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Zusammenfassung

In dieser Arbeit erweitern wir ein multilinguales NMT System mit universalem Encoder-Decoder
um eine neue Sprache. Wir machen uns hierbei die sprachenunabhängige Respresentation des
universalen Encoders zu Nutze um das gelernte, um die neue Sprache auf rein monolingualen
Daten zu erlernen. Als Teil unseres Ansatzes integrieren wir hierfür sogenannte cross-lingual
word embeddings, um dem NMT System bei dem Transfer zu helfen. Dazu bilden wir vor-
trainierte monolingualen Worteinbettungen für sowohl die neue Sprache, als auch alle anderen
Sprachen in einen gemeinsamen Raum ab. Unter Ausnutzung dieser Worteinbettungen alleine
und ohne jegliche Aussetzung des NMT systems gegenüber der neuen Sprache übersetzen
wir in die neue Sprache, in einem Prozess den wir als blinde Übersetzung bezeichnen. Mit
einem europäisch-romanischen multilingualen Grundsystem erreichen wir bis zu 36.4 BLEU auf
Portugiesisch-Englisch, durch blinde Übersetzung nach Portugiesisch. Dieses Übersetzungssys-
tem, welches im Verlaufe des Trainings nicht einem einzigen Satz von auch nur einer slavischen
Sprache ausgesetzt wurde, erreicht auf Russisch bis zu 13 BLEU. Zusätzlich erreichen wir, unter
Verwendung eines neuartigen Ansatzes für kontinuierliche Ausgabedichten in NMT, bis zu 16.2
BLEU in der blinden Übersetzung nach Portugiesisch.
Um den Ansatz zu erforschen, lediglich die Abbildung von der Satzrepresentation des Encoders
auf die neue Sprache zu lernen, lehren wir das Übersetzungssystem von Portugiesisch nach
Portugiesisch zu übersetzen. Durch einfrieren des Encoders im Lernprozess erreichen wir bei an-
schlies̈endem Übersetzen nach Portugiesisch bis zu 26 BLEU auf Englisch-Portugiesisch. Durch
zusätzliches Rauschen in den portugiesischen Eingabesätzen, welches das Übersetzungsmodell
anregt die korrekte Wortreihenfolge zu lernen, erreichen wir zusätzliche 2 BLEU.
Zuletzt betrachten wir als Alternativansatz zum Erlernen der Übersetzung in die neue Sprache
die Adaption auf synthetischen Daten, die durch Rückübersetzung generiert wurden. Durch
Ausnutzung der guten Resultate bei der blinden Übersetzung von einer neuen Sprache generieren
wir synthetische parallele Sätze aus einem monolingualen Korpus. Durch Training auf diesen
Daten erreichen wir auf Englisch-Portugiesisch 34.6 BLEU, womit die Ergebnisse nur knapp
unter die Werte eines Übersetzungssystems fallen, das auf echten Paralleldaten trainiert wurde.
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Abstract

In this work we look into adding a new language to a previously trained multilingual NMT system
in an unsupervised fashion. We seek to exploit a well generalized and language independent
sentence representation of the multilingual model to easily generalize to a new language. To this
end we first explore how well generalized this representation actually is and subsequently we
explore the venue of learning the new language in a completely unsupervised fashion. As part of
our approach we incorporate pre-trained cross-lingual word embeddings into the multilingual
NMT system. In order help our model to translate from and to a yet unseen language, we
manually align pre-trained monolingual word embeddings for that new language into the shared
cross-lingual embedding space. Using cross-lingual embeddings alone allows us to decode from
a yet entirely unseen source language in a process we call blind decoding. Blindly decoding from
Portuguese using a basesystem containing multiple Romance languages we achieve scores of up
to 36.4 BLEU on Portuguese-English. Using this same model which has never seen even a single
sentence from any Slavic language we are also able to achieve up to 13 BLEU on Russian-English.
Furthermore, applying blind decoding on the target side we are able to achieve up to 16.2 BLEU
when decoding to an unseen Portuguese. To this end, employing a recently proposed approach,
we use a continuous output representation as replacement for the softmax output layer.
In an attempt to train the mapping from our sentence representation to a new target language
we use our model as an autoencoder. Training to translate from Portuguese to Portuguese while
freezing the encoder we achieve up to 26 BLEU on English-Portuguese. Adding artificial noise
to the source-side to let the model learn the correct word order gains us additional 2 BLEU.
Lastly we explore a more practical approach to learning the new language by training on back-
translated data. To this end we exploit our model’s ability to produce high quality translations
on an unseen source-side language to generate the synthetic data. Training on the synthetic data
yields us scores of up to 34.6 BLEU, again on English-Portuguese, attaining near parity with a
model trained on real bilingual data.
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Chapter 1.

Introduction

Machine translation is a discipline of translating from one natural language to another. Currently
the fully neural network based approach, dubbed as NMT, is dominating the research scene.
This approach is more robust and scalable to data size compared to the previously common
statistical approach. Such NMT systems consist of an encoder, which encodes the input sentence
into a latent numerical sentence representation space, a decoder, which generates the target
sentence from this latent representation, and finally an attention mechanism, which connects the
encoder and the decoder. While under favourable circumstances neural networks bring significant
improvements to translation performance, a major problem with them, however, is that they
are extremely data hungry. For the best performance NMT systems require data in the scale of
millions of sentences. While for the most common language pairs we might indeed have these
amounts of parallel data, for most language pairs parallel data is scarce. Considering the quadratic
combinatorics for the whole of the natural languages in the world, e.g. translating between n
languages results in n2 language pairs, one might even say that parallel data is extremely scarce
to non-existent for most language pairs. As such one of the goals of multilingual NMT is to
significantly reduce the amount of parallel data we require for each given individual language
pair.
Universal multilingual NMT as described by Johnson et al. (2016) and Ha et al. (2016) employs
a universal encoder and decoder, meaning that the encoder parameters are shared across all of
the source languages. The idea is for the NMT system to learn a decoupled representation of its
source and its target languages, so that it can effectively increase the available training data for
each of its individual source and target languages. Ideally the universal encoder would further
learn a language independent representation of the source sentence, e.g. learn to represent two
semantically identical sentences onto a similar neural sentence representation – even across
different languages. Ongoing research in the field of zero-shot translation provides evidence
that multilingual NMT models exhibit this property up to a certain extent, and that enforcing the
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2 Chapter 1. Introduction

similarity between sentence representations across different languages in turn also improves the
zero-shot capabilities (Pham et al., 2019). Research in the field of cross-lingual transfer learning
in NMT further shows that such multilingual systems can rapidly be extended to new languages
on very little data (Neubig and Hu, 2018). Neubig and Hu (2018) furthermore show that going as
far as training a basesystem on 58 source languages immensely helps the universal encoder in
afterwards generalizing to new source languages in a supervised setting. In this work we take
this approach one step further and investigate the ability to translate to a new language with no
parallel data for this new language. While integrating cross-lingual word embeddings into the
model end we provide two contributions in the field of multilingual NMT:

1. To explore the generality of the sentence representation we first apply the universal encoder
to an entirely unseen language.

2. Using two distinct methods we adapt the universal decoder to a new language.

As a consequence of not providing any bilingual data for the new language in training we do
not give the model the chance to learn the cross-lingual word correspondences. Thus the model
is not able to learn a shared embedding space through conventional multilingual training. To
alleviate this problem we, as our main contribution, manually provide these word correspondences
in the form of cross-lingual word embeddings (Joulin et al., 2018; Conneau et al., 2017). We
therefore use monolingual fastText embeddings for each of our languages, which we manually
align into a common word embedding space. While the encoder could not possibly know the
syntax of an unseen language, many syntactical concepts in language – such as grammatical cases,
part-of-speech, grammatical genders, or tense – are encoded at word level. Take German for
example, nouns have different surface forms for different grammatical cases, which the fastText
model should take into account and appropriately encode in its word embeddings. As such we
surmise for the word vectors trained on the new language alone to provide enough syntactic level
information to perform the language comprehension task to a certain degree.

For testing the applicability of the learned multilingual sentence representation to sentences of
an unseen language we thus devise three experiments:

1. first, we decode from sentences from a new language without any additional adaptation
except for the cross-lingual word embeddings

2. in an attempt to only learn the mapping from the encoder representation space to the
new language we adapt the model decoder through exposure to monolingual data in an
autoencoding fashion

3. by combining these two methods we train the decoder mapping on the synthetic parallel
data generated in the first experiment, in a backtranslating fashion

While using a German-English-Spanish-French-Italian multilingual basesystem – which we
train in regular supervised translation – we perform experiments in translating to and from
Portuguese and Russian as our new language. By simply decoding from Portuguese we achieve
BLEU scores as high as 36.4 for Portuguese-English, while we achieve up to 13 BLEU when
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decoding from Russian. Next, by adapting to the new language by simply exposing the model de-
coder to monolingual data in training, we further achieve up to 28.1 BLEU for English-Portuguese
and 8.7 BLEU for English-Russian. Finally, we achieve up to 34.6 BLEU for English-Portuguese
and 13.9 BLEU for English-Russian, by adapting on synthetic parallel data, generated via back-
translation. Reaching a BLEU score of 28 average for all of the languages, the model adapted on
the Portuguese synthetic data almost reaches the average 28.8 BLEU of a supervised baseline
model that is adapted on real parallel data.

As another contribution we explore the recent proposal of treating NMT as a regression problem
(Kumar and Tsvetkov, 2018). In training this approach replaces the softmax-cross entropy layer
with the von Mises-Fisher loss function, giving us memory and computational complexity
independent of the vocabulary size. Due to our extremely large multilingual vocabularies as well
as the usage of fixed, pre-trained word embeddings this approach is especially well suited to our
research. While in our experiments this model mostly exhibits sub-par performance considering
raw BLEU scores only, it still provides us good enough reasons to promote the usage of this
approach. Performing our first experiment using this model we furthermore achieve up to 16.2
BLEU decoding to Portuguese as a target language.





Chapter 2.

Fundamentals

In this chapter we will give a background on the topics required for reading this work. While
we give a brief overview of the basics of neural networks and machine translation, for an in
depth understanding of these topics and their history we would like to refer to dedicated literature
(Neubig, 2017; Koehn, 2017).

2.1. Machine Translation

Machine translation is a task in natural language processing (NLP), where we translate from one
natural language to another. Due to historical influence of translation from French to English,
the source language is often denoted as f while the target language is denoted as e. While the
history of machine translation stretches back to the early beginnings of the computational era,
and many different approaches to machine translation have been attempted, it is the statistical
approach to this task that is predominantly used. In the statistical approach we use a statistical
model to estimate the probability that a target sentence e = (e1, . . . ,em) is the correct translation
given a source sentence f = ( f1, . . . , fl)

P(e | f ) = P(e1, . . . ,em | f1, . . . , fl) (2.1)

Note that the above notation is a shorthand version for the mathematically correct but rather
verbose notation P(e = e | f = f ), which describes the source and target sentences as observations
of a random variable.

