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Abstract

English

Sequence-to-sequence (seq2seq) models offer great promise for sequence gen-
eration problems such as machine translation or dialogue generation. However,
several issues have been identified, among them are exposure bias and search
error. In addition, loss-evaluation mismatch emerged as a major problem. For
example, conversational agents tend to generate dull and generic responses,
because such sequences are of high frequency in common datasets. In recent
works, reinforcement learning (RL) has been utilized to mitigate these issues.
However, due to the high-dimensionality in natural language processing (NLP),
the application of RL generally relies on well-trained fully supervised models
and is restricted to fine-tune such models with policy gradient methods. Con-
sequently, these approaches only lead to marginal improvements.

At the same time, recent RL methods applied to game playing achieve
ground-breaking results. Ensemble methods like Rainbow, distributional RL
algorithms such as IQN or FQF, and distributed agents like R2D2 are to be
mentioned here. Nevertheless, they have not been applied to NLP in previ-
ous works. In this context, this thesis demonstrates the theoretical possibility
of applying such advanced value-based RL methods on seq2seq models for
the first time. Specifically, a seq2seq model is introduced, which is trained
in a Rainbow-like setup. While such a model is practically still limited by
its scalability, the thesis contributes towards a more generally applicable ap-
proach to RL in NLP which is beyond the scope of fine-tuning. For this, the
thesis provides a theoretical and practical framework, a first baseline, and valu-
able insights by studying ablated models and different approaches for utilizing
demonstration data.



Deutsch

Sequence-to-Sequence-Modelle (seq2seq) sind weitverbreitete Ansätze im Bere-
ich der Sequenzgenerierung wie der maschinellen Übersetzung oder der Di-
aloggenerierung. Es wurden jedoch mehrere Probleme identifiziert, darunter
der “Exposure Bias” und der “Search Error”. Darüber zeigt sich die Diskrepanz
zwischen Verlustfunktion und Testmetrik als besonders problematisch. Bei-
spielsweise neigen Dialogsysteme dazu, uninteressante und generische Antworten
zu generieren, da solche in den meisten Datensätzen hochfrequent auftreten. In
neueren Arbeiten wurde Reinforcement Learning (RL) verwendet, um diesen
Problemen zu begegnen. Aufgrund der hohen Dimensionalität im Bereich des
Natural Language Processings (NLP) ist die Anwendung von RL jedoch im All-
gemeinen auf gut-trainierte, vollständig überwachte Modelle angewiesen und
beschränkt sich auf das Fine-Tuning solcher mit Policy-Gradient-Methoden.
Folglich führen diese Ansätze nur zu marginalen Verbesserungen.

Gleichzeitig erzielen neuere RL-Methoden, angewandt auf Game Playing,
wegweisende Ergebnisse. Ensemble-Methoden wie Rainbow, “Distributional
RL”-Algorithmen wie IQN oder FQF und verteilte Agenten wie R2D2 sind
hier zu nennen. Bisher wurden sie jedoch nicht auf NLP angewandt. In diesem
Zusammenhang zeigt diese Arbeit erstmals die theoretische Möglichkeit auf,
solche fortgeschrittenen wertbasierten RL-Methoden auf seq2seq-Modelle zu
übertragen. Konkret wird ein seq2seq-Modell vorgestellt, das in einem ver-
gleichbaren Aufbau trainiert wird wie Rainbow. Während ein solches Modell
praktisch noch durch seine Skalierbarkeit begrenzt ist, ist sie ein Schritt zu
einem allgemeineren Ansatz für RL in NLP, der über das Fine-Tuning von
Modellen hinausgeht. Hierfür bietet die Arbeit ein theoretisches und praktis-
ches Framework, eine erste Baseline und wertvolle Einsichten durch die Un-
tersuchung abgetragener Modelle und verschiedener Ansätze zur Nutzung von
Demonstrationsdaten.
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1
Introduction

1.1. Motivation
With conversational agents on the rise, such as Amazon’s Alexa, Google

Assistant, or Microsoft’s Cortana, dialogue systems and the language genera-
tion problem are receiving extensive attention. In addition, recent works have
demonstrated the increasing popularity and excellent performance of sequence-
to-sequence (seq2seq) models for sequence prediction. Such models can tackle
a variety of problems, including machine translation, text summarization, im-
age captioning, speech recognition, and language generation.

Nevertheless, fully supervised trained seq2seq models have several method-
ological weaknesses which have not been completely solved. First, such models
suffer from exposure bias as they are usually trained with teacher forcing. In
this method, the model is conditioned on ground-truth data as input instead
of its own outputs. Secondly, word predictions by these models do not consider
the whole sequence, which introduces search error. Thirdly and most impor-
tantly, the maximum likelihood estimation (MLE) objective is often used in
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1. Introduction

approximating the probability distribution P(y|x), such that the likelihood of
outputs given input is maximized. In many problems such as machine transla-
tion utilizing this distribution may be sufficient. However, for other problems,
it differs substantially from the test objectives and the real-world goal.

It has been shown that when applied to the task of dialogue generation, the
aforementioned models tend to generate highly generic, repetitive, and short-
sighted responses, with “I don’t know” among them. This outcome can be
ascribed to the high frequency of such phrases in dialogue corpora, which are
then favoured by the MLE objective.

