8
2
.3

8
4
.5

8
5
.5

8
6
.1

7
7
.0

8
0
.1

8
1
.8

8
2
.7

8
3
.2

8
5
.7

�
n

e
-
t
u

n
i
n

g
8
3
.9

9
0
.0

9
1
.9

9
2
.6

9
3
.0

8
0
.5

8
3
.9

8
4
.7

8
5
.2

8
5
.7

7
4
.6

7
7
.1

7
7
.2

7
7
.7

7
7
.3

7
1
.1

7
2
.3

7
2
.5

7
3
.2

7
4
.2

8
0
.9

�
n

e
-
t
u

n
i
n

g
+

G
L

U
E

+
f
r
e
e
z
e

8
5
.1

9
0
.5

9
2
.0

9
2
.8

9
3
.3

3
7
.1

4
1
.2

4
2
.1

4
2
.2

4
2
.2

3
2
.1

3
1
.0

3
1
.0

3
0
.8

3
0
.9

2
8
.1

2
8
.7

2
9
.4

3
0
.8

3
1
.1

4
8
.1

�
n

e
-
t
u

n
i
n

g
+

G
L

U
E

8
4
.4

9
0
.1

9
2
.3

9
3
.1

9
3
.5

7
8
.8

8
2
.3

8
3
.2

8
4
.1

8
4
.0

7
4
.9

7
7
.2

7
6
.6

7
7
.8

7
7
.6

7
0
.3

7
1
.5

7
2
.1

7
1
.2

7
1
.0

8
0
.3

T
a
b
l
e

A
.8

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
/
F
i
n

e
-
t
u

n
i
n

g
m

e
t
h

o
d

s
(
1
)

55

A. Appendix

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.3

9
1
.8

9
3
.9

9
4
.7

9
5
.1

9
4
.3

9
3
.0

9
1
.9

9
1
.0

9
0
.1

8
9
.3

8
8
.4

8
7
.5

8
6
.7

8
6
.1

8
5
.5

8
4
.9

8
4
.2

8
3
.9

8
3
.5

8
9
.0

�
n

e
-
t
u

n
i
n

g
8
3
.9

9
0
.0

9
1
.9

9
2
.6

9
3
.0

8
9
.7

8
5
.9

8
4
.1

8
3
.4

8
3
.2

8
1
.9

7
9
.5

7
6
.8

7
5
.2

7
4
.0

7
3
.6

7
2
.0

7
1
.1

7
0
.4

7
1
.2

8
1
.2

�
n

e
-
t
u

n
i
n

g
+

G
L

U
E

+
f
r
e
e
z
e

8
5
.1

9
0
.5

9
2
.0

9
2
.8

9
3
.3

2
4
.5

2
4
.1

2
4
.4

2
4
.5

2
4
.5

2
5
.3

2
4
.7

2
5
.1

2
5
.1

2
5
.3

2
4
.7

2
4
.8

2
5
.1

2
5
.9

2
6
.1

4
1
.4

�
n

e
-
t
u

n
i
n

g
+

G
L

U
E

8
4
.4

9
0
.1

9
2
.3

9
3
.1

9
3
.5

8
8
.5

8
5
.1

8
1
.6

8
1
.6

8
0
.8

7
8
.3

7
5
.4

7
4
.1

7
4
.5

7
3
.5

7
2
.6

6
9
.4

6
8
.4

6
6
.5

6
5
.5

7
9
.5

T
a
b
l
e

A
.9

.:
R

e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
/
F
i
n

e
-
t
u

n
i
n

g
m

e
t
h

o
d

s
(
2
)

O
w

n
m

e
t
h

o
d

s
:

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

2
8
6
.0

9
1
.5

9
3
.1

9
4
.2

9
4
.7

73
.2

8
1
.6

8
5
.5

8
6
.7

8
6
.6

7
1
.2

7
5
.1

7
7
.6

7
8
.6

7
8
.6

6
7
.9

6
9
.9

7
1
.1

7
1
.4

7
1
.1

8
0
.3

3
.1

86
.3

91
.7

93
.6

94
.5

95
.1

7
3
.1

82
.3

86
.7

88
.3

88
.4

73
.4

78
.5

81
.6

83
.0

83
.3

72
.2

75
.2

77
.4

78
.7

79
.0

83
.1

3
.2

7
8
.9

8
4
.8

8
6
.5

8
7
.3

8
8
.0

6
9
.2

6
7
.0

6
2
.9

6
0
.6

5
9
.2

5
6
.0

5
4
.3

5
1
.5

4
9
.8

4
8
.6

4
8
.5

4
7
.3

4
5
.3

4
3
.9

4
2
.9

6
1
.6

T
a
b
l
e

A
.1

0
.:

R
e
s
u

l
t
s
:

O
w

n
m

e
t
h

o
d

s
(
1
)

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

2
8
6
.0

9
1
.5

9
3
.1

9
4
.2

9
4
.7

9
3
.7

9
2
.1

8
9
.8

8
7
.0

8
3
.8

8
3
.0

8
1
.5

7
9
.6

7
7
.5

7
5
.1

7
4
.3

7
3
.0

7
1
.3

6
9
.3

6
7
.2

8
2
.9

3
.1

86
.3

91
.7

93
.6

94
.5

95
.1

94
.4

93
.1

91
.2

88
.7

85
.8

85
.1

84
.0

82
.5

80
.6

78
.6

78
.3

77
.7

76
.7

75
.4

73
.9

85
.4

3
.2

7
8
.9

8
4
.8

8
6
.5

8
7
.3

8
8
.0

7
2
.4

5
3
.3

4
1
.0

3
4
.2

3
0
.6

2
9
.3

2
8
.0

2
6
.8

2
6
.0

2
5
.7

2
5
.6

2
5
.9

2
6
.0

2
5
.8

2
5
.8

4
6
.1

T
a
b
l
e

A
.1

1
.:

R
e
s
u

l
t
s
:

O
w

n
m

e
t
h

o
d

s
(
2
)

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.3

9
1
.8

9
3
.9

9
4
.7

9
5
.1

7
8
.2

8
5
.9

8
8
.6

8
9
.7

9
0
.2

7
7
.4

8
2
.3

8
4
.5

8
5
.5

8
6
.1

7
7
.0

8
0
.1

8
1
.8

8
2
.7

8
3
.2

8
5
.7

�
n

e
-
t
u

n
i
n

g
8
3
.9

9
0
.0

9
1
.9

9
2
.6

9
3
.0

80
.5

83
.9

8
4
.7

8
5
.2

8
5
.7

74
.6

7
7
.1

7
7
.2

7
7
.7

7
7
.3

7
1
.1

7
2
.3

7
2
.5

7
3
.2

7
4
.2

8
0
.9

3
.1

86
.3

91
.7

93
.6

94
.5

95
.1

7
3
.1

8
2
.3

86
.7

88
.3

88
.4

7
3
.4

78
.5

81
.6

83
.0

83
.3

72
.2

75
.2

77
.4

78
.7

79
.0

83
.1

T
a
b
l
e

A
.1

2
.:

R
e
s
u

l
t
s
:

B
e
s
t
-
t
o

-
b

e
s
t

c
o

m
p

a
r
i
s
o

n
(
1
)

56

A.3. Detailed results

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
5
.3

9
1
.8

9
3
.9

9
4
.7

9
5
.1

9
4
.3

9
3
.0

9
1
.9

9
1
.0

9
0
.1

8
9
.3

8
8
.4

8
7
.5

8
6
.7

8
6
.1

8
5
.5

8
4
.9

8
4
.2

8
3
.9

8
3
.5

8
9
.0

�
n

e
-
t
u

n
i
n

g
8
3
.9

9
0
.0

9
1
.9

9
2
.6

9
3
.0

8
9
.7

8
5
.9

8
4
.1

8
3
.4

8
3
.2

8
1
.9

7
9
.5

7
6
.8

7
5
.2

7
4
.0

7
3
.6

7
2
.0

7
1
.1

7
0
.4

7
1
.2

8
1
.2

3
.1

86
.3

91
.7

93
.6

94
.5

95
.1

94
.4

93
.1

91
.2

88
.7

85
.8

85
.1

84
.0

82
.5

80
.6

78
.6

78
.3

77
.7

76
.7

75
.4

73
.9

85
.4

T
a
b
l
e

A
.1

3
.:

R
e
s
u

l
t
s
:

B
e
s
t
-
t
o

-
b

e
s
t

c
o

m
p

a
r
i
s
o

n
(
2
)

Il
lu
st
ra
ti
ve

ex
am

pl
e:

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
9
.6

9
2
.0

9
3
.3

9
3
.5

9
4
.0

93
.0

93
.9

95
.2

9
5
.7

9
5
.3

9
5
.0

9
5
.2

95
.2

95
.3

95
.4

95
.8

95
.9

95
.7

9
5
.7

9
5
.6

9
4
.5

�
n

e
-
t
u

n
i
n

g
8
9
.7

9
1
.8

9
2
.2

9
3
.1

9
0
.1

9
2
.3

9
2
.8

9
4
.5

9
1
.7

9
3
.8

9
2
.5

9
3
.9

9
3
.4

9
4
.4

9
3
.6

9
4
.6

9
5
.2

9
3
.6

9
4
.2

9
3
.9

9
3
.1

3
.1

91
.9

92
.9

93
.9

94
.4

95
.2

9
0
.7

9
2
.8

9
4
.4

96
.1

96
.3

95
.6

95
.3

9
5
.0

95
.3

95
.4

9
5
.6

9
5
.6

95
.7

96
.1

95
.9

94
.7

T
a
b
l
e

A
.1

4
.:

R
e
s
u

l
t
s
:

B
e
s
t
-
t
o

-
b

e
s
t

c
o

m
p

a
r
i
s
o

n
(
3
)

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
9
.6

9
2
.0

9
3
.3

9
3
.5

9
4
.0

9
5
.4

95
.5

9
5
.4

95
.4

9
4
.6

95
.5

95
.6

95
.0

9
4
.4

9
4
.6

9
4
.4

9
4
.5

9
3
.9

9
3
.9

9
3
.8

9
4
.2

�
n

e
-
t
u

n
i
n

g
8
9
.7

9
1
.8

9
2
.2

9
3
.1

9
0
.1

9
3
.7

9
3
.9

9
4
.5

9
1
.3

9
3
.3

9
3
.7

9
4
.5

9
3
.8

9
4
.1

9
3
.6

9
3
.9

9
4
.4

9
2
.3

9
3
.0

9
2
.6

9
3
.0

3
.1

91
.9

92
.9

93
.9

94
.4

95
.2

95
.5

9
5
.4

95
.6

9
5
.3

95
.5

9
5
.3

9
5
.0

9
4
.8

94
.6

94
.7

95
.1

94
.9

94
.9

94
.7

94
.6

94
.7

T
a
b
l
e

A
.1

5
.:

R
e
s
u

l
t
s
:

B
e
s
t
-
t
o

-
b

e
s
t

c
o

m
p

a
r
i
s
o

n
(
4
)

A.
3.
3.
M
or
e
co
m
pl
ex
ba
se
-m
od
el
s

T
w

o
-
l
a
y

e
r

b
a
s
e
-
m

o
d

e
l

(
n

o
c
h

a
n

g
e

i
n

i
n

p
u

t
d

i
s
t
r
i
b
u

t
i
o

n
)
:

57

A. Appendix

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

t
r
a
i
n

i
n

g
8
4
.3

9
1
.6

9
3
.7

9
4
.7

9
5
.2

9
5
.7

9
5
.9

9
6
.1

9
6
.3

9
6
.4

9
6
.5

9
6
.6

9
6
.7

9
6
.8

9
6
.8

9
6
.9

9
6
.9

9
7
.0

9
7
.0

9
7
.0

9
5
.4

�
n

e
-
t
u

n
i
n

g
8
4
.8

9
1
.0

9
2
.3

9
3
.1

9
3
.6

9
3
.7

9
4
.3

9
4
.2

9
4
.1

9
4
.5

9
4
.9

9
5
.1

9
5
.0

9
5
.3

9
4
.9

9
5
.3

9
5
.4

9
5
.4

9
4
.8

9
5
.2

9
3
.8

T
a
b
l
e

A
.1

6
.:

R
e
s
u

l
t
s
:

T
r
a
i
n

i
n

g
/
F
i
n

e
-
t
u

n
i
n

g
m

e
t
h

o
d

s
f
o

r
t
h

e
t
w

o
-
l
a
y

e
r

b
a
s
e
-
m

o
d

e
l

v
e
r
s
i
o

n

8
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

m
e
a
n

1
.1

,
(
k

=
5
,d

a
t
a
=

4
9
5
)

4
7
.3

4
9
.6

5
0
.9

5
1
.8

5
2
.1

5
2
.2

5
2
.3

5
2
.3

5
2
.2

5
2
.3

5
2
.2

5
2
.2

5
2
.3

5
2
.2

5
2
.2

5
2
.3

5
2
.2

5
2
.2

5
2
.1

5
2
.1

5
1
.8

1
.2

,
k

=
5

7
8
.6

8
3
.3

8
5
.4

8
6
.4

8
6
.8

8
7
.1

8
7
.0

8
7
.1

8
7
.1

8
7
.2

8
7
.0

8
6
.9

8
6
.8

8
6
.9

8
6
.7

8
6
.7

8
6
.7

8
6
.6

8
6
.7

8
6
.7

8
6
.2

3
.2

,
k

=
5

7
5
.9

7
5
.2

7
5
.6

7
5
.6

7
5
.7

7
5
.8

7
5
.9

7
5
.7

7
5
.2

7
5
.1

7
5
.2

7
5
.6

7
6
.0

7
5
.8

7
5
.9

7
5
.8

7
5
.4

7
4
.9

7
5
.6

7
5
.4

7
5
.6

T
a
b
l
e

A
.1

7
.:

R
e
s
u

l
t
s
:

O
w

n
m

e
t
h

o
d

s
f
o

r
t
h

e
t
w

o
-
l
a
y

e
r

b
a
s
e
-
m

o
d

e
l

N
o

t
e

t
h

a
t

f
o

r
t
h

e
t
r
a
i
n

i
n

g
m

e
t
h

o
d

s
2

a
n

d
3
.1

t
h

e
m

e
a
n

s
q

u
a
r
e
d

e
r
r
o

r
o

f
b

o
t
h

w
e
i
g

h
t

m
a
t
r
i
c
e
s

i
s

w
e
i
g

h
t
e
d

s
u

c
h

t
h

a
t

t
h

e
e
r
r
o

r
i
s

a
p

p
r
o
x
i
m

a
t
e
l
y

e
q

u
a
l
.

T
h

e
s
e

m
e
t
h

o
d

s
d

i
d

n
o

t
l
e
a
r
n

a
n

y
t
h

i
n

g
u

s
e
f
u

l
,
i
.e

.
t
h

e
a
c
c
u

r
a
c
y

w
a
s

a
r
o

u
n

d
1 =
.

58

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goals
	Outline

	Theory
	Neural networks
	Perceptron
	Activation functions
	Multi-layer perceptron
	Loss functions
	Backpropagation algorithm
	Weight initialization
	Generalization
	Deeper networks

	Image classification
	Convolution layers and pooling layers
	Residual connections and batch normalization

	Recurrent neural networks
	Elman RNN
	Long short-term memory

	Encoder-decoder models
	RNN Encoder-decoder model
	Attention-based encoder-decoder model
	Transformer model

	Related work
	Incremental learning
	Incremental class learning

	Meta-learning
	Examples for meta-learning algorithms

	Methods: Sample-incremental meta-learning
	Classification model
	Meta-model
	Mapping-model
	Inference
	Training
	Dataset

	Results
	Evaluation of training and fine-tuning
	Comparison between training methods
	Distribution change in the input data
	Illustrative example

	More complex base-models

	Conclusion
	Review
	Future work

	Bibliography
	Appendix
	Hyperparameters
	Training/Fine-tuning meta-models
	Detailed results
	Comparison between training methods
	Distribution change in the input data
	More complex base-models