2.1.1. Neural Machine Translation

Traditionally, the probability 2.1 had been modelled in the so called statistical machine translation
(SMT) approach to machine translation (Brown et al., 1990; Koehn et al., 2003). Using the so
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6 Chapter 2. Fundamentals

called noisy channel model, it is split into a conditional probability and a probability for the target
sentence

max
e
{P(e | f )}= max

e
{P( f | e)P(e)}

which are modelled via a translation model estimating P( f | e) and a language model estimating
P(e). While there are many possibilities to incorporate neural networks into the SMT approach
such as modelling P(e) using a neural language model, recent state-of-the-art translation systems
use neural networks in an end-to-end fashion. The so called neural machine translation (NMT)
takes the direct approach to the probability 2.1 and models it as

P(e | f ) = P(e1, . . . ,em | f )

= P(e1 | f ) ·P(e2 | e1, f ) · . . . ·P(em | e1,e2, . . . ,em−1, f )

The conditional probabilities for each target word P(ek | e1, . . . ,ek−1, f ) are modelled by a neural
network. In this so called sequence-to-sequence task usually an encoder-decoder neural network
architecture is employed. An encoder network enc encodes the input sentence f into a latent
sentence representation c. Given the so called context c a decoder network dec then – usually in
an stateful iterative manner – calculates the target word probabilities, e.g.

c = enc( f ) (2.2)

(Pk,hk) = dec(ek,hk−1,c) (2.3)

Pk = P(ek | e1, . . . ,ek−1, f ) (2.4)

Most commonly the final decoder layer is the so f tmax function, whose output Pk is interpreted
as a multinomial probability distribution over a fixed output vocabulary V = (w1, . . . ,wN).
While calculating the conditional probability 2.2 for a known e is the core concept in NMT, this
process called rescoring is usually not what interests us the most in machine translation. Usually,
our target is to find the most probable translation for a known input sentence f

ê = argmax
e
{P(e | f )} (2.5)

The process of searching the most probable sentence e – or usually an approximation thereof – is
called decoding, the most widely employed method being the beam search algorithm.

For more details on NMT and the specific architecture we employ in this work refer to section
2.2. For an outline of how the NMT system is trained refer to section 2.1.2.

2.1.2. Parallel Data and Parameter Estimation

Statistical machine translation systems, including NMT, try to model the probability distribution
P(e | f ) (see 2.1). As described in subsection 2.2 this modelling can be done in various ways.
For all those methods, however, there is a common framework: a parameterized function gϑ :
(F×E) 7→ [0,1] models the desired distribution, mapping pairs of source and target sentences
onto a probability. The free parameter ϑ ∈ Θ defines the concrete model, and needs to be
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estimated from the available data. Given a data set D a parameter ϑ̃ ∈ Θ is estimated using a
suitable statistical parameter estimator T . This estimator T is commonly a maximum-likelihood
estimator, e.g. for ϑ̃ = T (D) the probability of observing our dataset is maximized:

ϑ̃ = argmax
ϑ∈Θ

{P(D | ϑ)} (2.6)

= argmax
ϑ∈Θ

{
∏

( f ,e)∈D
gϑ ( f ,e)

}
(2.7)

= argmin
ϑ∈Θ

{
− log

(
∑

( f ,e)∈D
gϑ ( f ,e)

)}
(2.8)

In the case of NMT this function gϑ is defined by the neural network itself while the parameter
ϑ are the neural network weights. The typical case of estimating ϑ̃ is represented by iterative
minimization of the cross-entropy loss of our data setD. This iterative maximization is performed
via stochastic gradient descent

ϑ
′ = ϑ −η

∂ (crossentropy(gϑ ( f ) ,e))
∂ϑ

( f ,e) ∈ D (2.9)

In the common case of optimizing via a softmax-cross-entropy output layer with one-hot vectors1

as target labels, this method happens to be equivalent to the minimization of the negative log-
likelihood of our data, which in turn equates to the maximizing the likelihood (see equation 2.8).
A common alternative for the plain stochastic gradient descent is the Adam optimization method
(Kingma and Ba, 2014).

Data In NMT we estimate the neural network weights ϑ̃ on the data set D in a process called
training of the neural network. The data set, called parallel text corpus, consists of a series of
parallel sentences. These parallel sentences are aligned pairs ( f ,e) of a sentence f in the source
language and it’s translation e in the target language. These translations are typically human made,
sometimes explicitly, and sometimes automatically gathered from various sources of multilingual
texts.

The above is a description of the standard case of supervised training of an NMT system.
Recently, however, a branch of machine translation called unsupervised MT has emerged (Lample
et al., 2017; Lample and Conneau, 2019; Artetxe et al., 2017, 2019). Such NMT systems are
trained without availability of any parallel data whatsoever using only monolingual data for each
of the languages involved. Unsupervised machine translation commonly uses the technique of
generating synthetic parallel data with a method called backtranslation (Sennrich et al., 2016).
Therefore a monolingual text corpus De is translated using a trained NMT system, yielding a
set of synthetic monolingual data D f in the original target language f . Aligning De and D f

sentence-wise and reversing the translation directions gives us parallel sentences with clean data
in the target language e which we can train on.

1a one-hot vector v is a unit vector with only a single entry vi 6= 0



8 Chapter 2. Fundamentals
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Figure 2.1.: The Vauquois Triangle illustrates the different linguistic approaches to machine
translation

2.1.3. Interlingua Translation

As illustrated by the Vauquois Triangle (see figure 2.1) there are several linguistic approaches
to machine translation. The most direct one being the direct word-by-word translation of the
source sentence. With increasing depth of analysis of the source sentence the translation process
produces a more language independent representation of the sentence, and the transfer from
the analysis to the generation side becomes less dependent on the specific language pair. The
so called interlingua translation represents the translation approach with the highest depth of
analysis. The sentence is therefore transferred into an interlingua representation, which is a
completely language independent representation universal across all languages. As a result,
semantically identical sentences in different languages would be encoded into the exact same
interlingua representation. Translation in such an interlingua-based translation system is then
performed by encoding a sentence in the source language into its interlingua representation,
and then subsequently decoding from the interlingua representation into a sentence in the target
language. Such an interlingua translation system must therefore, besides the interlingua itself,
provide two components: for each source language ` we require an encoder and a decoder that
translate between ` and the interlingua representation. The interlingua-translation approach is
comparable to pivot translation, a technique in multilingual translation where we first translate to
a pivot language – usually English – to then translate it to the desired target language. This is
useful for learning to translate between low resourced language pairs, since parallel data for the
pivot language usually has a much higher availability. The pivot translation approach, however,
presents multiple disadvantages. For one the translation error for each translation pass in the
chain adds up, especially through the additional ambiguity inherent to all natural languages.
Especially in the case of optimization via gradient descent, where the resulting systems are
optimized in a non-end-to-end fashion, the error propagation has a large impact. Furthermore
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the pivot language may be unable to convey the exact meaning of the source sentence, due to the
semantic gap between the pivot language and the source language. A prominent example for
this is the distinction between various levels of politeness common to many languages, which
is missing in English. The interlingua approach resolves this issue through the interlingua
being expressive enough to convey the full semantics of the source sentence. While there exist
interlingua representations for very specific closed-domain translation tasks (Mitamura et al.,
1991; Levin et al., 1998), finding an open-domain universal interlingua for general purpose
translation has oftentimes been deemed impossible. Attempts have also been made at learning
interlingua representations automatically, using statistical methods (Kauers et al., 2002). Recent
developments in multilingual neural machine translation, however, indicate a strong resemblance
to such an interlingua in the latent sentence representation of the neural network (Johnson et al.,
2016). Various works also specifically attempt to induce such a neural interlingua, e.g. through
cross-lingual regularization methods (Pham et al., 2019; Lu et al., 2018; Escolano et al., 2019).
For more information on multilingual NMT and its latent representation refer to section 2.2.4.

2.1.4. Evaluation

As a means to automatically evaluate translation quality, the most commonly used metric is
provided by BLEU (bilingual evaluation understudy) (Papineni et al., 2002). In an attempt to
strike a balance between modelling evaluation of fluency and adequacy BLEU measures the
amount of 1-gram to 4-gram overlap between the hypothesis and a gold reference sentence. The
1-gram accuracy hereby models the hypothesis adequacy, while accuracies for longer n-grams are
responsible for modelling hypothesis fluency. The BLEU score is calculated as the geometric
mean of the n-gram relative accuracies

BLEU-n = BP · #n-gram overlap
#n-grams

BLEU = 100 · 4

√
4

∏
n=1

BLEU-n
(2.10)

BP is the brevity penalty, which penalizes short translations, as they tend to get higher scores.

2.2. Neural Machine Translation

2.2.1. Neural Networks

While neural networks have a long history and many different aspects to them, we will provide
a very general view on them. Abstractly speaking a neural network gϑ is best described as a
universal function approximator for a function g : Rn 7→ Rm. Oftentimes – especially in the
context of NLP tasks – this function g represents a probability mass function. Refer to section
2.1.1 for a description of this probability mass function in NMT and section 2.1.2 for a description
of the statistical framework. The neural network gϑ itself is a end-to-end differentiable function
taking a vector x ∈ Rn as its input and producing a vector y ∈ Rm as its output. The input x
is therefore non-trivially combined with a set of network parameters ϑ ∈ Rl which define the
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concrete neural network. To approximate the function g the parameters ϑ are then optimized
towards a set of values that produce the desired output y for a given input x. Since the function g
is usually unknown, or not representable in a closed form, we require a set of example values

D = {(x1,y1),(x2,y2), . . . ,(xN ,yN)} , yi = g(xi) for i = 1, . . . ,N

for this optimization process. This set of examples D is usually called the data set in the context
of supervised learning. This data might, however, also take different forms, such as in the case
of unsupervised learning where a technique to generate this data might be employed, or instead
we might have yi = g′(xi) on a g′ related to g. A differentiable function L called loss function
gives us a measure of the quality of an approximation y′i for yi: `= L(y′i,yi). In optimization we
now try to find a set of parameters that minimize the cumulative loss on D. This is usually done
via a variation of the gradient descent optimization method: the negative gradient with respect
to our parameters −∇ϑL(y′i,yi) points towards a local minimum point of the loss function for
the particular training instance (xi,yi). Here y′i is the network output for the input xi. Moving the
parameters one little step towards this minimum thus reduces the loss ` of the network output on
this particular instance

ϑ
′ = ϑ −η ·∇ϑL(gϑ (xi),yi)

The factor η determines the size of this step. To minimize the loss for the whole function g
instead of just this single point g(xi) we repeat this minimization process for more of our available
points in D in an iterative fashion. While in general there is no guarantee whatsoever that this
pointwise minimization will lead to a successful minimization on the whole of g, neural networks
have proven to oftentimes approximate values outside of our known instances in D remarkably
well. This ability to perform well on unseen instances x /∈ D is called generalization ability.