Reinforcement learning (RL) addresses all of these issues. It allows using
any function as a reward, which may include non-differentiable test metrics,
human feedback, or other functions that are closer to the real-world goal.
Furthermore, RL relies on its own outputs instead of ground-truth data, and it
naturally incorporates future rewards, thus avoiding exposure bias and search
error.

However, RL is considered sample inefficient, especially in the case of reward
sparsity and large action spaces, and this is particularly true for most natural
language processing (NLP) tasks, which require dealing with huge vocabulary
sizes. Thus, most research in this area has focused on fine-tuning supervised
models. It has, therefore, also been limited to methods that output softmax
probabilities, which makes them easy to pretrain with supervised approaches.
This category includes policy gradient (PG) methods and actor-critic setups.
For instance, the easy-to-implement, and “plug’n’play” REINFORCE is still
widely used in this area, although this algorithm is known to have severe issues,
such as a time-consuming training and high variance. In contrast, value-based
learning methods such as Q-learning have received little attention, since they
need to predict future rewards for every single action and cannot be easily
pretrained. However, value-based methods have made significant progress in
recent years. Advanced methods such as Rainbow and fully quantile functions
(FQFs) are state-of-the-art approaches in many fields (e.g., game-playing),
significantly surpassing modern actor-critic agents, for instance asynchronous
advantage actor-critic (A3C). They might overcome some caveats of Q-learning
and make it a reasonable choice for the area of NLP.

2



1. Introduction

1.2. Goals
The thesis’ overall goal is to explore the theoretical possibilities of apply-

ing advanced value-based methods in the area of NLP. More specifically, this
work investigates whether sequence-to-sequence models can be trained with
state-of-the-art Rainbow, which is a Q-learning-based approach that seeks to
combine several improvements made to deep Q-networks (DQNs) in recent
years, including dueling nets and multi-step learning. With this objective in
mind, this thesis strives to contribute to the long-term goal of applying RL in
high-dimensional seq2seq problems beyond the limited scope of fine-tuning.

This overall goal encompasses the following subgoals:

• Definition of a reinforcement learning setting, which is compatible with
both the sequence-to-sequence architecture and Q-learning.

• Transfer of DQN and its extensions to the seq2seq architecture.

• Evaluation of different-sized action spaces to assess the scalability.

• Ablation studies for DQN components to gain a deeper understanding
of the underlying mechanisms.

• Exploration of techniques that allow utilization of demonstration data
for this “Rainbow seq2seq” model.

1.3. Outline
The thesis is structured as follows. Chapter 1 introduces the subject matter

and the motivation for the objective. Chapter 2 introduces the reader in di-
alogue systems, seq2seq architectures, and the field of reinforcement learning,
especially value-based methods. Chapter 3 focuses on Rainbow, an advanced
value-based RL method, and the DQN improvements it combines, which, in
the context of the goal of this thesis, have to be implemented and transferred
to the seq2seq architecture. Chapter 4 describes related research, while Chap-
ter 5 presents two movie dialogue datasets commonly employed for language
generation tasks. Chapter 6 works towards an RL setting, an RL method,

3



1. Introduction

and pretraining techniques that allow transferring Q-learning and Rainbow’s
DQN extensions to seq2seq architectures. Since this research involves a non-
trivial implementation, Chapter 7 points out a few selected aspects in that
regard. In Chapter 8, the resulting model is evaluated with different vocab-
ulary sizes, ablations, and different pretraining techniques on movie dialogue
datasets. Finally, Chapter 9 presents the conclusions, offers a reflection on the
work conducted, and proposes future work in this research area.

4



2
Foundations

2.1. Dialogue Systems
Dialogue systems refer to systems that can interact with humans via natural

language. Gao et al. (2018) [1] describe three different problems such a system
could handle:

• Question answering: The system needs to answer questions based on rich
knowledge (e.g., texts or images) or knowledge bases (e.g., databases).
These agents are sometimes called Infobots.

• Task completion: The agent should assist the user in reaching a goal
through fairly short conversations.

• Social chat or Chit-chat: The agent needs to mimic human conversations
(cf. Turing test), implying a demand for extensive, engaging, entertain-
ing, and diverse dialogues.
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2. Foundations

Task-oriented systems are mostly implemented through modular systems
consisting of units for language understanding, dialogue management, and
language generation. Moreover, there is often a knowledge base to query.
Conversely, social bots are usually unitary systems (e.g., sequence-to-sequence
models, as described in Section 2.2).

2.2. Sequence-to-Sequence Models

2.2.1. Architecture

The classic sequence-to-sequence (seq2seq) architecture, also called encoder-
decoder architecture (see Figure 2.1) was first proposed by Sutskever et al.
(2014) [2]. The motivation behind this architecture is to map an input se-
quence (source) to an output sequence (target), both of which can be of arbi-
trary lengths. The architecture is composed of an encoder and a decoder. [3,
pp. 390 sqq.]

• The encoder recurrent neural network (RNN) compresses the input se-
quence x = (x1, x2, . . . , xnx

) to a fixed-length vector C (thought vector or
context vector), which is the final hidden state vector hnx

of the RNN.

• The decoder’s hidden state is initialized with the fixed-length vector C .
The decoder RNN then generates the output sequence y = (y1, y2, . . . , yny

).

Bahdanau et al. (2015) [4] observed a limitation of this approach: a fixed-
length vector is incapable of remembering long sequences; instead, it may forget
early parts. To combat this issue, the researchers introduced the attention
mechanism, which was later refined by Luong et al. (2015) [5]. The general
idea is to create shortcuts to the source sequence at every decoding time step,
thus bypassing long in-between distances. [3, pp. 390 sqq.]

