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Abstract

We propose a new incremental learning scheme which is based on a meta-learning ap-
proach. The knowledge of the system is stored in the weights of a base-model and a
mapping-model is learned to adjust these weights when new data is available to improve
the performance of the system. Different methods of training the system are compared and
analyzed. During inference the system requires only little data. For a linear base-model
this approach outperforms fine-tuning and it also works for more complex base-models.






Zusammenfassung

Wir stellen ein neues inkrementelles Lernschema vor, das auf einem Meta-Learning-Ansatz
basiert. Das Wissen iiber das System wird in den Gewichten eines Basis-Modells gespeichert
und ein Mapping-Modell wird gelernt, um diese Gewichte anzupassen, wenn neue Daten
verfiigbar sind, um die Leistung des Systems zu verbessern. Verschiedene Methoden zum
Training des Systems werden verglichen und analysiert. Wahrend der Inferenz benotigt
das System nur wenige Daten. Bei einem linearen Basis-Modell iibertrifft dieser Ansatz
Fine-tuning, und er funktioniert auch bei komplexeren Basis-Modellen.
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1. Introduction

1.1. Motivation

In the last several decades computers have become more and more powerful due to the
increase in transistor density. This is called Moore’s law — rather an observation than a
physical law. Furthermore, concepts and faster algorithms have been developed increasing
the tasks a computer can solve. Such a concept are neural networks. Although first
approaches go back to the 1940s, in the last decade they have proven to be powerful when
combined with large datasets and a huge amount of compute.

However, in some aspects neural networks are not yet on a human level of performance.
Two of these aspects are self-assessment and self-description. Humans are able to evaluate
their performance and know if they do not know an answer to a given question are able to
articulate this. Socrates put this in the phrase “I know that i know nothing”. Furthermore,
humans are able to efficiently learn in an incremental manner with little data given, and
to selectively forget things, e.g. if one is told and explained that some knowledge one
possesses is wrong.

This thesis focuses on incremental learning aspect with little given data.

1.2. Goals

The goal of this thesis is to develop a system for image classification. This system should
be able to learn from little data during inference, e.g. at a certain timestep one image per
class could be given and the system should use this data to improve the performance of
the system. In other words, the system should be able to incorporate new knowledge in
an incremental manner. To implement such a system, neural networks are used, as they
provide state-of-the-art performance for image classification. Furthermore the incremental
learning should be achieved by some mechanism which does not just save all seen data
and retrain a neural network with that data.
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1.3. Outline

In the next chapter, the theory used in this work is explained, i.e. concepts of neural
networks and encoder-decoder models. In chapter three, the work related to this thesis
is described, i.e. incremental learning. Furthermore, an introduction to meta-learning is
given. Chapter four specifies the sample-incremental meta-learning method of this work.
This includes the training and the inference of the system. In Chapter five the results of
the experiments are shown. Chapter six contains a review of the work and an outlook to
future work. In the appendix all results are given in detail.



2. Theory

In this chapter the methods used in this work are explained. This includes the development
of artificial neural networks, the application of neural networks to image classification
and sequence-to-sequence models.

2.1. Neural networks

Neural networks, or more precise artificial neural networks, are inspired by biology. The
intention was to model the neurons and synapses of the brain with the goal to reproduce the
functionality. The question was how the brain retrieves, processes and stores information.
Furthermore the model should be able to learn and adapt to new situations.

The first approaches describing this were published in the 1940s. McCulloch and Pitts
proposed a mathematical model of the human brain [MP43]. In their model the inputs and
the output of nerves are binary, resulting in binary logic.

2.1.1. Perceptron

In 1958, Rosenblatt introduced the so called perceptron [Ros58]. For an input x € R”,
ne N, weR" b eRanda function ¢ : R — R the perceptron (see figure 2.1) computes
the output y € R given by

y = p(wlix+D).

LS
b

Figure 2.1.: Perceptron



2. Theory

In this context n is the number of inputs to the perceptron, the elements of w are called
weights, b bias and ¢ activation function.

For a more compact notation, the bias b can be omitted by increasing the length of w and x
by one and setting x; := 1. Furthermore when using multiple perceptrons, say m € N, one
can describe this by a weight matrix W € R™ ("1 The outputs y € R™ of the perceptrons
are then computed by

y = ¢(Wx), (2.1)
where the activation function is applied pointwise. The transformation in equation (2.1) is
called layer. In sections 2.2 and 2.4.3 more advanced layers are introduced.

2.1.2. Activation functions

Common activation functions are

(x) 0, for x < 0, Heaviside step functi
x) = eaviside step function,
e 1, for x > 0, P
1
@2(x) = T x € R, Sigmoid function,
0, for x < 0,
@3(x) = Rectified linear unit (ReLU).
x, for x > 0,

2.0
—— | =1: Heaviside step function

1.5 i = 2: Sigmoid function
—— = 3: Rectified linear unit

1.0

Qi(Xx)

0.5

0925 -2.0 -15 -1.0 -05 0.0 05 1.0 15 2.0 2.5

X

Figure 2.2.: Activation functions

By using the Heaviside step function the perceptron only activates, i.e. it does not output
zero, if the (weighted) input is above some threshold. The ReLU function is similar, but if
the perceptron is activated the output also depends on the (weighted) input. The sigmoid
function maps the input smoothly between zero and one. A further comparison between
these activation functions is discussed later.
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2.1.3. Multi-layer perceptron

The perceptron can be used to separate data points. This is done by applying it and
distinguish between values larger or equal and less than zero. A problem that emerges
by using a perceptron with Heaviside step activation function (or any other monotonic
activation function) is that it is only capable of separating linearly separable data, i.e. if
there exists a hyperplane where one part of the data lies on one side and the other one
on the other side. For instance the XOR-data (table 2.1) can not be separated by such a
perceptron.

==l
_ O Rk ol

Dy
0
1
1
0

Table 2.1.: XOR data

To overcome this issue, a so-called feedforward neural network can be used, also called
multi-layer perceptron (MLP). The output of perceptrons is used as input for other percep-
trons. This results in deeper networks, i.e. networks with more than one layer. For instance
the model defined by equation (2.1) has one layer and the model defined by equation (2.3)
has two layers.

2.1.4. Loss functions

The function represented by a MLP depends on the weights of the MLP. These weights
can be adjusted such that the perceptron approximates a given function or given data.
Dependent on the task which should be learned, a so-called loss function is chosen, which
is minimized during training. The process of adjusting the weights by minimizing the loss
function is called training. The loss function is chosen dependent on the task. For given
inputs xi,...,xx € R", n,k € N, corresponding labels y;, ...,y € R™, m € N and MLP f
(with output in R™) the most common loss functions are:

m k
1
Lregressiony (X) = Z - Z( f(x;) - yi)]z Mean squared error (regression task),
j=1 " =1
k m
Lelassification,y (X) = — Z Z(yi) jlog(f(xi);) Cross entropy (classification task),

1l
—
~
1l
—

(2.2)
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For m = 1 and y; = ¢, i.e. if the labels are unit vectors, these expression simplify to

bl B

lregression,y (x) =

k
26 =),
l;l

lclassiﬁcation,y (x) = - Z log(f(xi)l,-)-
i=1

In the case of the classification task y; is a probability distribution over the m classes,
i € {1,...,k}, (for instance the unit vector corresponding to the class label) and f has a
softmax activation function at the final layer, i.e.

eyi

Psoftmax (y)i =y

-, yeR™ie{1,...,m},
j=leyj

as a final activation function, thus the cross entropy loss is well defined.