While, up to this point, we have just described a neural network as an arbitrary differential
function gϑ that combines its input with ϑ , there are certain patterns in the structure of this
function that empowers neural networks. For one, part of the generalization ability of neural
networks can be attributed to the layered nature of most networks. Most of the time neural
networks can be described as a chaining of functions

gϑ = gl
ϑl

(
gl−1

ϑl−1

(
. . .g2

ϑ2

(
g2

ϑ2
(x)
)
. . .
))

With increasing depth of the network the performance has in recent years oftentimes been
observed to increase – thus the rise in popularity of the so called deep learning. In practice
the networks are mostly made up of common, oftentimes repeating components, combining a
subset of the network parameters ϑi ⊂ ϑ with an intermediate internal representation. Common
examples for these components include matrix multiplication, 1d or 2d convolution and non-
linearities. These components might be combined into larger common components, such as
a convolution-layer, a tanh-layer, or an attention mechanism. Finally these components are
combined in patterns resulting in a certain type of network architecture. Examples include
multi-layer perceptrons, long-short term memory networks (Hochreiter and Schmidhuber, 1997),
time-delay neural networks (Waibel, 1987), convolutional neural networks (Fukushima, 1980;
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Figure 2.2.: A two-dimensional PCA projection of word embeddings trained via the skipgram
method illustrates how a model by itself organizes concepts and implicitly learns the
relationships between them (Mikolov et al., 2013b)

Lecun et al., 1989), encoder-decoder networks (Cho et al., 2014; Sutskever et al., 2014) or a
Transformer network (Vaswani et al., 2017). For more information on the network architecture
relevant to NMT refer to 2.2.3. For more information on the layered structure and what the
network might learn refer to 2.2.6.

2.2.2. Word Embeddings

Word embeddings are a technique to represent discrete word units w from a vocabulary V as
numerical vectors. These word embeddings are commonly used in NLP tasks when a neural
network receives words as its input. By some appropriate means we therefore learn a repre-
sentation E for each word w ∈ V = (w1, . . . ,wN) and then feed the embedded word x = E(w)
into the neural network during the forward-pass. This commonly involves learning a concrete
vector representation for each word w and then arranging those vectors in an embedding matrix
E. Word vectors can be learned in various ways. Usually in NMT the encoder embedding layer,
as well as the decoder embedding layer, are learned in an end-to-end fashion when learning to
translate. These embedding layers are therefore treated as input layers of the network, while
the embedding layer forward pass is treated as a multiplication of the embedding matrix E with
a one-hot encoded input vector. Including this work, various works, however, use pre-trained
embeddings in their NMT models, where embeddings are learned in a separate step in the training
pipeline (Qi et al., 2018). This commonly involves learning word representations by training a
neural network – a so called skipgram model – to predict the context of a word w (Mikolov et al.,
2013a; Bojanowski et al., 2017). The neural network in this process learns to arrange the words
in its representation space in a meaningful manner, e.g. similar words become close to each other
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in Euclidean space. In a study on the organization of this representation Mikolov et al. (2013b)
have found the embedding space to exhibit additive properties, such as:

emb(king)− emb(man)≈ emb(queen)− emb(woman)

Similar behaviour can be observed in the arrangement of countries and their capitals, as seen in
figure 2.2.

fastText An issue with the original word2vec method (Mikolov et al., 2013a) is that the model
does not learn to represent out-of-vocabulary (OOV) words, e.g. words that it had not seen in
training. This is an issue especially with morphologically rich languages where different surface
forms of the same word are considered different words. The fastText method (Bojanowski et al.,
2017) solves this issue by, instead of learning to represent whole words, learning to represent the
sub-word pieces the word consists of and combining them into a representation for the whole
word. In particular the model learns to represent the character n-grams in a word. The n-gram
representations for some bounds l ≤ n ≤ r are then summed up for the word representation.
Providing an example for 3≤ n≤ 4 the word where is split up into

<wh, whe, her, ere, re>
<whe, wher, here, ere>

This allows for representation of unseen words and thus eliminates the issue with OOV words.

2.2.3. Attention Encoder-Decoder Networks

Machine translation belongs to the category of the so called sequence-to-sequence tasks. The
neural network receives an input sequence of length n and is tasked to produce a sequence of
length m. The neural network architecture used for this kind of task is the encoder-decoder
architecture. As the name implies the network consists of an encoder and a decoder. The
encoder network reads in the input sentence and produces a latent encoder representation. The
decoder takes this encoded representation and from it produces the target sentence, usually in a
word-for-word iterative manner2. Initial proposals of such encoder-decoder networks (Sutskever
et al., 2014; Cho et al., 2014) encode the source sentence in a single fixed size vector c. This
fixed size summary of the source sentence, however, lacked the ability to encode the while
meaning for longer sentences. Bahdanau et al. (2015) thus proposed a attention mechanism,
which dynamically generates a summary of the relevant parts of the source sentence, a so called
context vector, for each target word. A visualization for this attention in an example sentence
can be found in figure 2.3. To this end the encoder enc, while reading in the source sentence
f = ( f1, . . . , fn), produces a hidden state hi for each input word fi. The decoder recurrently
produces the output words ei in a stateful manner, producing a decoder intermediate state s′i in the
ith decoding step. In each decoding step i the attention mechanism then compares each of the
encoder states h j with the current decoder state s′i, producing an attention score α j for each of the
input positions j. The attention scores are then used as weights to calculate the context vector ci

2There are, however, proposals for non-autoregressive approaches to decoding, such as Ghazvininejad et al. (2019)
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Figure 2.3.: The attention mechanism produces an alignment for each target word, determining
the relevance for each of the words in the source sentences. Light values represent
high relevance scores αi j.

as a weighted sum of the encoder states:

h j = enc( f j,h j−1) (2.11)

(ei,si) = dec(ei−1,si−1,ci) (2.12)

ci =
n

∑
j=1

αi j ·h j (2.13)

αi j = normalize{reli1, . . . ,relin} reli j = att(s′i,h j) (2.14)

The initially proposed system uses a long short-term memory recurrent neural network for the
encoder, as well as the decoder network each. The encoder hidden states h j and the decoder
hidden states si are thus simply the RNN hidden states. The attention model is a simple tanh-feed
forward layer.

Current state-of-the-art translation systems usually use the encoder-decoder architecture known
as the Transformer (Vaswani et al., 2017). While previous proposals for encoder-decoder networks
all use either RNNs or convolutions for sequence processing, the Transformer relies solely on self-
attention (Lin et al., 2017). This self-attention produces a new contextual sequence representation
from a sequence, by using attention to attend to the sequence itself. For each sequence position
i the self-attention attends to each of the sequence positions j, calculating attention scores for
all j ∈ {1, . . . ,n}. The new representation for position i is then calculated as the weighted sum
of all of the input values in the sequence, after calculating the weights from the attention scores.
Using multiple layers of self-attention followed by feed-forward layers, the encoder thus encodes
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Figure 2.4.: A graphical representation of the Transformer architecture (Vaswani et al., 2017).

the words in the input sentence in a context aware manner. Similarly the decoder word-by-word
iteratively produces the output while applying self-attention to the previously generated output
words. Additionally the decoder simultaneously also attends to the encoder output sequence
using a second attention mechanism. Vaswani et al. (2017) further extend the regular attention
mechanism to multi-head attention. This extended attention mechanism simultaneously applies
k parallel attention layers, while projecting down the input values to each one of the parallel
attention layers to different individual representations. This causes each one of these parallel
layers, called attention heads, to learn to pay attention to different features of the input sequence
representation. Figure 2.4 for a graphical representation of the Transformer architecture.

2.2.4. Universal Multilingual NMT

In order to use the available parallel data more effectively research in the field of multilingual
NMT tries to combine all the available parallel data to simultaneously train a single unified NMT
system on multiple language pairs. The universal NMT approach to multilinguality shares all of
its network components across all of its source and target languages: it shares the multilingual
word embeddings, encoder, decoder and attention mechanism. For any individual source language
` this helps the encoder to learn a better sentence encoding for sentences of `, as we effectively
have more data available for ` as the source language. Similarly it helps train the decoder
language model for ` if it is the target language, producing better and more fluent target sentences.
Ideally the NMT system will learn a common representation for all of its languages, mapping
semantically identical source sentences onto the exact same sentence representation. This ideal
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case represents a form of interlingua translation (see 2.1.3), where the universal encoder sentence
representation presents a form of a neural interlingua. The observed ability of such a multilingual
NMT system to do zero-shot translation supports the idea that, to a certain degree, the universal
NMT system does indeed learn such a universal representation. This zero-shot translation is
the ability to translate between a language pair `1 → `2 for which the translation system has
never seen parallel data in training. However, it has also been shown that given enough learning
capacity the network will simply partition its parameters, allocating some to certain language
pairs (Arivazhagan et al., 2019).

In order to extend a standard bilingual translation system to multilingual translation, the NMT
system is simply trained on a multilingual parallel corpus without any modifications to the
NMT architecture. This multilingual parallel corpus is in turn simply the concatenation of all
of the available bilingual parallel corpora for all of the language pairs involved. The shared
vocabulary must therefore be generated from the multilingual corpus data. The NMT system
is then subsequently trained to simultaneously translate to multiple languages, e.g. a single
mini-batch might contain sentence pairs of different source and target languages.
Additionally a mechanism is required for selecting the desired target language in translation. As
originally proposed in Johnson et al. (2016) and Ha et al. (2016) this can be done via a special
token in the beginning-of-sentence (BOS) position, where each possible target language has its
own token. Alternatively, through a second input channel in the decoder a language embedding
can also be provided to specify the target language (Ha et al., 2017). Provided a suitable selection
mechanism the neural network will, by itself, learn to translate from each of its source languages
to each of its target languages, in the process automatically recognizing the input sentence source
language without requiring any further input.

2.2.5. Multilingual Word Embeddings

Similarly to the workings of the shared encoder, the universal multilingual NMT system also
learns in training to arrange words in its multilingual embedding space in a meaningful way. Ha
et al. (2016) show that words similar in meaning, even across language boundaries, are clustered
together in such a multilingual embedding space. Figure 2.5 illustrates this concept in a shared
embedding space extracted from their multilingual translation model. While this multilingual
embedding space is induced in end-to-end training on the translation task, different methods
to induce such an embedding space have recently been proposed. Recent work on so called
cross-lingual word embeddings (CLWE) allow to train an alignment mapping between different
monolingual word embedding spaces (Conneau et al., 2017; Joulin et al., 2018; Artetxe et al.,
2018a,b). To this end either a bilingual word lexicon can be employed to train the alignment
in a supervised fashion, or a fully unsupervised alignment can be learned without any bilingual
data whatsoever. For a comparison between the supervised and the fully unsupervised methods
see Ruder et al. (2019). In both cases the proposed methods train a linear mapping Asrc→tgt
from the source embeddings space Esrc to the target space Etgt through iterative alignment of
the embedding matrices. The new Esrc aligned into the target embedding space is then simply
calculated as

E ′src = Asrc→tgt ·Esrc
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Figure 2.5.: The visualization of the shared embedding space of a universal multilingual NMT
system shows the networks tendency to cluster together words which are direct
translations of each other (Ha et al., 2018).