RNN encoders and decoders are typically implemented as long short-term
memories (LSTMs) [6] or gated recurrent units (GRUs) [7], either unidirec-
tional or bidirectional. The decoder usually adds another linear layer with
softmax activation (the so-called “generator”) to output a probability distri-
bution over the vocabulary. [8]

6



2. Foundations

Figure 2.1: Sequence-to-sequence model, here: with LSTM units
Source: Diagram by Christopher Olah

More generally, encoder-decoder architectures may vary widely and include
pointer networks [9], transformers [10] or may also be based on convolutions
[11, 12, 13].

2.2.2. Training and Objective

As illustrated in Figure 2.1, the outputs of the decoder network are fed into
the next sequential unit as input. Consequently, mistakes at the beginning of
the sequence can lead to increasing erroneousness, which ultimately results in
slow convergence. Thus, the most common algorithm for training the model is
teacher forcing, which feeds the actual correct sequence (the targets) into the
model. This algorithm allows parallelization, thereby avoiding backpropaga-
tion through time (BPTT), as it removes the necessity to wait for the sequen-
tial outputs to be used as inputs. Teacher forcing minimizes the maximum
likelihood objective, which is the cross-entropy (CE) loss: [3, pp. 378 sqq.] [8,
14]

LC E = − log p(y1, . . . , yny
) = − log

ny
∏

t=1

p(yt |y1, . . . , yt−1)

= −
ny
∑

t=1

log p(yt |y1, . . . , yt−1)

(2.1)

7



2. Foundations

During inference, the next output word is chosen by a greedy left-to-right pro-
cess, yt+1 = argmaxy p(y|yt , ht), without considering the complete sequence.
This approach, however, might not produce the most likely sequence according
to the abovementioned objective, an outcome known as search error. One way
to reduce the search error is beam search, tracking k word candidates. [8, 14]

In addition, this setup suffers from exposure bias because of the distribution
mismatch of ground-truth data and the model’s predictions. Bengio et al.
(2015) [15] proposed data as demonstrator (DAD) (also “scheduled sampling”)
slowly and randomly replacing the ground-truth labels with sampled actions
from the model at every decoding step. However, in this approach, the target
labels are still chosen by ground-truth data, which may lead to misalignments.
[8, 14]

2.3. Reinforcement Learning

2.3.1. Markov Decision Process

Reinforcement learning (RL) is the problem of learning from interactions.
The learner, referred to as the agent, is placed in an environment in which
it sequentially chooses actions. The environment responds to these actions,
potentially leading to a reward. This kind of framework is often formulated as a
Markov decision process (MDP) and is defined by a tuple M = (S ,A, T, r, s0,γ).
[16, pp. 1, 37 sq.][8]

S describes the state space (e.g., pixel data from video-game screens), while
A describes the action space. For games, the actions might be up, down,
left, and right, and in NLP, the action space might be the vocabulary space.
A transition function T (s, a, s′) = P [St+1 = s′ |St = s, At = a] returns the prob-
ability for stochastic transitions from one state to another conditioned on a
specific action. The reward function r : S×A→ R assigns a real number to an
action, given the state. s0 describes the distribution of the initial state space,
for example, where the agent starts. [16, pp. 37 sq.][8]

8



2. Foundations

The policy function π : S × A → [0,1] chooses the agent’s next action
with a probability distribution over the actions, while the goal is to maximize
the reward with its actions. As the criterion, the expected cumulative reward
Eπ
�∑∞

t=0 γ
t r(St , At)
�

is used, that is, all expected future rewards resulting from
an action. The discount factor γ, which puts more weight on rewards in the
near future, is also noteworthy here. [16, pp. 37 sq.][8]

2.3.2. Value Functions

Most reinforcement learning algorithms utilize value functions to estimate the
“quality” or “goodness” of a state or an action. The state’s value is defined as
the expected reward when starting in s and following a policy π afterwards.
Here, vπ is called the state-value function: [16, pp. 45 sq.]

vπ(s) = Eπ

�∞
∑

t=0

γt r(St , At)

�

�

�

�

�

St = s

�

(2.2)

Analogously, the action-value function qπ is defined. Again, state s is the
starting point. However, unlike before, a particular action a is chosen first,
only after which the policy is followed. [16, pp. 45 sq.]

qπ(s, a) = Eπ

�∞
∑

t=0

γt r(St , At)

�

�

�

�

�

St = s, At = a

�

(2.3)

Value functions can be described using the Bellman equation, exploiting their
recursive property: [16, pp. 46 sq.]

vπ(s) = Eπ [r(St , At) + γvπ(St+1) |St = s] (2.4)

qπ(s, a) = Eπ [r(St , At) + γqπ(St+1, At+1) |St = s, At = a] (2.5)

The difference between the two sides is called the Bellman error.

9



2. Foundations

It is possible to define the optimal value function, that is, the value function
of the optimal policy, in a similar fashion to the Bellman equation (which is
called the Bellman optimality equation): [16, pp. 49 sq.]

v∗(s) =max
π

vπ(s) =max
a

q∗(s, a)

=max
a
E [rt(st , a) + γv∗(st+1) |St = s, At = a]

(2.6)

Similarly, the Bellman optimality equation for q∗ is obtained as follows: [16,
pp. 49 sq.]

q∗(s, a) = E
h

r(St , At) + γmax
a′

q∗(St+1, a′)
�

�

�St = s, At = a
i

(2.7)

For notational convenience and ease of analysis, it is helpful to define an
operator B, which maps a value function to another. Specifically, in this con-
text, often a Bellman operator T π and a Bellman optimality operator T is
employed. They are both contraction mappings which means their repeated
application to some value function q0 leads to qπ respectively q∗.