2.1.5. Backpropagation algorithm

To train MLPs efficiently, the backpropagation algorithm [RHW86] was proposed. If a MLP
is composed of differentiable functions, i.e. it uses only differentiable activation functions,
the backpropagation algorithm can be used to calculate the derivative of the loss function
w.r.t. each weight. Instead of calculating the derivatives numerically which would suffer
from numerical instability and a high computational complexity, the backpropagation
algorithm computes the derivatives analytically by iteratively applying the chain rule.

Let us illustrate this algorithm for a two-layer perceptron f and loss function !

f(X') = Z3 = q)l(qu)g(ng + bz) + bl), (23)
I(x) = (f(x) —y)* = (z3—y)%,
forx e R, ne N,W; € R m e N, W, € R™" b, € R, b, € R™, y € R and activation

functions ¢1, ¢ : R — R for a regression task. Defining zy := Wox + by, z1 = ¢2(20),
zy = Wiz; + by, we get by the chain rule for instance

ol

— =2 —1),
923 (23— 1)
ol ol 0z3

a
= — = — Z7),
822 323 822 323 901( 2)

ol alozm ral

021 9z0z, ' ozy’

al al 0z, al ,
=t = gyla0).
dzy 0z10z¢p 0z

al ol 9z ol

=>—= = =oWl(z. — 1) - @ 0 T
a% azo aWZ azox 1 (23 y) ¢1(22) 402(20))(
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where - denotes the pointwise multiplication. In the same way the derivatives w.r.t. the
other weights can be computed.

We obtain, that the Heaviside step function does not fulfill the requirement of being
differentiable and is therefore not used in combination with backpropagation. Although
the ReLU activation function is not differentiable at x = 0, it is used together with the
backpropagation algorithm. The derivative at x = 0 is set to zero.

With the calculated derivative of the loss function w.r.t. each weight we are able to
minimize the loss function in an iterative way starting with random initial weights wy:

Wp1 = wp — nVI(wy), neN,

where > 0 is called learning rate, w, are the weights of the MLP after training n steps,
n € N, and [ the loss function. This procedure is called gradient descent. Furthermore,
more advanced methods have been developed to increase the speed of the iteration process,
e.g. stochastic gradient descent, where the gradient is approximated over a small random
part of the training data, and Adam [KB14].

2.1.6. Weight initialization

As stated in the last section the initial weights are drawn randomly from some distribution.
The scaling of these weights is explained in this section.

Let x = (x;); € R", n € N, be an input for a layer with matrix W = (w;;);; € R™", m e N.
Furthermore let x;, w; ; be independent with mean zero, all x; have variance one and the
variance of all w; ; be o. Then one can calculate that the expectation value of (Wx); is
zero and

V((Wx);) = Z V(w;j) = no’.
=1

J

To prevent exploding or vanishing outputs after the application of W one wants (Wx); to
have variance one. The equation

1
ol ==, (2.4)
n

follows. When backpropagating through the matrix multiplication with W one multiplies
with WT. Therefore one wants a similar equation to hold:
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These constraints are possible only if n = m. A compromise is 6 = —2- which leads to the
following weight initialization:

V6B
Vn+m \Vn+m|’

wij~U Glorot initialization [GB10].

When using ReLU activation functions it can be better to use o? = % or g2 = % This

initialization scheme is called He initialization [He+15].

2.1.7. Generalization

When we deploy a model, we want it to generalize well, i.e. have a good performance on
unseen data. To achieve this and prevent the model from just memorizing the data (called
overfitting), the available data is split into (at least) two sets: A training set whose data is
used to adapt the weights of the model and a validation set whose data is used to measure
the performance on data which is not used to learn the weights. The goal is to minimize
the validation loss.

Another method to prevent a model from overfitting is regularization. There are numerous
variants of regularization. A frequently used one is Dropout [Sri+14]. During training
time each neuron is randomly set to zero with probability p € (0,1), while during test
time the weights are multiplied by p. The idea behind setting some neurons randomly
to zero is that the model can not focus on specific neurons to calculate the output and
therefore should generalize better.

Another important topic is the available data. The more data is used for training the better
the data distribution is approximated resulting in less overfitting. Therefore the model is
able to perform better and/or a model with more parameters can be trained. Since the data
is limited, the goal is to find an architecture which does not have too many parameters
but is able to approximate the given data.

2.1.8. Deeper networks

In the last years neural networks with more and more layers were used. This seems
counterintuitive since it is well known that a MLP with only one hidden layer, i.e. a MLP
with two layers, can approximate any continuous function on a compact set arbitrarily
well. However, [Tel16] suggests that deeper models (w.r.t. the number of layers) can be
better than having more neurons in each layer. Their statement is that for each k € N
“there exist neural networks with ®@(k?®) layers, ©(1) nodes per layer, and ®(1) distinct
parameters which can not be approximated by networks with O (k) layers unless they are
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exponentially large — they must possess Q(25) nodes”[Tel16]. Therefore it can be better
to make models deeper instead of increasing the number of nodes per layer.

2.2. Image classification

An image can be represented as I € R™m3 nm e N, where I; j is the RGB-value of the
pixel (i, j),i € {1,...,n}, j € {1,...,m}. In image classification the task is to classify a
given image into a given (finite) set of classes.

The performance of an image classification model is measured by accuracy, i.e. the
percentage of correctly classified images. For the top-n accuracy an image is considered
correctly classified if the class label of the image is within the n most likely classes of the
probability distribution output of the model. The error rate is defined by one minus the
accuracy.

2.2.1. Convolution layers and pooling layers

Major progress in image classification was made in the last decade. In 2012 [KSH12]
published a new architecture. They used a deep network of convolution and pooling
layers and the ReLU activation function. Using these advanced architectures results in a
reduction of learnable parameters compared to a perceptron and the model can be trained
faster.

Convolution layers are the two-dimensional pendent to time-delay neural networks
(TDNNs) [Wai+89] which operate on one-dimensional inputs. Both methods are based
on the same idea to deduce shift-invariant features through local filters exploiting the
structure of the input. For an input image I € R™™, n,m € N, and a kernel ker € R¥k of
weights, k € N odd, the output of the convolution layer (without padding) is defined by

k
(I = ker)(x,y) = Z I(x+k—iy+k—jker(ij),
=1 j=1

i=1 j

xe{l,...,n—-k+1}L,ye{l,....m—-k+1}.

This formula can be generalized for instance for inputs with more channels, i.e. for inputs
I € R ¢ e N, for padding p € N, i.e. the input of the layer is padded at all borders
with p columns/rows of values, e.g. zeros, to obtain an input I € R(1+2p)X(m+2p) " and for
more than one filter, i.e. ker € R&>k*k g e N,

Pooling layers are used to reduce the spacial dimension. Due to the structure of images
and the usage of local filters adjacent outputs of the convolution layer may be similar.
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For n X n-Pooling, n € N, n > 2, the image is split into n X n blocks and a function
f: R™" — R is applied to every block resulting in a smaller spacial dimension. Frequently
used functions f are taking the maximum or average of the input.

[KSH12] also chose to use the ReLU activation function instead of the sigmoid activation
function because the ReLU function has better gradient properties. In the backpropagation
algorithm the derivative of the activation function is used. The derivative of the sigmoid
function is

05(x) = 2(x)(1 — @2(x)),  x€R.

We can conclude from this equation, that if |x| is large, then ¢ (x) is near zero resulting in
small gradients (saturation) and the model does not learn. In praxis “networks with ReLUs
consistently learn several times faster’[KSH12].