In combination with a monolingual word embedding method such as a fastText model (see
section 2.2.2) it is thus possible to induce a multilingually aligned word embedding space using
monolingual data only.

Figure 2.6.: An outline of the unsupervised alignment method by Conneau et al. (2017) shows how
the embeddings space X is iteratively stretched and rotated to fit to the embedding
space Y .
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2.2.6. Transfer Learning

Given two random variables X and Y and a model gϑ parameterized by ϑ to estimate the
distribution P(Y | X) we will use the data set D to estimate a fitting ϑ (as described in section
2.1.2). This data set should consist of pairwise observations of (X ,Y ): D= {(x1,y1), . . . ,(xn,yn)}.
It might, however, be the case that the data set D is of insufficient size to approximate the
distribution to an adequate quality. In such case we might find a larger data set D̃ with observations
for variables X̃ and Ỹ which share a similar distribution with X and Y . Given an iterative method
of parameter estimation D̃ can thus be used to estimate an initial set of parameters ϑ̃ suitable for
P(Ỹ | X̃). Continuing the estimation process on D to find parameters better suited to P(Y | X) is a
process we call fine-tuning.
This process works particularly well when using deep neural networks for our model gϑ . Early
attempts at transfer learning with neural networks are described by Waibel (1989); Waibel et al.
(1989). Research in visualization of deep convolutional neural networks for image classification
tasks shows how lower network layers learn to extract generic features particular to the distribution
of X (Zeiler and Fergus, 2013). Lower layers are thus mostly independent of Y and only with
increasing depth do the neurons start to react to specific image classes. This property has led to
successful transfer learning on image recognition tasks, training a classification network on the
large ImageNet data set (Deng et al., 2009). The classification model is then adapted to a lower
resource classification task, going as far as even freezing lower layers in fine-tuning. Similarly in
NLP, training a general model on large data sets and fine-tuning it on domain specific data is a
process called domain adaptation and has been common practice before even the introduction
of neural networks to machine translation (Chu and Wang, 2018). Further, recently successes
in transfer learning between different NLP tasks have been achieved, most notably through the
application of BERT (Devlin et al., 2018).

2.2.7. Continuous Output NMT

Since taking the first place in the 2012 ILSVRC (Krizhevsky et al., 2012) neural networks have
gathered a great deal of attention for achieving superior performance to traditional methods in
computer vision and various other tasks. Much of this attention can be attributed to superior
performance on classification tasks in particular. The same also applies NMT and many other
NLP tasks, which all belong to the category of sequence classification tasks. A most common
approach to this classification is to train a neural network with a softmax output layer to minimize
the cross-entropy loss between the network output and one-hot encoded class labels. In the case of
NMT these classes are represented by the words in our output vocabulary. A major disadvantage
to this method, however, is that the large output layers, whose size stands in direct relation to the
output vocabulary, results in very high computational complexity as well as memory complexity
of the softmax output layer. As such keeping the output vocabulary size at an acceptable level is
critical in NMT. To this end various methods such as the usage of sub-word units (Sennrich et al.,
2015) or hierarchical softmax have been employed.
The approach proposed by Kumar and Tsvetkov (2018) on the other hand solves the softmax issue
by replacing the softmax layer with a continuous embedding layer in the output. Instead of the
prevalent treatment of NMT as a classification task they formulate NMT as a regression task. In
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training they minimize the distance between the final layer output and the target word embedding.
This target word embedding is taken from a pre-trained embedding model, such as word2vec or
fastText. The loss function they put to use in their regression task is the negative log-likelihood of
the von Mises-Fisher distribution. The von Mises-Fisher distribution hereby plays the role of a
probabilistic cosine loss, as they are looking to maximize the directional similarity of the output
and target word embeddings. The distribution density, as they use it, is defined as

p(e(w); ê) =Cm (‖ê‖)eêT e(w) (2.15)

whereas e(w) is the pre-trained word embedding of the target word w, ê is the network output of
dimension m and Cm is a normalization factor. In inference the output word for decoding step i is
chosen as the word whose embedding is most similar to the decoder output, according to the von
Mises Fisher loss:

ŵi = argmax
w∈V

{p(e(w); ê)} (2.16)

This approach tries to directly optimize the network output towards the semantic information en-
coded by the embeddings and thus allows for a computational complexity and memory complexity
independent of the vocabulary size.



Chapter 3.

Related Work

3.1. Pre-Trained Embeddings in NMT

In a study by Qi et al. (2018) the authors look at the effectiveness of using pre-trained embeddings
in NMT. Similar to this the work in this thesis, they – among other things – ask whether the
alignment of the embedding vectors into a shared embedding space helps in NMT, coming to the
conclusion that it is helpful in a multilingual setting. This, to the best of our knowledge, is the
only work which combines multilingual NMT with cross-lingual word embeddings. We presume
that this is the case due to the difficulty of handling the large multilingual vocabulary without the
use of subword units.

3.2. Cross-Lingual Transfer Learning

Neubig and Hu (2018) look into the possibility of rapidly extending a multilingual NMT model
by a new language. They consider a low-resource language for their new language and compare
between bilingual training, multilingual training alongside a highly resourced similar source
language and multilingual training with as many languages as possible. They come to the
conclusion that a highly multilingual setting – this in their case is a system with 58 source
languages – significantly improves the ability to learn the low-resourced language. Similar to
this thesis they also achieve significantly good performance on a yet entirely unseen language.
Unlike this thesis they do not use cross-lingual embeddings, but rely on bilingual data to teach
their model the cross-lingual word correlations.

To the best of our knowledge Kim et al. (2019a), who also look into cross-lingual transfer
learning in NMT, presents the most closely related research to the work in this thesis. They look
into swapping out the source language to a yet unseen language, teaching the model to translate
from it via unsupervised transfer learning. This concept is analogous to our approach of extending

19
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a model with a new language, the difference being their bilingual basemodel, as opposed to our
multilingual basemodel. As with our approach to the transfer learning task, Kim et al. (2019a)
also use cross-lingual embeddings in conjunction with denoising autoencoding as one of their
core strategies. Unlike this thesis they, however, only consider swapping out the source language
and leave the target language to the future work. Furthermore, while our main focus lies on
exploring transfer learning in a multilingual universal encoder-decoder NMT system, they do not
touch upon the subject of multilingual NMT. Lastly, we provide some differences in the execution
of the transfer, e.g. they align their monolingual word embeddings for the new language into
the parent model embedding space post-training of the parent model. This strategy is less suited
towards a multilingual setting, as in training the NMT model would induce a separate embedding
space for each of its languages, thus leaving unclear what embedding space to align the new
language embeddings to.

Escolano et al. (2019) devise an approach to multilingual NMT with independent encoders
and decoders that allows for zero-shot translation, as well as the addition of new languages.
They train separate encoders for each source language, which they then train to map source
sentences into a shared sentence representation space. To this end they minimize a joint objective
function consisting of the losses for translation in both directions, source sentence autoencoding
and cross-lingual representation distance. They then investigate the incremental addition of new
languages by adding a new encoder or decoder, which they then proceed to train in mapping to or
from the shared representation space. This in principle is similar to what we try to achieve in this
work, however, in a unsupervised fashion. Furthermore, it is our hope that the universal encoder,
being exposed to many different languages, learns to generalize well across different languages.
As such we hope that a universal encoder is much easier to adapt to new languages.

Much like the work in this thesis Siddhant et al. (2020) look into leveraging monolingual
data for multilingual NMT. Amongst other things they look into extending the model by a
new language through masked denoising autoencoding. They, however, neither employ cross-
lingual word embeddings, nor do they perform backtranslation. They suggest that their model
presents a promising avenue for jump-starting the backtranslation process. The work in this thesis
demonstrates this to indeed be the case.

3.3. Unsupervised NMT

The work we present in this thesis is also closely related to unsupervised NMT (Lample et al.,
2017, 2018; Artetxe et al., 2017, 2019). Unsupervised machine translation attempts to train a
translation system without parallel data at all. This field of research has recently made significant
progress through the emergence of unsupervised cross-lingual word embeddings. The most basic
unsupervised machine translation systems perform word-by-word translation using bilingual
dictionaries which were induced in an unsupervised fashion from the cross-lingual word em-
beddings (Conneau et al., 2017). Lample et al. (2017) train a full neural unsupervised machine
translation system translating between languages `1 and `2. Using the word-by-word translations
produced by Conneau et al. (2017) they train an initial system performing some semblance of
translation in both directions `1→ `2 and `2→ `1. The simultaneous translation in both direction
is achieved analogously to universal multilingual NMT, by sharing an encoder and a decoder
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between both languages. In an iterative process they then train the NMT model to generate `1
sentences as well as `2 sentences through denoising autoencoding, while simultaneously training
to maximize the similarity between the encoder sentence representation for sentences from `1
and `2 through adversarial training. Through unsupervised means they thus essentially induce
a universal encoder-decoder multilingual NMT system with a shared sentence representation
for `1 and `2. Unlike Lample et al. (2017) we consider in this work a different setting. While
they essentially bootstrap a multilingual NMT system from monolingual data, we consider a
more realistic scenario where we have enough data from higher resource language pairs to train
up a regular multilingual NMT system from bilingual data. This supervised NMT system we
then extend by a new language by purely monolingual data. We thus learn the shared sentence
representation in regular supervised training resulting in a more effective approach to this problem.
This difference in the nature of our setting means that if we learn to translate in the direction
`1→ `2 with `2 being the new language we add, the NMT system already knows how to translate
to and from `1. Assuming a perfectly language independent sentence representation this means
the NMT system only needs to learn to translate to and from `2 while we can ignore the `1 side,
thus opening up different possible approaches to this task. Inspired by this approach, as part of
our work we look into denoising autoencoding and backtranslation adapted to our scenario.

Kim et al. (2019b) look into improving upon unsupervised machine translation, based on word-
by-word translation through unsupervised cross-lingual word embeddings. They therefore employ
word-by-word translation in combination with a language model, as well as a postprocessing
step for local reordering. Similar to the work in this thesis they do away with the costly iterative
backtranslation, since, while we do employ backtranslation, we merely perform a single round.