T πq(s, a) = Eπ [r(St , At) + γq(St+1, At+1) |St = s, At = a] (2.8)

T q(s, a) = E
h

r(St , At) + γmax
a′

q(St+1, a′)
�

�

�St = s, At = a
i

(2.9)

2.3.3. Monte Carlo Methods and Temporal-Difference Learning

The most straightforward approach to learning such value functions is from
experience via Monte Carlo methods. The key idea is to collect numerous
random samples and their actual rewards, followed by averaging them for every
state (or state-action pair). This notion is often implemented as the following
update rule: [16, pp. 73, 95 sq.]

vπ(St)← vπ(St) +α [Gt − vπ(St)] (2.10)

10



2. Foundations

where Gt is the sampled discounted reward of a whole episode and α ∈ (0,1] is
the learning rate or step-size parameter determining to what extent prior infor-
mation is overridden by newly acquired information (thus resulting in an expo-
nential recency-weighted average). Essentially, the update rule approximates
the state-value function vπ using estimates of Equation 2.2, notwithstanding
their very high variance. [16, pp. 25, 73, 95 sq.]

Waiting for the completion of each episode may slow the training process. To
address this issue, temporal difference (TD) learning, TD(0), forms a target
after every transition: [16, pp. 73, 95 sq.]

vπ(s)← vπ(s) +α [Rt+1 + γvπ(st+1)− vπ(s)] (2.11)

where the term Rt+1+γvπ(st+1)−vπ(s) is known as TD error and denoted as δt .
This term is only slightly different from the Bellman error (see Section 2.3.2),
but without the expectation, instead being evaluated after just a transition.

Updating by utilizing the existing estimation of the value function is called
bootstrapping, which introduces a substantial bias whilst reducing variance.
There are n-step TD methods called TD(n) that trade off bias and variance,
as discussed in Section 3.4. [16, pp. 73, 95 sq.]

2.3.4. Q-Learning

Q-learning was first described by Watkins (1989). It aims to approximate
the optimal Q-function q∗ directly. Thus, Q-learning is based on the Bellman
optimality equation (see Equation 2.7). It is a TD(0) algorithm, which is why
the update rule is similar to Equation 2.11. [16, p. 105]

q(s, a)← q(s, a) +α
h

Rt+1 + γmax
a

q(St+1, a)− q(s, a)
i

(2.12)

Since Q-learning formulates the target based on the greedy policy by taking
the max action, it is independent of the policy that is currently followed, which
makes it an off-policy algorithm. [16, p. 105]
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2. Foundations

2.3.5. Deep Q-Network

In large state spaces, tabular algorithms grow exponentially in time and
space complexity; some state spaces are even infinite. In such cases, it is
possible to implement function approximators being able to generalize and
interpolate between states. Mnih et al. (2015) [17] applied Q-learning to deep
neural networks. This architecture is known as deep Q-network (DQN). In this
setup, the authors minimized the squared TD error via RMSprop, a variant of
stochastic gradient descent (SGD): [16, pp. 359 sq.][18]

δ2
t =
�

Rt+1 + γmax
a′

qθ̄ (St+1, a′)− qθ (St , At)
�2

(2.13)

Here, qθ represents the online network selecting actions and also being used to
backpropagate the gradients. While qθ̄ is the target network, a periodic copy
of qθ , which combats the issue of moving targets and stabilizes the training
routine. [18]

To leverage the off-policy nature of DQN, an experience replay buffer is
utilized. For this, at each time step, the agent’s experience (St , At , St+1, Rt+1)
is stored in the replay buffer. The collection process and the training process
are performed repeatedly and in an alternating fashion. For training, mini-
batches are uniformly sampled from the replay memory, and their gradient
information is accumulated. As a result, consecutive samples are decorrelated.
The ε-greedy strategy is employed for exploration, that is, choosing a random
action with probability ε and otherwise picking actions greedily according to
the q function q. [16, p. 362]

2.3.6. Policy Gradient Methods

Policy gradient (PG) methods aim to learn and parametrize the policy di-
rectly. This parameterized policy π(a|s,θ ), with θ being the parameters, can
select actions without consulting a value function. It employs gradient ascent
to maximize the performance measure J(θ ): [16, p. 321]
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θt+1 = θt +αÚ∇J(θt) (2.14)

In general, this performance measure is the expected reward J(θ ) = Eπ [r(τ)].
However, the policy gradient theorem provides a useful reformulation of the
derivative of the expected reward: [16, p. 326]

∇J(θ ) = Eπ [r(τ)∇ logπ(τ|θ )] (2.15)

Intuitively expressed, the probability of a trajectory τ (likelihood of the
observed data) is weighted by the given rewards, eventually leading to an
increase of trajectories that issue higher rewards. Section 2.3.7 provides a
practical approach of utilizing this theorem.

2.3.7. REINFORCE

The remaining expectation of the policy gradient theorem (see Equation
2.14) can be unbiasedly approximated by Monte Carlo methods, that is, by
sampling complete trajectories. This notion is the premise of the REINFORCE
[19] algorithm: [16, pp. 326 sqq.]