2.2.2. Residual connections and batch normalization

In 2015 [He+16] improved the results again by introducing residual connections to the
convolution layers and using batch normalization [IS15]. These concepts work as follows:

Let g be a convolution layer with same input and output shape and x an input to the
convolution layer. The output using a residual connection is then x + g(x). This has
the advantage that the layer g only has to learn higher order features pertubating the
input slightly. This helps for deeper network architectures. Another way to look at this
construction is that it helps to maintain the gradient flow during backpropagation since
that gradient is transmitted undisturbed by the identity part of the residual connection.

In a batch normalization layer the output of another layer is normalized component-wise
to mean zero and variance one. Using batch normalization layers can results in a model
which can be trained faster compared to a model not using batch normalization layers.

Both [KSH12] and [He+16] trained their models on ImageNet [Den+09] achieving top-5
error rate 17.0% and 3.57%, respectively. The task was to classify an image into one of 1000
classes. For comparison the top-5 error rate of humans is around 5.1% [Rus+15].

If the amount of data given for image classification is small, it may be advantageous to use

a model pre-trained on ImageNet and retrain the weights of the last few layers/last layer
on the given data while fixing the rest of the weights.

10



2.3. Recurrent neural networks

2.3. Recurrent neural networks

Feedforward models are not well suited for sequence inputs like sentences or audio. To
overcome this issue, recurrent neural networks (RNNs) have been invented. If a RNN is
applied to an input, it produces a hidden state and an output. The hidden state is used
when the RNN is applied to the next input. This can be seen as a circular connection
between nodes and allows for an internal memory of the network.

2.3.1. Elman RNN

In 1990 Elman proposed a RNN. Nowadays it is called Elman RNN [Elm90]. At each
timestep ¢t € N it takes a vector x; € R", n € N, and produces a hidden state h; € R™,
m € N, and an output y; € Rk k € N, provided an initial hidden state hy € R™, defined by

ht = @n(Whx; + Uphy—1 + bp),
Yr == (Py(wyht + by):

where W), € R™", U, € R™™, b, ¢ R™, W, € Rkxm, b, € R¥ are weights and ¢, and ¢,
are activation functions.

Y1 V2

A A
Y 3
bh ¥ bh

w, v W,
Un, U

743 Wy,
xl x2

Figure 2.3.: Unfolded Elman RNN: Labeled arrows indicate a multiplication with
the label, boxes denote an operation applied to the inputs.

Similar to the backpropagation algorithm a method called Backpropagation through time
[Wer+90] was invented to learn the weights of a RNN. The RNN is unfolded through time
as shown in figure 2.3 and the backpropagation algorithm is applied.

The Elman RNN faces the problem of exploding and vanishing gradients. This occurs

during backpropagation due to the fact that the error is backpropagated multiple times
through the matrix multiplication with Uy, e.g. backpropagating from y; to x; to calculate

11
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the derivative w.r.t. W}, this derivative contains ¢ — 1 factors UhT . This repeated application
of the same matrix leads to either exploding or vanishing gradients. Exploding gradients
can be dealt with by clipping the gradients if it is to large, for the problem of vanishing
gradients an architectural improvement has been made.

2.3.2. Long short-term memory

To deal better with vanishing gradients, the Long short-term memory (LSTM) [HS97], a
RNN, was proposed. Instead of the one hidden variable of the Elman RNN, the LSTM has
two hidden variables. The LSTM takes at each timestep ¢ € N an input x; € R*, n € N and
calculates two hidden states h; € R™ and ¢; € R™, m € N, and an output y; € R¥ k e N,
provided the initial hidden states hy € R™ and ¢y € R™, defined by

f ®2

i = 2 |w it ),
0 Q2 Xt

g tanh

Ct ::f-ct_1+i-g,
h; == o - tanh(c;),
yr = @y (Wyhe +by),

where W € R (m+n) yy7 e RFX™ and b, € R¥ are weights and ¢, is an activation function.

a N
Ct-1 =?_>+_>Ct—_>
f \
W— ;}Q tanh
|
hH—\—» st?ck O —» htj_>

Figure 2.4.: LSTM architecture, ©® denotes the
pointwise multiplication [LJY17].

Compared to the Elman RNN the LSTM has a better gradient flow since in each timestep
when backpropagating from c; to ¢;_; one has a pointwise multiplication (with not neces-
sarily equal vectors per timestep) instead of a matrix multiplication with always the same
matrix. Thus the gradient w.r.t. ¢; has better properties w.r.t. vanishing gradients. This
carries over to the gradient w.r.t. W. Therefore by using LSTMs the model is able to use
the context of longer sequences.

12
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2.4. Encoder-decoder models

In this section encoder-decoder models are described. An encoder-decoder model is a
special sequence-to-sequence model, i.e. a model that maps an input sequence of arbitrary
length to an output sequence of arbitrary length. Sequence-to-sequence models can be
used for instance in machine translation and speech recognition.

2.4.1. RNN Encoder-decoder model

[Cho+14] and [SVL14] published the RNN encoder-decoder model. The model is based on
a RNN used as encoder and a RNN used as decoder and trained on a machine translation
task. Due to the reasons discussed above LSTMs are used over Elman RNNs.

The model uses a source vocabulary and a target vocabulary. A vocabulary is a finite sets
of tokens (identified with {1,...,k}, k € N). The model is trained with data consisting
of an input sequence of tokens in the source vocabulary (xy,...,%r), T € N, and a target
sequence of tokens in the target vocabulary (21, ...,27.—-1), T” € N. The target sequence is
padded with a start of sequence token z, and an end of sequence token Z7+ to (2o, ..., 27/).
These sequences are transformed into sequences of vectors (xy,...,x7), X € R", n € N,
te€{1,...,T}, and (zq,...,277), 2 € R".n eN,te {0,...,T’}, via an embedding layer
(one vector of weights is assigned to each token in the vocabularies).

The model (see figure 2.5) then processes the input sequence (xj, ..., xr) and encodes it
with a RNN f (given hy € R™)

ht = f(xt, ht—l)a t e {1, ey T},

into fixed-length vector sy := hr. Another RNN g takes s as the initial hidden state and
the target sequence (z, z1, . . ., z77) and decodes it (except z7+) into a sequence (yi, ..., yr),
Yy € R™ t € {1,...,T'}, where m € N is the size of the target vocabulary. Both RNNs can
be jointly trained to minimize

T’
Z lclassiﬁcation,egt (yt); (2'5)
=1

where the output layer of the RNN g uses a softmax activation function, liassification,- 1S
defined in equation (2.2), and ¢;, [ € N, denotes the [-th unit vector. Equation (2.5) can
be interpreted that at each timestep the model is trained to predict the next token of the
sequence provided the sequence until the current position.

During test time the input sequence is used to calculate hy. Next, hr and the start of

sequence token zj is given to the RNN g, the output y; is calculated, from the distribution
y; is sampled and the embedding of the sampled token is fed back to the RNN to calculate

13
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y. This is iterated until the end of sequence token is sampled. The sampled tokens form
the output sequence. There are also more sophisticated decoding schemes, e.g. beam
search.