3.4. Language Independent Representation

While this is mainly a work on transfer learning in multilingual NMT, exploring the language
independence our sentence representation is also an important part of our motivation. Since
the very introduction of multilingual universal encoder-decoder NMT by Johnson et al. (2016)
the idea of an universal neural interlingua has been a central topic of research. Several works
look into inducing a more language independent representation in an encoder-decoder model.
Pham et al. (2019) explore the question of how the language independence of the encoder latent
sentence representation affects the ability to perform zero-shot translation. By adding constraints
during the training they force the model to learn a more similar representation for sentences of
different languages, thereby improving the zero-shot translation quality. Lu et al. (2018) look
into inducing an neural interlingua in a multilingual NMT system without universal encoder and
decoder. They therefore use language specific encoders and decoders but connect these through
an intermediate layer in between the encoder and the decoder. They describe this layer as an
explicit neural interlingua and use it to perform zero-shot translation, providing – at that time –
the only alternative to universal encoder-decoder systems for zero-shot translation.
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3.5. Continuous Output Representation

To the best of our knowledge the continuous output approach presented by Kumar and Tsvetkov
(2018) has not yet been used in multilingual NMT, nor has it been used for the purposes of
unsupervised NMT.



Chapter 4.

Approach

In training the multilingual NMT system we aim to estimate the probability

P(Y`tgt = y | X`src = x) (4.1)

that the target sentence y is a suitable translation of the source sentence x. The universal encoder
will ideally learn to map the sentences from the different input distributions of X`src – one for each
source language `src – onto a single, shared latent distribution Henc. The decoder is then tasked to
model the distribution 4.1 from this latent variable: P(Y`tgt = y | Henc = h). In this work we aim
to answer two questions

• How well can our universal encoder generalize to an unknown input distribution X`new

corresponding to a new language `new?

• How well can we learn to translate to `new by merely adapting the universal decoder to
estimate P(Y`tgt | Henc) given a set of Henc observations for the target sentences from `new?

The missing piece in this approach are the `new word embeddings: in conventional training of a
universal multilingual NMT system the `new word vectors are randomly initialized. The model
then learns in training to represent its words in a shared multilingual embedding space, by learning
cross-lingual word correlations from the parallel data. In a monolingual data only setting we aim
to achieve an equivalent result through cross-lingual word embeddings. We integrate these word
embeddings into our translation model, by supplying these in the form of pre-trained embeddings.
This yields us a three step approach to our transfer learning task

1. train the cross-lingual word embeddings on monolingual data for each of the involved
languages

2. train the multilingual basesystem on parallel data for the set of base languages `base ={
`1

base, ..., `
m
base

}
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3. add a new language `new to the system on monolingual data only

4.1. Cross-Lingual Word Embeddings

In universal multilingual NMT as it is proposed by Ha et al. (2016), the NMT system – in training
– learns a shared embedding space and a mechanism to correlate between words of different
languages. Given bilingual training data it might thus learn to minimize the distance between
words in this embedding space if they are direct translations of each other, or to cluster words
in some other meaningful way. However, adding a new language without any bilingual data we
do not give the NMT system the chance to do the same with the words from this new language.
As a means to manually supply the word-level correlations in our embedding space, we want to
explore the approach of using pre-trained cross-lingual word embeddings in the NMT system,
instead of training them end-to-end in the translation task. We will use pre-trained monolingual
word embeddings learned with fastText (Bojanowski et al., 2017) for each one of our languages
and manually align them into one common embedding space. For this common alignment we
pick one of our base languages as a pivot. For each language ` we then train a linear mapping
A`→pivot from the embedding space of ` into the pivot’s embedding space. We then calculate the
effective embedding matrix E ′` for ` as

E ′` = A`→pivot ·E`

where E` is the monolingual fastText embedding matrix for `. The linear mapping A`→pivot is
learned by means of iterative alignment between E` and Epivot , as described by Joulin et al. (2018).
We then finally concatenate the resulting embeddings E ′` into one shared embedding matrix E,
which we then use to initialize the embedding layers in our NMT system. We therefore use
shared the network parameters across our encoder embeddings, decoder input embeddings and
decoder output embeddings. When translating to a new language `new we then simply swap out
the vocabulary and replace the common embedding matrix with E ′`new

.

As the word embedding matrix takes up a large portion of the network parameters, we expect
this to greatly ease up the adaptation process towards the new language. Minimizing the amount
of trainable network parameters we further hope to increase the neural networks generalization
ability, promoting its ability to learn a universal shared representation.

4.2. Continuous Output Representation

Instead of calculating a multinomial distribution over a closed vocabulary, the continuous output
approach does – to describe it in Kumar and Tsvetkov’s (2018) words – optimize the network
output directly towards the information encoded in the pre-trained word embeddings. Using a
word embedding method which operates on a semantic level, as it is the case with fastText, lets
us optimize towards a semantic output. Conceptionally this is ideal to our use case, since we
want to eventually decode towards unseen words of a new language, but in a shared semantic
embedding space. As such in training our basesystem, instead of learning to output the words in
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the vocabularies of our base languages, we want the output to approximate the semantics in this
shared space itself.
Additionally, in a more practical vein, the continuous output approach helps us deal with the issue
of having a massive multilingual vocabulary. It gives us computational complexity, and more
importantly memory complexity independent of our vocabulary size. This especially allows us to
add more languages to our NMT system which, due to memory constraints would be difficult in
the case of a regular softmax model. Alongside a softmax model we will thus also evaluate our
experiments on a multilingual continuous output model.

4.3. Adding a New Language

As the domain of our work we will focus on adding a new language using monolingual data
only. In order to explore the questions we are asking in regard to our multilingual sentence
representation we propose three experiments, in increasing level of supervision

1. blind decoding

2. (denoising) autoencoding

3. backtranslation

Figure 4.1 describes the initialization process of the transfer system common to all of the
performed experiments. While the first experiment serves to answer the question of how well
the multilingual model can generalize to an unseen language, the latter two experiments present
two different methods of adapting on `new monolingual data. Given the `new monolingual dataset
D`new = {y1, . . . ,yn}, these two adaption methods represent different ways of obtaining Henc
observations h for a given y ∈ D`new .

4.3.1. Blind Decoding

To provide an indication of how well the universal encoder generalizes to unseen languages we let
our multilingual model decode from `new sentences, without any sorts of prior exposure to `new.
We call this method blind decoding. We therefore simply swap out the source vocabulary and
the corresponding embeddings with the `new cross-lingual embeddings and subsequently decode
from `new. It is important that we only have words from `new in our target vocabulary if we try to
generate sentences from `new, since our model has not yet learned to correlate between BOSnew
and `new in its internal target language selection mechanism.
By blindly decoding from `new we hope to answer the question of how well the encoder can
encode and represent sentences from an unseen language. We want to see how much information
the encoder is able to extract from these sentences and then further how well its sentence
representation can represent information in a language independent – ideally purely semantic
– manner. While we also want to test the NMT system ability to blindly decode to a new
language, we consider the target side the less interesting side in this experiment, as the decoder
couldn’t possibly know language features such as word order for `new. As such the language
production ability should be very limited, while the language comprehension ability should only
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Figure 4.1.: A depiction of the initialization process for the transfer system including `new. It
describes how the trained model parameters – that is the encoder and the decoder
parameters – are kept as is, while the embedding layers are swapped out. The
embedding vectors are provided by monolingually pre-trained fastText models for
each language, then aligned into a common embedding space. This example has
Portuguese (Pt) as `new on the target-side (decoder). Depending on the experiment,
however, `new might also be on the source-side (encoder).
For the experiments on blind decoding the transfer system on the right-hand side is
used as is to decode to Portuguese, while for the other experiments we further adapt
the transfer system to `new.
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be constrained to a lesser extend. This method of decoding to and from an unknown language
with only the help of cross-lingual word embeddings can be compared to the analogy of a human
translator who is given a dictionary for a language he doesn’t know, and is asked to comprehend
or produce sentences from this language.

4.3.2. Autoencoding

As our second experiment we would like to explore the efficacy of learning a mapping between
the sentence representation and `new. To this end we propose two different ways of using our
NMT model as an autoencoder, e.g. we train our model to translate from `new to `new:

Denoising autoencoder According to our hypothesis of a well generalized, interlingua-like
sentence representation, for our model to learn to translate to `new it suffices to teach the model

1. to correlate between the target language indicating BOS marker BOSnew and `new

2. the target language syntax

For the second task we train the model in denoising autoencoding: the model gets noisy input
sentences and is tasked with reconstructing the original, grammatically correct version of this
sentence. One major aspect of language syntax which sets apart different languages from each
other is the word order. By applying slight permutations to the input sentence, one can easily force
the model to learn the correct word order. Being exposed to sentences from the new language,
we believe the model will implicitly also learn aspects of the syntax other than word order. As
described by Lample et al. (2017), we therefore apply slight permutations to our input sentences,
displacing every word by up to n positions in the original sentence. Additionally we also apply
word dropout as an additional noise function: any single word from the input sentence is removed
with a probability of pwd .

Plain autoencoder As our second autoencoding method we try simply training `new→`new
while freezing the Transformer encoder parameters. With this method we rely on the ability of
our encoder to encode sentences from `new in a suitable manner. We simply take the encoder
output for sentences from `new, which is the latent sentence representation, and learn to generate
sentences from `new from it. In order for the model to not just learn to copy words from the
input sentence to the output sentence, we rely on the encoder output to be language independent
enough to not retain any word level information from the source sentence. This method thus tests
the raw ability of our NMT system to do translation in an interlingua-like manner.

Finally we would like to try and combine both methods and see how our results change if we
train to denoise while also freezing the encoder.

4.3.3. Backtranslation

Lastly we would like to combine our model’s ability to translate from `new and its ability to adapt
to `new. We therefore use the in unsupervised NMT commonly employed approach of training
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on backtranslated data. Therefore one can use a language model in combination with an NMT
system trained to translate in both directions to iteratively produce better translations and then
tune the bootstrapped model on the improved generated data. In our approach to backtranslation –
exploiting the model’s ability to perform blind decoding – we choose a simplified approach: we
perform one single round of backtranslation in which we use monolingual `new data to

1. blindly decode from `new to each one of our base languages `base in order to generate
synthetic parallel data

2. reversing the translation direction we train our model on this synthetic parallel data to
translate from `base to `new

We also try freezing the encoder parameters in the process of training. This is in part due to the
fact that our main goal is to teach the model decoder to translate to `new, but also in order to give
the model less exposure to the noisy synthetic input data.



Chapter 5.

Evaluation

The evaluation for our approach consists of two parts: the evaluation of the multilingual base
model, and then finally for adding a new language.