∇J(θ ) = Eπ [Gt∇ logπ(At |St ,θ )]

≈
T
∑

t=1

γt−1r(St , At)
T
∑

t=1

∇ logπ(At |St ,θ )
(2.16)

This approach has a substantial variance, which can be reduced using a
baseline b(s) for the reward as comparison:

∇J(θ )≈

�

� T
∑

t=1

γt−1r(St , At)

�

− b(St)

�

T
∑

t=1

∇ logπ(At |St ,θ ) (2.17)

The simplest baseline is the average sampled reward of a batch of N trajec-
tories:
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∇J(θ )≈
1
N

N
∑

i=1

�

�

Gi,t − b(Si,t)
�

T
∑

t=1

∇ logπ(Ai,t |Si,t ,θ )

�

(2.18)

with b(s) = 1
N

∑N
i=1 Gt .

However, more sophisticated approaches for the baseline include self-critic
(SC) [20] and learned value functions as in actor-critic methods like advantage
actor-critic (A2C) [21].

2.3.8. Comparison between Policy Gradient and Value-Based Ap-
proaches

Compared to value-based approaches policy gradient methods (including
actor-critics) have both advantages and disadvantages.

• Value-based approaches are (typically) only able to learn determinis-
tic policies, which makes them unsuitable for certain problems such as
poker or rock-paper-scissors. For instance, for rock-paper-scissors a uni-
form random policy is optimal (i.e., Nash equilibrium). PG methods are
capable of learning such stochastic policies. Deterministic policies can
be easily exploited.

• Actions in PG methods can be continuous. Value-based approaches are
bound to a discrete action space.

• PG methods do entirely without bootstrapping and instead rely on sam-
pling alone, which is why they have a very high variance. This caveat
still applies to actor-critic methods, though to a lesser extent. In con-
trast, value-based approaches have a high bias, even though there are
ways to trade off bias and variance via n-step returns.

• In many cases, policy gradients converge to a local rather than the global
maximum. This outcome contrasts sharply to value-based approaches,
which always try to reach the optimum.

• PG methods are sensitive to the absolute value of the rewards. Therefore,
constant additions can substantially change their convergence properties.
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• Being on-policy makes the algorithm quite sample inefficient as it needs
to generate new samples at every iteration. Conversely, off-policy al-
gorithms are able to store and replay samples. However, this does not
necessarily result in reduced wall-clock time.

It should be noted that there is a theoretical link between both approaches.
Schulman et al. [22] presume that “Q-learning methods are secretly imple-
menting policy gradient updates” and prove the precise equivalence between
entropy-regularized Q-learning and policy gradient. A similar connection be-
tween actor-critic and Q-learning algorithms is proposed by Nachum et al.
[23].
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3
DQN Improvements

The classic DQN approach outlined in Section 2.3.5 suffers from many lim-
itations that have been addressed in recent years. Rainbow by Hessel et al.
[18] seeks to combine six different extensions to improve overall performance.
These improvements are presented in this chapter.

3.1. Double Q-Learning
DQN suffers from maximization bias. In general, the model’s estimated ex-

pectations of the action values are noisy and uncertain. Consequently, some
action values are distributed above, whereas others are distributed below their
true values. That said, such maximization in the action selection engenders a
constant overestimation. [16, pp. 108 sq.] This issue is solved by the decorrela-
tion of noise from action selection and noise in values by having two different
Q-networks. In practice, however, the two existing networks, the online and
target networks, are utilized. [18]

δ2
t =

�

Rt+1 + γqθ̄

�

St+1, argmax
a′

qθ (St+1, a′)
�

− qθ (St , At)

�2

(3.1)
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3.2. Prioritized Experience Replay
Classic experience replay samples transitions from the buffer according to

a uniform distribution. In contrast, prioritized experience replay (PER) aims
to sample transitions more effectively and from which is much to learn [24].
One means to this goal is to prioritize transitions whose last encountered TD
error is high. Because greedy prioritization is prone to over-fitting, a stochastic
prioritization method defines the probability to sample transition i:

P(i) =
pαi
∑

k pαk
(3.2)

where pi is the priority value, and α determines the weighting between pure
greedy prioritization and uniform random sampling. For proportional priori-
tization, pi equals |δi|+ ε.

In this way, PER over-samples high-priority transitions. Naturally, this ap-
proach introduces a bias, which can be corrected by employing importance
sampling (IS) to downweight these transitions.

wi =
�

1
N
·

1
P(i)

�β

(3.3)

The bias is fully corrected if β = 1. These unbiased updates are most impor-
tant near convergence, which is why β is usually annealed from β0 to 1 over
the time of training.

3.3. Dueling Networks
When considering large action spaces in which only a small number of actions

are suitable, it seems unnecessary to estimate the values for every action.
Therefore Wang et al. [25] proposed decomposing the action value into the
state value and the advantage:

qθ (St , At) = vη(St) + aψ(St , At) (3.4)
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Calculating q in this way makes the equation unidentifiable. Thus,
maxa aψ(St , a) is usually subtracted from the advantage estimation to have
a zero at the selected action. For stabilization, the max operator is often
replaced with the average, resulting in the following equation:

qθ (St , At) = vη(St) +

�

aψ(St , At)−
1
|A|
∑

a

aψ(St , a)

�

(3.5)

Dueling nets are implemented as two-stream networks with a shared encoder
for the state.