2.4.2. Attention-based encoder-decoder model

One problem resulting from the construction in section 2.4.1 is that each input sequence is
encoded into a fixed-length vector regardless of its length. This results in an information-
flow bottleneck. [BCB14] proposed as solution an attention mechanism (see figure 2.5).
The core idea is that h; contains information about the sequence (x, ..., x;), but should
focus on the part of the sequence near x;. Based on the vector s;_; the model is able to
attend to these h;’s allowing the model to search for parts of the source sequence that
seem relevant in the current step. Mathematically this is done by

e = ol tanh(Ws;_; + Uhj)’
exp(e; ;
Qij = Tp# ief{t,....,T'}, je{L....,T}
Zk:l exp(ei,k)

T
C; = Z al-,jhj,
J=1

where v € R", n, € N, is a weight vector and W,U € R"*" are weight matrices. For
fixed i the e; ;'s form an alignment model between s;_; and the h;’s. The RNN g of the
attention-based encoder-decoder model has as input in addition to s;_; also c;.

Sum

h—»

—pi

x1 xz XT ZO Z1 ZT'—l

Figure 2.5.: Attention-based RNN encoder-decoder model

2.4.3. Transformer model

In 2017 [Vas+17] published the transformer model, an encoder-decoder model. The idea
of using an attention mechanism is pursued resulting in an attention layer. Similar to the
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2.4. Encoder-decoder models

RNN encoder-decoder model the transformer model consists of an encoder and a decoder
(see figure 2.7), but it uses these attention layers instead of RNNs.

The attention layer has two matrices as input. One representing the memory M € RT*%,
dy € N, T € N, to which the layer attends and one the context C € RT'xdz d e N, T e N.
The first step of the attention layer is to apply linear transformations to C to obtain a
matrix denoted by QO € RT*% (Query), d; € N, and to M to obtain matrices denoted by
K € R™% and V € RT*% (Key and Value), d, € N. The output of the attention layer is

then given by
T

K
Attention(Q, K, V) := softmaX(Q )V,

Vg
where the softmax is taken w.r.t. the rows of the matrix. The factor % is a scaling factor.
k
The intuition behind this construction is that first the input gets transformed into Query

and Key, projecting the features in a space where the dot product is a good similarity
measure, and then mix similar information from context and memory.

X
A5 3% ¢A

softmax (and scaling)

v V2 vz ki ky k3o

\ /‘hCIz‘Is
ot

m; my ¢ G C3

Figure 2.6.: Attention layer for memory and context sequences of
length three. Index i denotes the i-th row of the corresponding matrix.

This described attention layer is permutation invariant, i.e. the layer is not able to distin-
guish the order of the input sequence. For instance, if in figure 2.6 the vectors m; and ms
are interchanged the output would be the same. Of course the order of the input sequence
may be relevant, therefore a positional encoding is added to the input sequence.

The encoder consists of multiple encoder layers. Each encoder layer consists of a self-
attention layer, i.e. an attention layer where as memory and context matrices the output of
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2. Theory

the previous encoder layer (or the input sequence for the first encoder layer) is used, and
a pointwise feedforward network. Both layers are employed with residual connections
and a layer normalization [BKH16].

The decoder mimics a language model and consists of multiple decoder layers. Each
decoder layer consists of a masked self-attention layer, an encoder-decoder attention layer,
and a pointwise feedforward network. The masked self-attention layer has as memory
and context matrices the output of the previous decoder layer (or the target sequence
for the first decoder layer). The encoder-decoder attention layer has the output of the
encoder as memory and the output of the masked self-attention layer as context. Similar
to the encoder residual connections and layer normalization are used. By masking out
subsequent positions in the masked self-attention layer it is ensured that the model is
autoregressive, i.e. one output of the decoder only depends on the encoder output and
target sequence up to the current position, and during inference the target sequence can
be decoded iteratively similarly to the RNN encoder-decoder model.

Output
Probabilities

Linear

Add & Norm

Feed
Forward

4 1 | Add & Norm Iﬁ
Add &Nom Mult-Head

Feed Attention

Forward Nx
_— =
Add & Norm _Je=

N\

Nx
¢—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L 4
— J L ——' )
Positional D Positional
Encodin & i
g Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.7.: Transformer architecture [Vas+17].

Instead of one attention layer it can be beneficial to use multiple attention layers (with
smaller dimensions) on the same input, stack the outputs and apply a linear transformation
to the stacked outputs. This is called multi-head attention and allows the model to attend
to multiple parts of the input sequence.
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3. Related work

In the last decade major progress has been made with neural networks, surpassing human
performance in many tasks, e.g. image classification [He+16] and object detection [Rus+15]
and games like go [Sil+17b], chess and shogi [Sil+17a], where reinforcement learning is
applied. However, the applied methods have the drawback that a lot of data is needed, the
model gets trained, then deployed and is fixed. For the reinforcement learning methods
the whole environment can be simulated and all possible actions are known a priori.

On the other hand, humans face different tasks each day and are able to adapt rapidly
with only little data given. For neural networks this is still a very challenging problem.
Retraining a neural network on a new task results in catastrophic forgetting [Fre99] of the
old task. Therefore more advanced techniques have been developed.

3.1. Incremental learning

This section will give an introduction to incremental-learning methods for image classifi-
cation. The problem can be described as follows (similar to [De +19]):

At each timestep t € N training data X; and labels Y; are given (sampled from sets X}, V;,
ie. (X;,Y;) ~ (X}, M;)) and can be used to learn the system. The goal is to minimize the
following error

T
> B L (X 6). %0)]

t=1

with limited or no access to the data with t < T, where T is the number of seen tasks so
far. The symbol I denotes a loss function, f;(x, 0) represents the output of the network for
task ¢ and an input x, and 0 are the parameters of the network.

Following [Hsu+18] the methods for incremental learning can be categorized dependent on

the data (X}, Y;); into methods for incremental domain learning, methods for incremental
class learning and methods for incremental task learning.
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3. Related work

In incremental domain learning the distribution of the training data X; changes but the
classes remain the same, e.g. a class in X; could be vehicles, in timestep one one gets
bicycles, in timestep two one gets motorcycles etc.

In incremental class learning the class labels (Y;); are disjoint but the goal is to train a
system which classifies all classes seen so far (without the information of which task the
input to classify is), e.g. in timestep one one gets different vehicles, in timestep two one
gets different animals. After learning with the animal data one wants a classifier which
distinguishes between all vehicles and animals.

In incremental task learning the class labels (Y;); are disjoint and the goal is to train a
classifier for each seen task, e.g. for the example above the information if the input is a
vehicle or an animal is provided. Therefore incremental class learning can be seen as a
superset of incremental task learning.

3.1.1. Incremental class learning

According to [De +19] methods for incremental class learning can be divided into replay-
based methods, regularization-based methods and parameter isolation-based methods. For
more details refer to [De +19] or the corresponding source.

In replay-based methods, e.g. [Reb+17], [LR17], a subset of the samples of old tasks is
stored. These samples can be stored as raw data and used for retraining the network when
new tasks arrive. This is called rehearsal. It is also possible to store the data compressed
in a generative model, e.g. [Shi+17], [VT18], and use images generated by this generative
model while training on new tasks, called pseudo rehearsal. For example [Shi+17] works
as follows: For the initial task a generative model and a classification model are trained.
When a new task arrives, samples from the latest generative model are mixed with current
data to train a new generative model. Next, samples of the latest generative model together
with labels produced by applying the latest classification model to them and the current
data are used to train the new classification model. Since generative models are trained
this method requires a certain amount of data per task.

In regularization-based methods no samples of the old tasks are stored. Reasons to do this
are privacy issues and memory efficiency. Instead of storing samples the output of the
previous model is used as soft labels for the previous task, e.g. [LH17], [Zha+20]. There
are also methods penalizing the change of important parameters of certain tasks during
learning of new tasks, e.g. [Kir+17].