5.1. General Experimental Setup

Cross-lingual word embeddings As the basis for all of our monolingual word embeddings
we use the pre-trained fastText models provided on the fastText website1. These models provide
300 dimensional `2-normalized word vectors and each contains 2,000,000 entries as full word
units accumulated on large web crawled monolingual text corpora. The MUSE repository2

website provides word embeddings for a multitude of languages, which have been pre-aligned
into one shared embeddings space. They induce this shared space by picking a pivot language
– such as English – and aligning all of the monolingual embeddings to the embeddings for the
pivot language, using the supervised alignment technique provided by MUSE. This supervised
alignment uses a bilingual seed dictionary to learn a linear mapping between embedding spaces
using iterative Procrustes alignment. While in our initial experiments we used these pre-aligned
embeddings provided by the MUSE repository, unfortunately the repository provides neither the
fastText models for the embeddings, nor the alignment matrices they used. We require these,
however, in order to map OOV words into the shared embedding space (as described in 5.1).
Using the same single hub pivot approach we thus align our own cross-lingual embeddings from
the provided monolingual fastText embeddings. For the alignment we use direct optimization
on the RCSLS retrieval criterion (Joulin et al., 2018). Alignment accuracies are listed in table
5.1. In order to reduce the vocabulary size, we subsequently regenerate our vocabulary and the
corresponding embedding vectors using only the words in our NMT training corpus.

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://github.com/facebookresearch/MUSE
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lng vocab size % UNKs CLWE acc
en 47,067 5.9% 1.000
de 98,747 19.8% 0.554
es 74,267 5.8% 0.750
fr 60,416 9.2% 0.732
it 74,962 7.1% 0.696

total 355,459
pt 67,237 0.734
ru 166,651 0.627

Table 5.1.: The number of words in the vocabulary generated from the training corpus for each
of the languages, as well as the percentage of words not contained in the pre-trained
fastText models. total represents the size of the shared vocabulary of the base model.
The column CLWE acc describes the nearest neighbour accuracies for the cross-lingual
embedding alignments to `pivot = en.

Full word-units Using the BPE approach – if learned on a multilingual corpus – gives us the
ability to share information between vocabularies, as well as a significant reduction in the size of
the resulting multilingual vocabulary. For this work, however, we choose to work with full word
units, for the main reason that cross-lingual word embeddings perform poorly when used with
subword units (Kim et al., 2019b). We confirm this in our preliminary experiments, where the
BPE model in combination with cross-lingual embeddings is vastly outmatched by the full-word
unit variant. Furthermore, since we are adding a new language to the model, in order to use BPE
we would either have to

• learn the BPE codes on the merged dataset including data for the new language before
starting the training for the base model. This method is out of scope in the context of our
scenario to add a completely unseen language.

• deal with extending the existing BPE codes to include the new language. The fact that
relearning the BPE codes to include the new language would change the vocabulary of the
base model complicates matters here.

• learn the BPE codes on the new language separately. This, however takes away the above
stated advantages of using BPE.

Besides the reduction in vocabulary size the main advantage of the BPE approach is that arbitrary
words can be split into tokens present in the BPE vocabulary, therefore eliminating out-of-
vocabulary (OOV) words. Our experiments with full word units show that for morphologically
rich languages such as German, the pre-trained embeddings from the MUSE repository containing
200,000 words, around 19% of words are OOV words. There is therefore a strong need for a
solution to the OOV word problem. We alleviate this by using fastText as the basis for our
monolingual word embeddings: by using subword level information to construct embedding
vectors for words, fastText gives us the ability to map unseen words into the embedding space.
We then subsequently map the word vector into the shared embedding space.
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model nofilter filter ∆ nofilter filter ∆

softmax 24.50 24.56 +0.06 26.60 26.65 +0.05
frozen 23.31 23.78 +0.47 25.09 25.47 +0.38
continuous 20.11 22.27 +2.16 22.05 24.11 +2.07

Table 5.2.: The comparison between decoding while restricting the target vocabulary to a single
language (filter) shows an improvement over unrestricted decoding (nofilter) for each
of our models. While improvements for the regular softmax model are marginal only,
both models operating on frozen word embeddings show significant improvements.

The vocabulary of our NMT model consists of all of the single vocabularies and their embedding
vectors merged together into one large multilingual vocabulary. Table 5.1 lists the resulting
vocabulary sizes, as well as the amount of words in this vocabulary not contained in the pre-
trained fastText embeddings. In order to deal with duplicate words across different languages
we encode each word with a language specific prefix. Therefore we would encode the English
word bank as en@bank. This also allows for easy filtering of individual languages, e.g. when
restricting the target vocabulary to a single language (see chapter 5.1). Because we use full word
units, we can easily match any token in the vocabulary to its corresponding language, which is
not the case in a model with BPE units that are shared across multiple languages. In inference
we thus restrict the target vocabulary to the tokens matching the language we decode to. As the
comparison between decoding with and without this restriction in table 5.2 shows this method,
besides a speedup in inference, also provides an improvement in translation quality. Using this
restriction to a single language, we can also force the model to only choose tokens from a single
language in a situation where it would otherwise not do so. We later make use of this to force the
model to decode to a yet entirely unseen language (see section 5.3.1).

Datasets As our training, development and evaluation data sets we use multilingual transcrip-
tions of TED talks (Cettolo et al., 2012). For our basesystems we include English, German,
Spanish, French and Italian as the base languages. We train the basesystem on a total of 20
language pairs, and a parallel corpus size of 3,251,582 sentences, which is around 160,000
sentences on average per language pair. For our experiments on adding a new language we use
monolingual TED data for Portuguese and Russian, and parallel test data for the evaluation of
the BLEU score. The monolingual data corpora are around the same size as our parallel data,
specifically 148,321 sentences of Portuguese data and 187,843 sentences of Russian data. For
test data and development data we use the IWSLT dev2010 and tst2010 data sets. Development
data is in the following tables abbreviated as dev.

NMT model For our NMT model we use a multilingual Transformer model with relative
position encodings (Shaw et al., 2018). In accordance with our 300-dimensional pre-trained
word embeddings for our Transformer model we use a model size of 300, and inner size of
1200, 6 attention heads and 6 layers. Our implementation is based on the repository provided
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by Kumar and Tsvetkov (2018)3, which in turn is based on OpenNMT-py4. We generally use
the same set of languages on source and target side and thus use one shared vocabulary and
word embeddings. We further share the same set of pre-trained embedding parameters across the
encoder embeddings, decoder input embeddings as well as the output layer of the decoder. For
the full set of training parameters, please refer to Appendix A.1.

5.2. Multilingual Base System

For our experiments we consider three different settings for the multilingual systems

1. regular softmax

2. softmax with frozen embeddings

3. continuous output representation

In all of these settings the embeddings – including the output layer embeddings – will be initialized
with the pre-trained embeddings.

Regular Softmax The regular non-frozen softmax model mainly serves as a baseline model
for comparison with the frozen softmax model, as we do not know how well the monolingually
pre-trained fastText embeddings fit the translation task. We initialize this model to the trained
cross-lingual embeddings while in training adapting them to the training data. As described by
Kim et al. (2019a) we try to extract the trained embeddings from the adapted softmax model, to
then align our Portuguese fastText embeddings into the extracted embedding space. Using this
approach, however, our methods of adding the new language (as described in section 5.3) have
failed to produce any meaningful output when decoding to or from Portuguese.

Frozen Softmax For the frozen softmax model we use a regular softmax output layer while
freezing the embedding layers in training. This includes the encoder embedding layer, as well as
both of the decoder embedding layers. This freezing ensures that the word embeddings stay in
the shared embedding space. We can as such trivially add new words to our vocabulary and align
new languages into this shared embedding space. Additionally our word vectors stay normalized,
which is desirable as it helps generalize towards unseen word vectors since those are normalized
as well.

Continuous Output Due to the fact that training the output embeddings in the continuous
output approach would lead the embedding vectors to converge towards the trivial 0-vector
solution, it limits our ability to train the word embeddings. As we also share our embedding
parameters between the encoder and the decoder, the encoder embeddings have to remain fixed
as well5. We are, however, not limited to completely letting the embeddings vectors remain fixed.

3https://github.com/Sachin19/seq2seq-con
4(Klein et al., 2017, https://github.com/OpenNMT/OpenNMT-py)
5In our experiments we observe that sharing parameters yields us better results than training the encoder embeddings

with decoupled embedding parameters

https://github.com/Sachin19/seq2seq-con
https://github.com/OpenNMT/OpenNMT-py
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As a means of adaptation to our task as well as our data we can train the input layer embeddings,
while ignoring the gradient of the output layer. Due to the constant covariance shift from the
lower layers, this approach has bad convergence properties and only lends itself for very limited
amount of adaptation.

Subword-Unit Baseline In order to test the viability of our basesystem – namely a full word-
unit translation system with pre-trained word embeddings – we also train a standard subword-unit
translation system. This model uses BPE trained on the multilingual corpus as it is commonly
used in state-of-the-art translation systems. This reduces the vocabulary size from the 355,459
words in our full word-unit vocabulary to 36,150 BPE units.

5.2.1. Results

Since Kumar and Tsvetkov (2018) do not (yet) provide a way to perform beam search for their
continuous output approach, we use greedy argmax decoding for the sake of comparability. All of
the following results are thus shown for a beam size of 1. The resulting BLEU scores for our three
variants, as well as the BPE baseline are shown in table 5.4. Table 5.3 shows a comparison of the
BLEU scores averaged over all of the languages. In line with our expectations the continuous
output system is outperformed by the softmax models, on average yielding around 2.5 BLEU
less. Somewhat surprisingly the softmax model with entirely frozen embeddings performs on par
with its non-frozen counterpart, even slightly outperforming it on the development data. This
suggests that the cross-lingual embeddings are very well suited for the translation task, despite
them being trained on an unrelated task on purely monolingual data.

model dev ∆ test ∆

BPE baseline 26.10 27.73
softmax 24.56 -1.54 26.65 -1.08

frozen softmax 24.96 -1.14 26.60 -1.13
continuous 22.27 -3.83 24.11 -3.62

Table 5.3.: Comparison of average BLEU scores for the different variants of the multilingual base
system

Due to our large multilingual vocabulary sizes of around 500,000, we are forced to use
relatively small batch sizes of around 1,500 words and a larger amount of batches per update for
our softmax models. Since the training complexity and memory consumption are independent of
the vocabulary size, the continuous output approach is especially well suited for this multilingual
full-word-unit scenario. Training times for the continuous output models thus result in around one
fifth of the training times for the softmax models with frozen embeddings, and around one sixth
of the training times for the regular softmax models. Furthermore this opens up the possibility to
add massive amounts of languages.
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lng de en es fr it
de 32.6 22.9 24.3 19.6
en 27.2 35.5 34.5 27.8
es 22.8 41.8 31.2 25.9
fr 19.8 33.2 26.2 23.4
it 20.2 31.4 26.6 27.8

(a) BPE baseline model

lng de en es fr it
de 30.6 21.6 22.9 18.7
en 26.3 34.5 33.6 27.0
es 22.1 40.3 30.0 25.0
fr 19.2 32.3 25.3 22.5
it 18.9 30.4 25.4 26.3

(b) regular CLWE softmax model

lng de en es fr it
de 30.6 21.4 23.0 18.5
en 25.9 34.6 33.1 26.5
es 21.8 40.8 29.8 25.1
fr 19.1 32.5 25.3 22.8
it 18.9 30.2 25.7 26.7

(c) frozen softmax model

lng de en es fr it
de 29.1 20.4 18.3 15.2
en 21.1 33.8 30.1 23.4
es 17.5 38.8 27.0 22.3
fr 16.0 31.1 24.4 20.6
it 15.3 29.0 24.3 24.6

(d) continuous output model

Table 5.4.: The multilingual basesystem test scores for each individual language pair. Every line
represents the source language, while columns represent the target language.
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5.3. Adding a new Language

As the actual contribution of our work we will next extend our previously trained multilingual
base system by a new language. This new language will in the following again be denoted as
`new. As the first step after training the multilingual basesystem we

1. from our `new monolingual training corpus Dnew create the `new vocabulary Vnew

2. from Vnew create the `new embeddings Enew using our `new fastText model

3. using our bilingual embedding alignment method train the mapping into the shared embed-
ding space by aligning Enew to our pivot embeddings Epivot

The following experiments are all conducted using Vnew and Enew on the source or target language
side, as required in training and decoding.