3.4. Multi-Step Learning
As hinted in Section 2.3.3, there are TD(n) approaches that trade off be-

tween Monte Carlo methods (with high variance) and TD(0) methods (with
high bias) by using n-step returns. For DQN, a multi-step variant can be
implemented with the following loss function:

δ2
t =
�

R(n)t + γ
(n)max

a′
qθ̄ (St+n, a′)− qθ (St , At)

�2
(3.6)

where R(n)t defines the summed and discounted reward for n steps. Sutton et
al. states that “an intermediate amount of bootstrapping” typically performs
better than either extreme. [16, pp. 141 sqq.]

3.5. Distributional Reinforcement Learning
Thus far, a scalar value, the expectation value of rewards, is considered, that

is, qπ = E[zπ] where zπ is a random variable of discounted future rewards:
zπ(St , At) =
∑∞

t=0 γ
t r(St , At). However, it is also possible to approximate the

distributions over returns z directly. Analogous to the Bellman equation and
the Bellman operator (see Equation 2.4 and 2.8), there are the distributional
Bellman equation and the distributional Bellman operator :
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zπ(St , At)
D
= r(St , At) + γzπ(St+1, At+1) (3.7)

T πz(St , At)
D
= r(St , At) + γz(St+1, At+1) (3.8)

Categorical DQNs. Bellemare et al. (2017) [26] have demonstrated that the
return distribution z(s, a) can be modelled as a categorical distribution over a
fixed set of equidistant points z1 . . . zN . In this setup, the probabilities pi asso-
ciated with the values zi are learned. The authors introduced a projection step
φ to map the target T πz onto these atomic supports via linear interpolation,
followed by minimization of the KL divergence using the cross-entropy loss.
To approximate the action-value distributions iteratively, they introduced the
novel C51 algorithm. However, their approach has a sharp, theoretical dis-
connect as it relies on a projection step to fix disjoint supports and does not
consider a true probability metric.

Quantile Regression DQNs. While C51 is applied in Rainbow DQN, Dabney
et al. (2018) [27] suggest modelling the return distribution by a discrete set
of quantiles q1 . . . qN whose locations are adjusted using quantile regression.
Their QR-DQN algorithm has shown to minimize the Wasserstein distance.
In contrast to categorical DQNs, the probabilities are fixed while the supports
(i.e., the values or the centres of mass in respective quantiles) are learned.
This approach does not require domain knowledge to define the range of val-
ues. Moreover, no projection step is necessary. Aside from the different sized
output layer, only minimal changes are needed to apply this approach to the
classic DQN. Most importantly, the loss, commonly mean squared error (MSE)
or the Huber loss, is replaced with the quantile Huber loss which penalizes over-
estimations in lower quantiles (i.e., with weight τ), and underestimations in
upper quantiles (i.e., with weight 1−τ). The quantile Huber loss is given by:

ρκ
τ
(δi j) =
�

�τ− I(δi j < 0)
�

�Lκ(δi j) =







τLκ(δi j), if δi j ≥ 0

(1−τ)Lκ(δi j), if δi j < 0
(3.9)
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where quantile τi = i/N is the cumulative probability and Lκ is the Huber
loss. Moreover, δi j = R(St , At)+γθ j(St+1, At+1)−θi(St , At) is the TD error with
θi being the predicted support at a fixed quantile target τ̂i =

τi−1+τi
2 . This loss

is calculated for all pairs of (θi(St),θ j(St+1)).

It should be noted that both algorithms introduce a hyperparameter N , which
is the number of equidistant points or the number of quantiles, respectively.

In both cases, the policy is still determined by the mean of the distribu-
tion, just as in classic Q-learning. However, the empirical results indicate that
“learning distributions matters in the presence of approximation” [26]. Belle-
mare et al. suggest that distributions are a more stable target and that the
agent benefits from auxiliary predictions. Their view is based on a similar prin-
ciple to auxiliary tasks in RL or multitask learning in general. Most recent
approaches, such as implicit quantile networks (IQNs) [28] or fully quantile
functions (FQFs) [29], go even further by considering the whole distribution
in the action selection process, which leads to increased risk-awareness and
risk-aversion.

3.6. Noisy Nets
In order to support exploration, ε-greedy policies (random steps with some

probability ε) or entropy regularization (penalizing highly confident predic-
tions) are ordinarily applied. In [30], the authors address the issue by adding
Gaussian noise to the last fully connected layers. The parameters of the noise
can be adjusted by the model itself; that is, the noisy layer is self-annealing.
Essentially, the agent decides itself what amount of exploration it applies to
which part of the state space. The noisy layer with factorized Gaussian noise
is defined by

y = (b+W x) +
�

bnoisy � εb +
�

Wnoisy � εw
�

x
�

(3.10)

where εb and εw are random variables, and � is the Hadamard product.
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4
Related Work

Encoder-decoder models suffer from problems that remain only partially re-
solved, such as the exposure bias, which refers to the fact that the model has
not been exposed to its own predictions [14, 15]. Moreover, it is questionable
whether the (word-level) training objective, the maximum likelihood objective,
is capable of approximating the real-world objective and the evaluation met-
rics. When this training objective is applied to dialogue systems, it has been
observed that the system tends to respond with dull and short-sighted answers
[31].