In parameter isolation-based methods, e.g. [ML18], “different subsets of the model pa-
rameters are dedicated to each task”[De +19]. This can mean that for new tasks new
branches are created or freezing parts of the parameters during training of new tasks.
Most parameter isolation-based methods need a task oracle, i.e. they are restricted to
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3.2. Meta-learning

incremental task learning. An exception is for instance [Raj+19]. In [WSS89] a parameter
isolation-based method is used to fuse two classifiers using additional connections called
“connectionist glue”. However, the resulting classifier is trained with all data used to train
the two classifiers.

The methods used in incremental domain learning are similar to the methods used in
incremental class learning. State-of-the-art are rehearsal-based methods ([Shi+17], [VT18])
with generative models [Hsu+18].

3.2. Meta-learning

In this section an introduction to meta-learning similar to [Ber+18] is given since our
method is based on a meta-learning approach.

The meta-learning method consists of a base-model and a meta-model. The base-model is
used within one episode, i.e. an image classification task with a small amount of given data.
The meta-model learns from many such episodes to learn the structure of the problem
and leverage this to improve the performance of the base-model.

Mathematically this can be done by denoting the set of training episodes by E and the set
of validation episodes by E’. An episode & of these sets consists of inputs x € R™, m € N,
and corresponding outputs y € R", n € N, and can be partitioned in a training set &; and
atestset Ey: E =81 U E,.

Let
¢ : R™ = RS, feature extractor,

e € N, be a feature extractor depending on weights w. We denote the base-model (depen-
dent on episodic-specific weights wg) by

fos 1R = R, base-model,

the meta-model by A, and a loss function by L : R” X R” — R. The meta-model depends
on weights p and maps the features of the inputs and the corresponding labels to episodic-
specific weights w,. If the functions ¢,,, f,, and A, are differentiable one can learn the
weights @ and p by minimizing the training error

1 Z SL Z L(fo. (90 (x)), 1), where we = A, (¢, (E1)), (3.1)

|E| EEE | 2| (x,y)e&;

with backpropagation, where ¢, (E1) = {(¢n(x),y) | (x,y) € E1}. The meta-model has
as input the training part of an episode and the error is calculated with the test part. The
performance of the meta-model is evaluated by the validation error which is obtained by
replacing E by E’ in equation (3.1).
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3.2.1. Examples for meta-learning algorithms

In this section a few meta-learning algorithms with their meta-models are described. For
more details refer to [Ber+18] or the corresponding source.

In [And+16] an optimizer is learned. The meta-model works as follows: From the input
data the gradient of the loss function w.r.t. the weights of the neural network is computed
and given to an coordinate-wise LSTM. The LSTM outputs updates for the weights, then
these updates are applied resulting in new weights. This process is iterated for a certain
number of steps.

[RL16] is similar to [And+16]. However the loss and the old weights are additionally given
to the LSTM and the LSTM outputs not weight updates but new weights. Furthermore the
initial hidden state of the LSTM consists of learned parameters of the meta-model.

In [Ber+16] the meta-model uses a single image as input and maps it to weights of a network.
This network uses an image as input and evaluates if it is similar to the input image of
the meta-model. To reduce the number of parameters of the meta-model, factorizations of
linear transformations and convolution layers are proposed.

In [FAL17] initial weights of a network are learned such that these weights are adjustable
on new tasks with only a few steps of an optimizer using the gradient of the loss function
w.r.t. the weights. Therefore the meta-model is the application of the optimizer with the
computed initial weights.
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4. Methods: Sample-incremental
meta-learning

In this work we consider an incremental-learning method for image classification. More
specifically, we want to obtain an image classifier from little data (for a fixed number of
classes) whose performance can be improved with more data in an incremental manner.
In [Hsu+18] this type of incremental learning is called incremental domain learning. To
achieve this we use a meta-learning method (see section 3.2). The core idea of our method
is that we train a mapping-model which adjusts weights of a base-model to incrementally
incorporate new knowledge.

The sample-incremental meta-learning approach of this work consists of a meta-model (see
section 4.2) which outputs weights of a base-model given little data and the base-model is
used together with a feature extractor to classify input images into n € N classes.

The meta-model consists of a mapping-model (see section 4.3) which is used for incremental
learning to improve the performance of the system. In section 4.4 this incremental learning
during inference is described in detail. In section 4.5 the methods to train the meta-model
are specified.

4.1. Classification model

We use an on ImageNet pretrained ResNet34 model [He+16] with removed last layer
as feature extractor and a linear transformation as base-model. The composition of the
feature extractor and the base-model is called classification model (see figure 4.1).

ResNet models with more layers are not used since they have a larger feature dimension

2048 instead of 512 and therefore the used meta-model would have to be larger. More
complex base-models are discussed in section 5.4.
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4. Methods: Sample-incremental meta-learning

Resize and ResNet feature Linear
normalization extractor (with bias)
Image 3xdxd e n

Episodic-specific weights can be
identified with a matrix nx(e+1)

Figure 4.1.: Classification model

The feature extractor uses an input dimension d = 224 and outputs a feature vector of
dimension e = 512.

4.2. Meta-model

In the following we describe the meta-model. It is designed to take features of input images
as input and map them to weights which can be used for the base-model.

As presented in section 3.2 the meta-model learns from many episodes. We write such an
episode & as

E= {(xi,l, el)i, ey (xi,n; en)i | I € {1, .. ,k}} U &, (4.1)

=&

for some k € N, i.e. the episode is split such that the training set of the episode is balanced
over the different classes. Images are denoted by x; ; € R ;¢ {i,...,k},je{1,...,n},
the [-th unit vector is denoted by e;, [ € {1, ..., n}, and n denotes the number of classes.

From the first part &; of & in equation (4.1) the input for the meta-model A, is created.
The images x;, i € {i,...,k}, j € {1,...,n}, are given to the feature extractor ¢, and
matrices s; containing the feature vectors in the rows are calculated:

si= (G0l do(xin)), i€ {l,... Kk}

The meta-model A, (see figure 4.2) is based on a mapping-model M, : R™¢ x R®<(e*l)
R™(e*1) (described in section 4.3) and it depends on weights p. These weights p consist of
weights p; € R™(¢*) which are used as initial weights for the mapping, and the weights
p2 of the mapping-model. The initial weights p; are similar to an initial hidden state of a
RNN consisting of learned weights.
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Figure 4.2.: Meta-model A,

The outputs w;, i € {1,...,k}, of the meta-model A, are defined by

wo = P,
w; = My, (sj, wi-1).

The idea behind the approach of the mapping-model is that the mapping-model gets
weights as input and additional data (features) and should adjust these weights such
that they correspond to weights one would obtain by adding the additional data to the
knowledge the system already has. Therefore the output weights of the mapping-model
should perform better for the classification than the input weights.

The labels of the input feature vectors are encoded in the order of them and exactly one
input sample of each class is used for the mapping-model input. Furthermore the weights
p1 are randomly initialized similar to an initialization of the base-model (see section 2.1.6).
We use as initialization scheme an uniform distribution with variance as in equation (2.4).

4.3. Mapping-model

The mapping-model M,, has as input a matrix of feature vectors (one feature vector per
class) and a matrix of weights of the base-model and maps them to a matrix of weights
which again can be used as weights for the base-model (see figure 4.3).
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Figure 4.3.: Mapping-model M,,: Green boxes denote the applied functions, black
boxes contain the shape of the processed data (and the names if they are present).