5.3.1. Blind Decoding

As our first experiment we to decode to `new without any sort of additional training or adaptation.
We therefore simply swap out the source or target side embeddings and decode from or to `new.

Target Side With our method of using the BOS token to indicate the desired target language,
the model learns in training to associate each of its target languages with the matching BOS token.
At this point, however, the model has never seen even a single sentence from `new and as such
doesn’t know to associate its matching token BOSnew with `new. Simply decoding using BOSnew
thus results in a sentence closely resembling in meaning the input sentence, but intermixed with
the vocabulary from all of its target languages

Ich möchte commencer <unk> by asking du pensar back when you were
bambini, playing con cerramientos.

To force the system to decode to `new we thus remove any words not from `new from the target
vocabulary.

lng continuous frozen
de→pt 8.4 4.8
en→pt 16.2 7.0
es→pt 13.3 5.8
fr→pt 11.6 5.6
it→pt 10.7 5.1

average 12.0 5.7

Table 5.5.: BLEU scores for decoding to Portuguese without any additional training

Using our previously trained basesystems to decode to Portuguese results in an average BLEU
score of 6.2 for the continuous output system, and 3.0 for the frozen softmax model. We suspect
the main cause for the inferior performance of the softmax model to be the missing bias for
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the new language, which the continuous output system does not require. Both models often
get stuck in a decoding loop, always outputting the same word until the maximum sentence
length is reached. We therefore add a postprocessing step, removing these duplicate words. For
both models this almost doubles the BLEU score, while achieving up to even 16.2 BLEU on
English-Portuguese. The resulting scores including this postprocessing step are displayed in table
5.5.

Source Side Decoding with `new as a source language doesn’t require any additional effort.
We simply expand the vocabulary with the aligned word vectors and decode sentences from `new.
As seen in table 5.6 we can achieve BLEU scores of up to 36.4 on Portuguese. While the average
of 28.3 BLEU on the test set is significantly lower, it is still a considerably high score, considering
the model has never seen even a single Portuguese sentence. On a more distant source language
such as Russian, we achieve much lower scores. Despite of the fact that the basesystem has never
even seen a single sentence from any Slavic language the results are, however, still intelligible,
achieving scores of up to 13.1 BLEU. Appendix section A.2 lists some example sentences for
Portuguese-English, as well as Russian-English.

lng de en es fr it avg
pt (dev) 19.1 35.7 27.6 25.1 22.6 26.0
pt (test) 20.6 36.4 30.7 29.3 24.4 28.3
ru (dev) 10.0 13.1 11.5
ru (test) 11.1 12.8 11.9
lng de en es fr it avg
pt (dev) 15.6 33.6 26.1 22.2 20.1 23.5
pt (test) 16.2 34.3 28.5 26.4 22.0 25.5
ru (dev) 8.0 12.7 10.3
ru (test) 8.7 11.7 10.2

Table 5.6.: Scores for decoding from Portuguese and Russian as the new language with either the
frozen softmax model (top) the continuous output model (bottom)

5.3.2. (Denoising) Autoencoder

As our next step we evaluate our two methods of teaching the model decoder to translate to
`new, as well as their combination. Table 5.8 shows the results for decoding to Portuguese and to
Russian using these methods. All of the employed methods result in substantial gains over the
blind decoding strategy. The method of teaching the `new syntax to the decoder via denoising
autoencoding (denoise) results in slightly lower scores than the raw training of the decoder
mapping from the encoder sentence space to the `new sentences (frozen encoder). The difference,
however, is essentially negligible. When training to denoise via word order shuffling, we found –
in accordance with Lample et al. (2017) – that displacing every word by up to n = 3 positions
yields the bests results. Additionally we experiment with adding additional noise via word dropout
in the source sentence. While a dropout rate of pwd = 0.1 yields us the best results, we were not
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able to observe any noticeable gains over pure reordering noise. However, while performance
on Portuguese target data is very impressive, we find the Russian scores to be disappointingly
low. Using both methods in conjunction, e.g. freezing the encoder parameters while training
to denoise gives us gains of around 2 BLEU points for Portuguese and around 1.5 BLEU for
Russian. This brings the translation Portuguese up to an average of 22.9 BLEU, and up to a
maximum of 28.2 BLEU on English-Portuguese. Together with our postprocessing method of
removing duplicate words from the output data (see section 5.3.1) we are also able to bring the
Russian translation scores up to an average of 8.4 BLEU. Table 5.7 shows the resulting BLEU
scores for the individual language pairs using these combined methods. Language pairs for which
we did not have test data readily available are left blank. The Portuguese and Russian continuous
output models trained for 1,000 and 1,250 iterations respectively – taking roughly 15 minutes on
a GTX 1080 Ti GPU. Note that we now decode using beam search for the frozen softmax model.

frozen continuous
lng dev test dev test

de→pt 16.8 17.0 16.7 16.9
en→pt 28.2 28.1 27.4 28.2
es→pt 24.5 27.1 23.6 26.4
fr→pt 19.3 21.5 18.4 21.7
it→pt 20.3 20.8 19.5 20.3

average 21.8 22.9 21.1 22.7

frozen continuous
lng dev test dev test

de→ru 7.5 8.1 6.8 8.1
en→ru 8.6 8.7 7.1 8.0
average 8.0 8.4 7.0 8.1

Table 5.7.: BLEU scores for decoding to new languages after training in denoising autoencoding
with a frozen encoder and postprocessed output data

method ∗→pt ∗→ru

denoising autoencoder 20.8 6.5
frozen encoder 21.1 6.6
+ denoise 22.9 7.9

+ postprocessing 22.9 8.4

Table 5.8.: A comparison of average test scores for different variations in training and decoding of
the denoising autoencoder method. The comparison shows that freezing the encoder
in training and removing duplicate words from the output results in substantial gains
in translation quality. While only scores for the frozen softmax model are listed, the
scores for the continuous output model behave in very much the same way.

We believe the significant improvement for the frozen encoder approach when adding noise
to be an indication that the encoder representation still retains some leftover language specific
word-level information. In this case the noiseless model might find it easier to reconstruct the
original sentence, thus learning less about the new language syntax in the process. While this
is an undesirable quality, this is to be expected considering just the fact that the encoder output
sequence is equal in length to the input sentence.
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5.3.3. Backtranslation

Without any additional steps, decoding blindly our basesystem already produces very impressive
results. As a reminder: English-Portuguese translations go up to 36.4 BLEU (refer to section
5.3.1). In our final experiment we make use of this for backtranslation. Table 5.9 shows the
translation scores after training on backtranslated data for each of the language pairs. For each of
the variants the best performing model is listed, that is in case of the softmax variant the model
with frozen encoder, while the continuous output model performs better with trainable encoder
parameters. A detailed comparison can be found in table 5.10. Translation scores reach up to 34.6
BLEU, namely on the English to Portuguese language pair. From the comparison in table 5.10
we can also see that the Portuguese backtranslation scores are almost on par with our supervised
model trained on bilingual data, falling short by just 0.8 BLEU. Appendix section A.2 lists some
example sentences for English-Portuguese, as well as English-Russian.

frozen continuous
lng dev test dev test

de→pt 21.1 21.3 19.7 20.1
en→pt 34.1 34.6 32.6 33.1
es→pt 28.7 32.3 27.0 30.9
fr→pt 22.7 26.4 21.3 24.9
it→pt 24.6 25.4 22.7 24.2

average 26.3 28.0 24.6 26.7

frozen continuous
lng dev test dev test

de→ru 12.4 13.6 10.6 11.5
en→ru 15.1 13.9 12.6 12.0
average 13.7 13.8 11.6 11.8

Table 5.9.: BLEU scores for decoding to the new languages after training on backtranslated data

frozen continuous

method ∗→pt ∗→ru ∗→pt ∗→ru

backtranslation 27.4 13.2 26.7 11.8
+ frozen encoder 28.0 13.8 26.7 11.4

supervised baseline 28.8 16.2 27.5 13.7

Table 5.10.: A comparison of average test scores for decoding to Portuguese and Russian. The
models are a) trained on backtranslated data without frozen encoder, b) with frozen
encoder, and c) trained on bilingual data in a supervised fashion.

We note that training the Russian system on en→ru data only also improves the performance
on de→ru, in our experiments sometimes even outperforming the performance on the language
pair it is trained on. We see this as an indication that this training mainly affects the decoder
language model for `new. This furthermore means that the decoder, when decoding to Russian, is
able to use a very similar amount of information from the encoder representation of the source
sentence. This either means that the encoder representation of English and German are very
similar in quality, being able to extract the same amount of meaning. Alternatively it means that
the decoder does not learn to use the full amount of information encoded into the representation
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of the English source sentence, meaning the decoder is lacking in translation adequacy while
leaning towards better fluency.

5.3.4. Summary

In our experiments to add a new language we have employed four levels of supervisedness:
in blind decoding we employ no additional data at all, in autoencoding we strictly employ
monolingual data, while in backtranslation it is synthetic bilingual data, and finally real bilingual
data for the baseline model. Table 5.11 shows a summarising comparison of all of the methods.
As expected decoding with `new on the source-side is the easiest. Here even blind decoding
comes close to the baseline model for Portuguese achieving up to 36.4 BLEU. We believe this
result to provide a resounding yes as an answer to the question of whether the universal encoder
learns a well generalized language representation. Applied to Russian the method also delivers
impressive results considering the setting. Translation quality is expected to be worse on Russian
considering it is linguistically far more distant to the base languages than Portuguese. Additionally
its morphological richness and more than double vocabulary size further makes translation more
difficult. We, however, believe that the lower quality of the embedding alignment plays a big role
in the poorer performance on Russian, thus leaving room for improvement.