Sequence generation using RL. Therefore, and as one of the first, Ranzato
et al. (2015) [14] applied reinforcement learning on different sequence gen-
eration problems to align training and test measurements. The researchers
utilized supervised training to initialize the policy, and they then introduced
the mixed incremental cross-entropy REINFORCE (MIXER) algorithm which
provides an annealing schedule between supervised training (i.e., CE loss and
teacher forcing) and reinforcement learning, using REINFORCE [19] and the
model’s own predictions.
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Due to the disadvantages of REINFORCE, which include the time-consuming
training and its high variance, Bahdanau et al. (2017) [32] took this idea
one step further by employing an actor-critic setup to train encoder-decoder
models. To speed up the training process and deal with the ample action space,
the authors used several techniques such as penalizing the variance of the value
predictions and reward shaping to provide rewards for the whole sequence.

Rennie et al. [20] (2017) introduced another variant, a self-critic baseline for
PG methods employed in sequence generation. The algorithm avoids esti-
mating a normalization (cf. REINFORCE) or training a value function (cf.
actor-critics) for the baseline by utilizing the inference outputs.

However, all above mentioned approaches rely on well-trained supervised mod-
els, and the application of RL is limited to fine-tune such models. Conse-
quently, this line of research focuses on policy-gradient methods as the pro-
vided outputs are alike (i.e., token probabilities based on softmax activations).

Advanced applications of RL in NLP, and reward engineering. Based on
the results of Ranzato et al. [14], the authors of [31] have proposed applying
RL to chit-chat dialogue systems in a three-stage training process. First, the
system is pretrained using the maximum likelihood objective. Secondly, it is
refined applying MIXER with mutual information between source and target
as the reward function, that is P(x , y). [33] has demonstrated that mutual
information can significantly reduce the probability of dull responses. In the
final stage, self-play learning is deployed, simulating dialogues between two
agents, similar to the strategies applied for TD-Gammon [34] or AlphaGo [35].
The plain REINFORCE algorithm is utilized, and the reward is defined as a
weighted sum of three factors, namely ease of answering, information flow, and
semantic coherence.
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Similarly, Kreutzer et al. [36] (2018) defined a three-staged training process in
the field of machine translation, initializing the model with parameters based
on a fully supervised training on a large out-of-domain corpus, then refining
such model with a supervised training on in-domain data. Eventually, they
applied RL using REINFORCE, while also exploring an off-policy version of
the algorithm and different rewards: “simulated rewards” (e.g., BLEU), direct
user rewards, and estimated rewards (based on direct user rewards).

Paulus et al. (2017) [37] adopted the SC approach to learn the task of gener-
ating abstractive summaries. The authors utilized a mixed training objective
function weighting the MLE and RL loss components with a scaling factor
γ. They compared a supervised trained model, a fine-tuned RL model and a
model with such a mixed training objective. The researchers found the fine-
tuned RL model to score the highest ROUGE value while the mixed model
was able to improve on relevance and readability over both compared models.

[38] seeks to employ adversarial learning to approximate a reasonable reward
function, thus avoiding an exhaustive reward engineering (cf. inverse RL).
In this setup, a generative model generates dialogues, while a discriminative
model needs to distinguish between machine-generated dialogues and actual
human dialogues. The output of the discriminator can then serve as a reward.

Dialogue systems with restricted domains. A different approach for dia-
logue systems is defining verbal actions instead of equating the vocabulary
space with the action space, thus avoiding high-dimensionality. This redefi-
nition of the action space can be applied to restricted domains, for instance,
movie booking (cf. [39]), restaurant search (cf. DTSC2 [40]), or some question-
answering problems (cf. bAbi dataset [41]). Such systems are typically mod-
ular, separating natural language understanding, dialogue state tracking and
natural language generation. The verbal actions are templates or dialogue acts.
Examples of such approaches include [42], [43], and [44]. Classic PG methods,
as well as value-based RL methods such as DQN or DRQN, has been utilized
for this kind of problems.
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Recurrence and memories in RL. Another related research direction seeks
to equip DQN agents with a memory. The first notable work in this area
was conducted by Hausknecht et al. in 2017, with their proposed DRQN [45].
The authors argue that most real-world applications fail to meet the Markov
property; that is, their true states are only partially observable. Consequently,
they propose replacing the first fully-connected layer with an LSTM layer.
With this goal in mind, Hausknecht et al. consider two possibilities: sequential
updates (replaying whole episodes while violating DQN’s random sampling
policy) and random updates (with zeroing out hidden states). The paper
concludes that both updates work similarly well.

A more recent approach is recurrent replay distributed DQN (R2D2), devel-
oped by Kapturowski et al. (2019) [46]. They authors store and replay fixed-
length sequences (m = 80) using a mix of mean and max for prioritization of
the samples: p = ηmaxi δi + (1 − η)δ with η = 0.9. They hypothesize two
strategies for the hidden state: storing and replaying such states or applying a
burn-in period, which involves using a part of the replay sequence to produce
a start state.
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5
Datasets

5.1. OpenSubtitles
The OpenSubtitles dataset [47] is a large-scale parallel corpus of movie and

TV subtitles for more than 60 languages. Regarding the English language, it
contains more than 337 million utterances for over 106,000 distinct movies and
TV episodes. No information about dialogue structure and no author annota-
tions are available, however, which significantly reduces the data quality.1 To
address this shortcoming, additional corpus building was undertaken by Jean
Senellart. He has extracted pairs of utterances (single-turn dialogues) where
the first sentence ends with a question mark, and the consecutive utterance
does not, leaving around 14 million sentences overall.2