More abstractly this can be seen as

Senc = encode(s;), (42)

wout = decode(context = wj,, MEMOrY = Senc) + Senc
where s contains the feature vectors and wj, and woy; are the matrices of input weights
and output weights, respectively.

A transformer model is used within the mapping-model since this mapping can be seen as
a sequence-to-sequence task. The sequence of feature vectors is used as source sequence
and the sequence of weights (corresponding to each class) are used as target sequence.
The transformer decoder in the model has a self-attention layer instead of a masked self-
attention layer since during inference no decoding is done but a forward path through the
transformer is done and therefore it is not necessary to mask the target sequence. The
output of the encoder and decoder are summed to achieve a better alignment between the
source and target sequence.

Furthermore it is important to pay attention to the scaling of the output. Since the output
of the mapping-model consists of weights it should be scaled such that applying the linear
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4.4. Inference

transformation with these weights to feature vectors should result in a reasonably scaled
output. Therefore we scale the output weights of the mapping-model such that they have
the same variance as the initial weights p;.

Inference

During inference the model is able to learn with one sample per class as input to the
meta-model A,. As a result one gets episodic-specific weights w; and is able to use them
together with the weights w of the feature extractor for the classification model. Given
an image x to classify the system outputs the following probability distribution over the
classes:

Jor (9o (x))

If more samples per class are available one can use the mapping-model again to get episodic-
specific weights w;, for i > 1. This is possible in an incremental manner, i.e. if the samples
are delivered one after each other the ones already processed by the mapping-model do
not need to be stored. An illustrative example can be found in figure 5.9. Furthermore
this mapping is a lot faster than fine-tuning or retraining a complete model since only a
forward path of the mapping-model has to be performed.

4.5. Training

The meta-model and the feature extractor can be trained with different loss functions and
data. In the following we will consider these methods.

For all following training methods the validation error is calculated (similar to equa-

tion (3.1)) by
1 1
7 2k e 2 e 43)

E€E’ (xy)e&;

|E’|

Training method 1:

For training method 1 (see figure 4.4) the cross entropy loss is chosen.

Training method 1.1:

The output weights w; of the meta-model are used in the base-model and the base-model

is trained with the data (¢, (x),y) for (x,y) € &E,, i.e. the test part of &. This means that
every w; is trained with the same data and this data is not used as input of the meta-model.
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4. Methods: Sample-incremental meta-learning

The training error is similar to the validation error (equation (4.3)) and defined by

D Len(fu($u(x)),9),

(xy)e&s

=~
]
M
E‘H

2l

where the weights p of the meta-model are learned (the weights w; depent on p).

X115+ X1n X215 1 X2n Xk,1s . ' Xken
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p » 1
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Figure 4.4.: Training method 1: The output of the meta-model is given to the
base-model and the base-model is trained with a cross entropy loss.

The intuition behind this training method is that the weights in w; depend on the inputs
Xjt,.--»Xjn, J € {1,...,i}, and therefore when all weights get trained with the same
data, weights with a higher index i should deliver a better performance. As a result the
mapping-model should learn to approximate an incremental-learning function.

Training method 1.2:
The output weights @; of the meta-model are given to the base-model and the base-model
is trained with the data ((¢,(x),y) for (x,y) € {(xjgl,el), o (Xjnen) | J€A{T,.. .,i}},

i € {1,...,k}. This means that the weights are trained with the input to the meta-model
and weights ©; with higher index i are trained with more data.
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4.5. Training

The following expression is minimized w.r.t. p:

k
LS LS S LS . (4.4)

| | &E€E i=1 j=1 I=1

=Li

In this approach the base-model with the weights w; is trained with only the data available
to the weights w; through the meta-model. Therefore the mapping-model is trained to map
the input weights to weights which arise when adding the mapping-model feature inputs to
the training set, i.e. the mapping-model is trained to approximate an incremental-learning
function.

Training method 2:

This method is based on training method 1.2 and starts with a precomputation step. For
each episode & weights w;, i € {1,...,k}, are precomputed by minimizing the following
validation error w.r.t. ®;

1 1Y .
i Z; - IZ: Lee(fz,(duw (1)), €1), training error,
=17 =1

L Z Lee(f3,(90 (%)), y), validation error.

|Ee] (x.9)€E;

This is equivalent to the training of the base-model. As initial weights for ©; the weights
w;—1 after the precomputation step are used, i € {1,...,k}, and @y is randomly initialized.

For the training method 2 (see figure 4.5) the mean squared error is chosen. For this method

a fixed feature extractor is needed and it is not possible to jointly train meta-model and
feature extractor. After the precomputation step the meta-model is trained to minimize

] Z ZLMSE(C‘)I: w;) (4.5)

N— e
SEE i=1
=L

w.r.t. p.
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Figure 4.5.: Training method 2: The output of the meta-model is trained with the
precomputed weights and a mean squared error.

One problem that emerges from the construction in the first two training methods is a
vanishing or exploding gradient (see figure 4.6) since the same model is applied multiple
times similar to an Elman RNN (see section 2.3).

Vanishing gradient problem
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i
Figure 4.6.: Vanishing gradient problem: Standard deviation (averaged over 128
episodes) of the i-th loss part L w.r.t. p;. For hyperparameters see appendix A.1.

Despite this vanishing-gradient problem the model is able to learn due to bootstrapping
since there is not only the k-th part L¥ of the loss but also the rest.
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4.5. Training

Training method 3:

This method is based on training method 2 but avoids the vanishing-gradient problem via
teacher forcing. The precomputation step of training method 2 is adopted. During training
the output of the mapping-model is not given back to the mapping-model. Instead the

precomputed ground truth is given to the mapping-model. The weights w; (to compute
the training error) are defined by

wi = My, (s, wi—1), i€{l,...,k},
and wg = p1.
Training method 3.1: (see figure 4.7)
As in training method 2 the meta-model is trained to minimize the term in equation (4.5).
Training method 3.2: (see figure 4.8)

As in training method 1.2 the meta-model is trained to minimize the term in equation (4.4).
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Figure 4.7.: Training method 3.1: Teacher

forcing and a mean squared error are used. Figure 4.8.: Training method 3.2: Teacher

forcing is used, the output w; is given to the
base-model and the base-model is trained
with a cross entropy loss.
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4. Methods: Sample-incremental meta-learning

training method || loss mode precomputation
1.1 CE chain no
1.2 CE chain no
2 MSE chain yes
3.1 MSE | teacher forcing yes
3.2 CE | teacher forcing yes

Table 4.1.: Summary of the training methods. Note that for the training
methods 1.1 and 1.2 the training data is used in different ways.

4.6. Dataset

For training data a subset of ImageNet [Den+09], mini-ImageNet [Vin16], is used. It
consists of 100 classes with 600 colored images of size 84 x 84 per class. The classes are
split into 64, 16 and 20 classes for training, validation and test, respectively. This dataset
is more complex than the CIFAR dataset [KH10] but smaller than ImageNet allowing for
faster experiments.

The episodes are sampled from this data by randomly choosing n classes of the respective
set and within this classes the data is randomly split into training and test sets.
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5. Results

In this chapter the methods introduced in chapter 4 are compared with each other and to
training and fine-tuning. For the training method the weights of the last step are taken (or
initialized randomly at the begin, respectively) and trained with all the data the meta-model
had as input, i.e. all of the old images are saved and used for updating the weights. This is
used as a baseline. For the fine-tuning method the weights of the last step are taken (or
initialized randomly at the begin, respectively) and trained with the current input of the
meta-model, i.e. none of the old images are saved.