In our experiments to adapt the universal decoder to a new target language we compare between
our autoencoding approach and the backtranslation approach. Our results for the autoencoding
approach also clearly show that translation from other languages can – to some degree – be
learned just by learning to translate from Portuguese to Portuguese. While this works well as
a proof-of-concept, the backtranslation approach, however, far outmatches the autoencoding
approach. This suggests that, while the encoder can blindly extract impressive amounts of
information from Portuguese source sentences, the resulting encoder representation is still far
worse in quality than for sentences of known languages, e.g. English. This is the case even more
so for Russian.

source-side method pt-de pt-en pt-es pt-fr pt-it ru-de ru-en ∅ pt ∅ ru

blind decoding 20.6 36.4 30.7 29.3 24.4 11.1 12.8 28.3 11.9
supervised 22.2 39.7 33.0 31.9 26.6 15.2 20.9 30.7 18.1

target-side method de-pt en-pt es-pt fr-pt it-pt de-ru en-ru ∅ pt ∅ ru

blind decoding 8.4 16.2 13.3 11.6 10.7 1.1 1.7 12.0 1.4
autoencoder 17.0 28.1 27.1 21.5 20.8 8.1 8.7 22.9 8.4

backtranslation 21.3 34.6 32.3 26.4 25.4 13.6 13.9 28.0 13.8
supervised 21.9 35.8 32.9 27.1 26.2 15.1 17.2 28.8 16.2

Table 5.11.: A summary of our evaluation scores for translating from or to either Portuguese or
Russian. The top half lists evaluation with the new language on the encoder side
and the decoder side in the bottom half. Aside from the target-side blind decoding
method only softmax model scores are taken into consideration. target-side blind
decoding lists the results for the continuous output model.
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The continuous output model is consistently outperformed by the softmax model by around 1 to 2
BLEU. The exception to this presents the target-side blind decoding, where due to the absence of
a word level bias in the output layer the softmax model has difficulties decoding to new languages.
The continuous output, however, has shown up to 6 times quicker training times due to larger
batch sizes and quicker forward and backward passes.



Chapter 6.

Conclusion and Future Work

6.1. Conclusion

In this work we have looked into adding a new language to a previously trained multilingual
NMT system in an unsupervised fashion. We explore the possibility of reusing the existing latent
sentence representation, adding a language by merely learning the mapping between this latent
representation and the target language space. We hope to see the model learning a generalized
and language independent enough sentence representation that we can easily apply and adapt it to
an unseen language. As part of our approach we explore the possibility to do multilingual NMT
with pre-trained cross-lingual word embeddings. To then help our model map sentences from a
yet unseen language to and from the model sentence representation space, we manually align
pre-trained monolingual word embeddings for our new language into the shared cross-lingual
embedding space. Using this technique alone allows us to decode from a yet entirely unseen
source language in a process we call blind decoding. By blindly decoding from Portuguese
using a basesystem containing multiple Romance languages we achieve scores of up to 36.4
BLEU for Portuguese-English. We believe that this result clearly demonstrates the feasibility
of applying the learned sentence encoding to an unseen language and shows that it is indeed
language independent enough to generalize to an entirely unseen language. While this works
significantly worse on a more distant language, by using this model – which has never seen even
a single sentence from any Slavic language – we are still able to achieve up to 13 BLEU for
Russian-English. Furthermore, by applying this blind decoding technique on the target side we
have been able to achieve up to 16.2 BLEU when decoding to an unseen Portuguese. To this end,
employing a recently proposed approach, we have used a continuous output representation as
replacement for the softmax output layer. While we found this approach to mostly underperform
the traditional softmax approach, we still believe this approach to be promising.

41
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In an attempt to train the mapping from our sentence representation to a new target language
we use our model as an autoencoder. By training to translate from Portuguese to Portuguese
while freezing the encoder we have achieved up to 26 BLEU for English-Portuguese. The
addition artificial noise to the source-side to let the model learn the correct word order gains us
an additional 2 BLEU for a total of 28.1 BLEU. When training to translate to Russian we achieve
up to 8.7 BLEU for English-Russian.

Lastly we have explored a more practical approach of learning the new language by training the
system on backtranslated data. To this end we exploit our model’s ability to produce high quality
translations from an unseen source-side language to generate the synthetic data. The training
on the synthetic data has yielded the scores of up to 34.6 BLEU, again on English-Portuguese,
attaining near parity with a model trained on real bilingual data. Translating to Russian yields at
most 13.9 BLEU for English-Russian. Considering the low English-Russian baseline score of
17.2 BLEU we suspect the overall low Russian scores to partly be an issue with the low quality
Russian word embedding alignment.

6.2. Future Work

In the future we would like to explore the question of how the composition and number of
languages in the base system affects the ability to perform transfer learning on a new language.
Since transfer learning is largely related to generalization ability, we would like to know whether
seeing a wide variety of different languages will help the translation system with new languages –
especially more distant ones.

In order to further improve the already impressive performance on source-side unseen languages
we would like to explore various methods for the adaptation of the encoder. While the focus
of this work lies mainly on adapting the decoder to a new language, the improvement of the
source-side would especially benefit the backtranslation results for more distant languages. A
possible approach to this would be iterative refinement of the encoder under the utilization of a
language model. Alternatively we would like to try and employ the generating NMT model itself
in its rescoring capacity to iteratively select the best sentences from one round of backtranslation
and subsequently train the NMT system on these.

As an alternative to teaching the new language to the decoder via autoencoding, we would like
to explore the possibility of using generative adversarial training on top of a translation system
with a continuous output representation.
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Appendix

A.1. Training Parameters

�
general settings:
-layers 6
-rnn_size 300
-word_vec_size 300
-transformer_ff 1200
-heads 6
-warmup_init_lr 1e-8
-warmup_end_lr 0.0007
-min_lr 1e-9
-encoder_type transformer
-decoder_type transformer
-position_encoding
-max_generator_batches 2
-param_init_glorot
-label_smoothing 0.1
-param_init 0
-share_embeddings
-share_decoder_embeddings
-generator_layer_norm
-warmup_steps 4000
-learning_rate 1�

�
vmf model:
-dropout 0.1
-batch_size 8192
-batch_type tokens
-normalization tokens
-accum_count 2
-optim radam
-adam_beta2 0.9995
-decay_method linear
-weight_decay 0.00001
-max_grad_norm 5.0
-lambda_vmf 0.2
-generator_function

continuous-linear
-loss nllvmf� �
softmax model:
-dropout 0.2
-batch_size 1536
-batch_type tokens
-accum_count 6
-optim adam
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-adam_beta2 0.999
-decay_method noam
-max_grad_norm 25�
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A.2. Example Sentences

Table A.1.: Examples for blindly decoded Portuguese-English sentences.
The fish eat the phytoplankton. The shrimp eat the phytoplankton.
It is really old, and it is tired. It is really old, and it is tired.
I knew something that was done on the penguin
movement, so I looked at Carlos.

I was imagining a "March of the Penguins"
thing, so I looked at Miguel.

We can adjust that time machine in the way we
want it.

We can set that time machine on anything we
want.

But, you know, this is really a serious thing be-
cause this thing is a crap, and we spend billions
of dollars on it.

But, you know, it is really a serious thing be-
cause this stuff is crap, and we spend billions
of dollars on it.

Table A.2.: Examples for blindly decoded English-Portuguese sentences.

Existem três conceitos de felicidade que pode-
mos utilizar, uma por que mas mesmo.

Há realmente dois conceitos distintos de felici-
dade que podem ser aplicados, uma para cada
eu.

E mas então fazem uma estratégia. E aí eles o executam.

E„ para utilizar isso, comecei à ver todos estes
tipos de baterias que podem ser feitas 9/11 para
carros, para computadores, para celulares, para
lâmpadas, para tudo, e que porque percebi que
todas baterias elétricos que esse mundo usa
mas porque mas porque.

E para dimensionar esse problema, eu pesqui-
sei todos os tipos de baterias que são feitas
para carros, computadores, telefones, lanter-
nas, para tudo ; e comparando isso ao mon-
tante de energia elétrica que o mundo usa, eu
cheguei a conclusão que todas as baterias que
fazemos agora poderiam armazenar menos de
10 minutos de toda a energia.

E e G4s Zinny veio me dizer, disse: "na minha
experiência, à menos frequentemente dito mas
mas ainda mas porque que não mas

E o Dr. Kean continuou: ele disse, "Em minha
minha experiência, a menos que repetidamente
dito de outra forma, e mesmo se dado um mín-
imo de apoio, se for deixada com seus próprios
recursos, uma criança fará realizações".

Obrigada. Portanto para entender mais sobre
sufiicente, sim...

Obrigado. Só para eu entender melhor sobre a
Terrapower, certo.
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Table A.3.: Examples for blindly decoded Russian-English sentences.
Some, their less, and business. Some, fewer still, have come from business –

And within a couple of hours, he will land, take
a car car, go to Long Beach and come to one
of these wonderful TED dinners.

And he’s going to land in a couple of hours,
he’s going to rent a car, and he’s going to come
to Long Beach, and he’s going to attend one of
these fabulous TED dinners tonight.

We, gourmets, not pragmatists. We’re not realists, us foodies;

Performing music and conversations about mu-
sic transformed this person from mental <unk>,
who lived in central streets of L.A., in <unk>,
<unk>, amazing musician, <unk> in <unk>.

And through playing music and talking about
music, this man had transformed from the para-
noid, disturbed man that had just come from
walking the streets of downtown Los Angeles
to the charming, erudite, brilliant, Juilliard-
trained musician.

This is going to be a epic romantic story, pas-
sionate film.

"It’s going to be this epic romance, passionate
film."

Table A.4.: Examples for English-Portuguese sentences after training on backtranslated data.
E pensei, "Uau. Eu estou tipo, vivendo em um
filme de ficção científica.

E eu pensava, "Uau, estou vivendo um filme
de ficção científica.

E o conjunto foi baseado como uma réplica
exata nos moldes do navio.

E o set estava baseado em uma réplica exata
dos desenhos do navio.

E o que é pior é o onde a dor estava no seu pico
no final muito final.

A pior foi aquela em que a dor aumentou no
final.

Falamos sobre isso %-%. Nós falamos dele de modo ambivalente.
Isso é fantástico. Eu amo o Grande placebo. Isso é fantástico. Eu adoro o grande placebo.

Table A.5.: Examples for English-Russian sentences after training on backtranslated data.
Это старое исследование. Это одно давнее исследование.

Так вот, обычно большинство людей на-
чинают направлять себя к задаче. Они
говорят о нём, они выясняют, как он бу-
дет выглядеть, они <unk> для силы.

Обычно большинство людей начинают с
того, что настраиваются на работу: гово-
рят о задании, пытаясь прикинуть, как
будет выглядеть результат, исподволь пы-
таются добиться влияния в группе.

В этом фильме. Успех висел в равновесии
ли этот эффект сработает.

Успех фильма зависел от того, сработает
ли этот эффект.

А потом что делать с этими отходами? И, наконец, что делать с отходами?
Обычно, вы просто стоите, а некоторые
идут дальше, некоторые нет.

Обычно жизнь приносит нам чудо или
не приносит, а не мы за ним гонимся.
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