As mentioned in section 3.1, rehearsal-based methods ([Shi+17], [VT18]) with generative
models [Goo+14] deliver state-of-the-art performance. However, these methods need a
lot of data for the generative model to train, e.g. [VT18] trains with approximately 6000
samples per class, and can therefore not be compared to our method which learns with
only one sample per class.

The number of classes n = 4 is chosen for the following experiments. The shown accuracies
are obtained by testing the methods using the mini-ImageNet testset, i.e. the classes used
during testing are not seen during training of the meta-model. For hyperparameters/results
not mentioned in this chapter see appendix A.1/appendix A.3.

5.1. Evaluation of training and fine-tuning

Since during inference (see section 4.4) only one image per class is needed/used to improve
the performance of the system, no validation set is available. To compare our methods to
training and fine-tuning in a meaningful way also no test part (of the episode) should be
provided during inference. Therefore during training the number of epochs to train/fine-
tune during inference are calculated:

Weights «w, of the base-model are initialized randomly. To get weights «; from the weights
w;—1 which have the best accuracy in the last step, i € {1,..., k}, the base-model is trained
with the data s, j € {1,...,i}, or fine-tuned with the data s; for the training or fine-tuning
method, respectively. This is done until test accuracy does not increase anymore for a
certain number of epochs ecpange (= 5000). This procedure is calculated for 100 episodes.
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5. Results

Next, the numbers of epochs needed to train/fine-tune the model to obtain the weights
w; from w;_; are averaged over the episodes and this number of epochs is used during
inference to obtain the weights w; from w;_;.

This can be seen as a meta-model. As a result no test set is needed during inference
to get the best point of stopping the training/fine-tuning. These numbers of epochs to
train/fine-tune can be seen in the figures 5.1, 5.2 and in appendix A.2.

Training/Fine-tuning meta-model Training/Fine-tuning meta-model

11 17
—— training 15 —— training

9 fine-tuning 13 fine-tuning
w 7 nll : :
< e : N :
O O 9 : : :
o 5 o : . N
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3 : '
1 1
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Figure 5.1.: Training/Fine-tuning meta- Figure 5.2.: Training/Fine-tuning meta-

model 1: Number of epochs (in 1k) used for model 2: Number of epochs (in 1k) used for
the training method comparison experiment the input distribution change experiment
(figures 5.3 and following). (figures 5.7 and following).

One can see that the number of epochs decreases for larger i (if there is no distribution
change in the data) and for the fine-tuning method there are less epochs required compared
to the training method.

Note that the k in this context can be different to the k in the context of our own methods
since we can evaluate our methods independently from the k used during training.

5.2. Comparison between training methods

Training method 1:

The weights of the feature extractor are fixed since training the weights of the feature
extractor jointly with the meta-model gave no performance benefit for training method 1.
A reason could be that the meta-model is trained with the minilmageNet data and not the
full imageNet data.
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5.2. Comparison between training methods

Training method 1.1:
The training method 1.1 is evaluated for k € {5, 10,20} and |&;| € 4 - {10, 40, 105, 230, 480},

i.e. 10,40,105,230 or 480 training images per class. The value k = 20 with 480 training
images per class performed best.

Accuracy w.r.t. training samples per class

0.96
0.94
0.92
30.90
©
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' fine-tuning —— own (k=10, |&|/4 = 40)
0.801 —— own (k=5, |&|/4=40) —— own (k=20, |&;|/4 = 480)
1 3 5 7 9 11 13 15 17 19
i

Figure 5.3.: Evaluation of training method 1.1

One can see that the usage of more data delivers slightly better accuracy but training
method 1.1 is substantially worse than fine-tuning.

Training method 1.2:

The training method 1.2 is performed for k € {5, 10, 20}.
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Accuracy w.r.t. training samples per class
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Figure 5.4.: Evaluation of training method 1.2

Compared to training method 1.1 this method performs significantly better, but is still
worse than fine-tuning. Furthermore, there is little difference between different values of
k.

Training methods 2 and 3:
These training methods are also evaluated for k € {5, 10, 20} (see figure 5.5). For training

method 2 and 3.2 the value k = 5 performed best. For training method 3.1 the values k = 5
and k = 20 performed similarly well and better than k = 10.
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5.3. Distribution change in the input data

Accuracy w.r.t. training samples per class
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Figure 5.5.: Evaluation of training methods 2 and 3

We obtain that training methods 2 and 3.1 work similarly well and better than fine-tuning.
Due to the bootstrapping mentioned in section 4.5 training method 2 needs approximately
an order of magnitude more training steps than training method 3.1. Training method 3.2
has a worse performance than the other two (see appendix A.3).

5.3. Distribution change in the input data

A very interesting aspect of incremental learning is the case where the distribution of
the input data changes during the incremental-learning process. This can happen, for
instance, when the classes consist of multiple subclasses and in the first few training steps
the given samples belong to the first subclasses and afterwards to other subclasses.

In the following such an experiment is performed. Each of the n = 4 classes consists of
four subclasses which are assembled randomly. The learning process is arranged such
that in the first five learning steps the samples are chosen from the first subclasses of each
class. For the second five learning steps the samples are chosen from the second subclasses
of each class and so forth. After five learning steps the input distribution of the samples
changes. An illustrative example is given in section 5.3.1.

In this experiment we additionally compare our method to fine-tuning where additional

connections and neurons are added similar to [WSS89]. Whenever the input distribution
changes a hidden layer with two neurons is added, employed with a ReLU activation
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5. Results

function (see figure 5.6). The number of weights in the original network is approximately
twice the number of weights added when adding a new hidden layer.

4{ Linear ’—» —‘ Linear I—’+
; _{ Lincar "'I J Linear r

e P e

Figure 5.6.: A vertical line denotes a vector. Left: Original base-model: Linear
transformation from the feature vector dimension e = 512 to the number of
classes n = 4, Right: Additional hidden layer added. The output of the original
transformation and the output of the new hidden layer(s) are summed.

We tried two versions of this approach: A parameter isolation-based method (fine-tuning
+ GLUE + freeze), where only the last added (hidden) layer is fine-tuned and the others
are frozen, and a version (fine-tuning + GLUE) where all weights are fine-tuned. The first
version performed poorly, the second version performed approximately as well as the
fine-tuning method (see appendix A.3). The additional connections and neurons did not
have a positive impact on the performance. A reason could be that during fine-tuning not
enough data is available to leverage the increased capacity of the network.

Accuracy w.r.t. training samples per class

0.951 ] —— training —— own (3.1)
: fine-tuning

Accuracy
o o
[0 O
u i

o
o)
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©
~
Ui
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1 3 5 7 9 11 13 15 17 19

i
Figure 5.7.: Evaluation of distribution change in the input data: Accuracy evaluated
on the subclasses of which samples are used as input to the meta-model, i.e. for
i € {1,...,5} evaluated on the first subclasses of each class, for i € {6,...,10}
evaluated on the first and second subclasses of each class and so forth.
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5.3. Distribution change in the input data

Accuracy w.r.t. training samples per class
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Figure 5.8.: Evaluation of distribution change in the input data: Accuracy evaluated
on the first subclass of each class.

The accuracy of the training method decreases for i > 5 since the base-model has to deal
with multiple subclasses per class but has the same capacity. For i = 6 the fine-tuning
method performed best in figure 5.7. This can occur due to the fact that the fine-tuning
method adapts rapidly to the new task and the accuracy is calculated as the mean of
both tasks accuracy’s. For the training methods (and our training method 3.1 which is
derived from the training method) the training data is not balanced, this effect reduces
fori € {7,...,10}. We obtain that there is a catastrophic forgetting [Fre99] for i > 5 of
the old data for the fine-tuning method (see figure 5.8) as expected. Our own method
performs better and the accuracy is between the training method (which does not learn
incrementally) and the fine-tuning method.

5.3.1. lllustrative example

Let’s say we want to classify the following classes (of the CIFAR-dataset) which are divided
into subclasses:

classes subclasses 1 | subclasses 2 | subclasses 3 | subclasses 4

vehicles bicycle pickup truck | motorcycle bus

people boy woman man girl
large carnivores bear wolf tiger lion
food containers bottle plate cup can

Table 5.1.: lllustrative example: Classes

37



5. Results

‘[opow-aseq Y3 JO SJYSIoMm [[e JO }9sqns & aIe sjysom pajjo[d ay) ‘[opow-eiaut 9y} Jo sjySrom paures| are Id = 0@
‘[epouwr-3urddewr sy} $9]0UIP Jy T0JORIIXS 2INJBIJ Y} SJOUSP ¢ *9IUSIJUI SULINP SUTUIRI] [BIUSWSIIU] :9[durexs aanensn[[l :'6¢'g 9IS

200
€00
« Jeaury -
100 .
v6°0 \
:
— N
ﬁ
| P
= _
- -
LA
Lm d 4
A
=

100

100

100

L6°0

A

Jeauly

im

10°0
€0°0

« Jeauly -
100|
60|

W B —

n
4 ]
¢ ¢
| |
A
ﬁg m S 0m

el .

38



5.3. Distribution change in the input data

Accuracy w.r.t. training samples per class
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Figure 5.10.: [llustrative example: Accuracy evaluated as in figure 5.7. In this example
CIFAR images are used for the evaluation.
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Figure 5.11.: [llustrative example: Accuracy evaluated on the first subclass of each
class. In this example CIFAR images are used for the evaluation.
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5. Results

We obtain that in this specific example our method works better than the fine-tuning
method, in some parts of the incremental-learning process even better than the training
method. This is possible since our method has access to more data during training of the
meta-model than the training method.

5.4. More complex base-models

In the previous sections the base-model is a linear transformation. Therefore, only linearly
separable data is able to be classified. To address this issue a more complex base-model
is used. A linear transformation with 128 output neurons is applied to the output of the
feature extractor, followed by a ReLU activation function and another linear transformation
with n = 4 output neurons.

Among other approaches we tried the following mapping-model (similar to equation (4.2))
which maps the weights of the two linear transformations together with the input features
to other weights of the two linear transformations:

Senc = encode(s;),

[Wl,outa WZ,out] = deCOde(ConteXt = [C‘)l,in, 6()Z,in], memory = Senc) + [0, Senc],

where s; contains the feature vectors. The weights of the first and second linear transfor-
mation of the base-model are denoted by w; and w, respectively. An additional subscript
in/out denotes the input/output of the mapping-model.

For this combination of base-model and meta-model training method 1.2 attained 86.2%
accuracy, the training methods 1.1 and 3.2 attained 51.8% and 75.6% accuracy, respectively.
The training methods 2 and 3.1 did not learn anything useful. For comparison, the training
and fine-tuning methods attained 95.4% and 93.8% accuracy, respectively. It seems that the
used mapping-model is not capable of mapping the weights appropriately, compared to
the training and fine-tuning methods.
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6. Conclusion

6.1. Review

We proposed a new incremental-learning scheme for image classification which requires
only little data during inference and does not store samples. It uses a meta-learning
approach. A mapping-model is learned to adjust weights of a classification model when
new data is available to improve the performance of the system.

The mapping-model we use is based on the transformer architecture. To learn the system,
different training methods have been compared and analyzed.

For a linear base-model our approach outperforms fine-tuning, for more complex base-
models it also works, but together with the used mapping-model it is not as good as
fine-tuning.

6.2. Future work

The main point of future work is to use base-models with more layers and to find advanced
mapping-models which works with them. More complex base-models are needed to
increase the amount of knowledge that can be stored.

The main focus of this work lies in incremental learning. However, one could also be
interested in the other direction, i.e. one does not want to learn specific knowledge but
selectively forget knowledge. This could happen if the system recognizes or is told that
some of the acquired knowledge is outdated or wrong.

A similar approach to the one proposed in this work could be applied. Instead of learning
a mapping-model to map to weights where new knowledge is added, one could train a
mapping-model which maps to weights where the knowledge to forget is removed. This
allows for a selective forgetting.
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A. Appendix

A.1. Hyperparameters

Transformer model: dmodel = 512, dfy = 2048 with N = 6 layers and h = 8 heads.

Dropout base-model (before the linear transformation(s)): 0.5, dropout mapping-model:
0.3 (0.1 for the two-layer base-model experiment)

Batch size: The batch size is maximized such that the available memory of the graphics
card is not exceeded.

Optimizer and learning rate: The optimizer is adopted from [Vas+17], the learning rate is
chosen similarly, but with a factor 0.2 and warmup_steps = 133. The learning process is
stopped after the validation error increases.

Features: The feature vectors of the input images are precomputed if the training method
allows.

Evaluation: The accuracies shown in chapter 5 are averaged over 1024 episodes for our own
methods and over 100 episodes for the training/fine-tuning methods. The precomputation
step is done for 1000 episodes.

Number of classes: n = 4 classes are used since the mini-ImageNet validation dataset

consists of 16 classes and with 4 subclasses per class in one experiment, the maximum
number of classes that can be used with this dataset is 4.
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A.2. Training/Fine-tuning meta-models

The following numbers of epochs are used in the meta-models of the training and fine-
tuning method:

Training;:
First experiment (no change in input distribution):

19600, 8172, 5037, 3659, 2854, 2049, 1767, 1466, 1252, 1156, 1104, 1094, 802, 748, 740, 582,
721, 620, 531, 587

Change in input distribution after every fifth learning step:

19209, 8021, 5424, 3906, 2724, 15005, 7614, 5502, 4563, 3256, 11974, 6969, 5450, 4311, 3547,
10880, 6582, 4895, 4221, 3372

Two-layer base-model (no change in input distribution):

10615, 6212, 4094, 2942, 2124, 1700, 1517, 1305, 978, 880, 843, 755, 678, 827, 609, 560, 564,
459, 515, 457

Fine-tuning:
First experiment (no change in input distribution):

19270, 5874, 2652, 2254, 1037, 1396, 806, 668, 745, 417, 476, 676, 275, 369, 543, 453, 277, 75,
230, 207

Change in input distribution after every fifth learning step:

18445, 6127, 3742, 1751, 1526, 9669, 1954, 580, 311, 107, 5591, 745, 472, 484, 274, 3825, 1042,
290, 243, 42

Fine-tuning + GLUE + freeze (change in input distribution): 18755, 4970, 3774, 2390, 2182,
3013, 650, 34, 5, 3, 563, 125, 46, 34, 37, 807, 143, 146, 308, 37

Fine-tuning + GLUE (change in input distribution): 18223, 4839, 3216, 2450, 1915, 9738,
1060, 1198, 288, 250, 4982, 1042, 261, 134, 182, 2437, 1246, 420, 204, 178

Two-layer base-model (no change in input distribution):

10954, 4327, 2630, 1286, 1303, 794, 1082, 550, 392, 225, 469, 384, 330, 361, 129, 313, 328, 302,
240, 212
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