1http://opus.nlpl.eu/OpenSubtitles2016.php
2http://forum.opennmt.net/t/english-chatbot-model-with-opennmt/
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5.2. Cornell Movie Dialogues Corpus
The Cornell Movie Dialogues Corpus [48] contains over 220,000 fictional con-

versations from 617 unique movies involving nearly 10,000 characters, which
amounts to around 304,000 utterances in total. In contrast to most corpora,
including the OpenSubtitles dataset (Section 5.1), this dataset is a metadata-
rich collection. It not only contains the utterances but also specifies the movie
character who uttered any given line. Moreover, this corpus is enriched with
information about each movie title (e.g., year and rating) and character (e.g.,
gender and name).3

3https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
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6
Methodology

As explained in Section 1.2, this research aims to apply the Rainbow DQN
setup to the sequence-to-sequence architecture. Therefore, this chapter ad-
dresses the question of how the classic Q-learning approach can be transferred
to this architecture. With the fulfilment of this requirement, most of the DQN
extensions that have been used in Rainbow are also straightforwardly trans-
ferable. Specifically, the following extensions are included:

• Double Q-learning (see Section 3.1).

• Prioritized experience replay (see Section 3.2), which is the only exten-
sion that is not transferable without significant methodological changes
(see Section 6.3).

• Dueling networks (see Section 3.3).

• Multi-step learning (see Section 3.4).

• Distributional RL; for this thesis, the more recent QR-DQN is chosen
over categorical DQNs because it is easier to implement and has also
been shown to yield better results, though categorical DQNs have been
used for Rainbow (see Section 3.5).

• Noisy nets (see Section 3.6).

27



6. Methodology

6.1. Reinforcement Learning Setting
In this section, the reinforcement learning environment is described as it

varies from one task to another. In general, the setting is similar to those
in other sequence prediction tasks such as [14], [32], and [31], although the
perspective on the state differs substantially as these works use policy gradient
approaches.

Action space. In the context of this work, the action space A is the vocabu-
lary space. At each time step t, the decoder of the seq2seq model chooses the
next action At , which is a token in a sequence.

State space. The state St at a specific time step t includes all the input data
that is required to produce the next action At . Since the decoder generates
its output depending on the previous hidden state ht−1 and the previously
chosen action yt−1, [ht−1, yt−1] may be used as the state. Alternatively, the
input sentence and all previous actions [x , y1:t−1] can be viewed as the state,
as it is possible to reproduce the hidden states with this information. This
perspective is relevant for Section 6.4.

Reward. The reward function r can be any user-defined function. Advanced
dialogue generation models, [31] for example, utilize rather complex reward
functions such as combinations of information flow, semantic coherence, and
ease of answering. A unique characteristic in NLP settings compared to other
RL tasks is that the reward is always and only collected at the end of the
sequence.

6.2. Rewards
To keep the thesis’ work as simple, comparable and interpretable as pos-

sible, and to focus on the feasibility of transferring Q-learning to sequence-
to-sequence models, BLEU and ROUGE are selected as exemplary reward
functions. In addition, with such rewards, it will be possible to provide a

28



6. Methodology

strong baseline for the model. The CE objective is known to approximate
these metrics quite well. Nevertheless, more sophisticated and suitable reward
functions, in the context of dialogue generation, are also conceivable. Both
metrics evaluate a generated sentence against a reference sentence. Thus, a
dataset with sources and targets is required. However, reward functions like
those in [31] have no dependence on references, which enables self-playing
training techniques.

6.2.1. BLEU

Bilingual evaluation understudy (BLEU) is a metric first presented by Pa-
pineni et al. in [49]. It is primarily used in machine translation and other
language generation problems. The values range from 0 to 1. BLEU calcu-
lates a modified n-gram precision pn, for which it counts the number of matches
between the n-grams of the candidate and the n-grams of the reference divided
by the total number of n-grams in the candidate. In order to prevent abun-
dances of high-frequency words, the number of matches for a word is clipped
after its maximum reference count. However, because this measure still en-
ables very short candidates to achieve high-scoring results, a brevity penalty
as a multiplicative factor is introduced to mimic some kind of “recall”.

BP=







1, if c > r

e(1−
r
c ), if c ≤ r

(6.1)

It is possible to combine the scores of different n-gram sizes by calculating
the geometric mean. The final equation is given by:

BLEU= BP ·
�

N
∑

n=1

wn log(pn)

�

(6.2)

where the weight wn is usually the uniform distribution 1/N .
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The original definition of the brevity penalty, as indicated in Equation 6.1,
has no solution at c = 0. This is particularly problematic in this RL setting
with Q-learning, as the model tends to generate empty candidates in the early
stages of training. Nevertheless, the generated candidates require evaluation
in order to add them to the experience replay buffer. Hence, as part of this
work, the brevity penalty is defined as zero if c = 0, which is tantamount to
BLEU= 0.

BP=



















0, if c = 0

1, if c > r

e(1−
r
c ), if 0< c ≤ r

(6.3)

6.2.2. ROUGE

Another metric to be evaluated with the model is recall-oriented understudy
for gisting evaluation (ROUGE), which was presented in [50]. While ROUGE
has been developed especially for text summarization tasks, it can be applied
to all kinds of language generation problems.

Here, more precisely, ROUGE-W functions as the reward and as an eval-
uation metric. In contrast to BLEU (Section 6.2.1) and other versions of
ROUGE, the longest common subsequence (LCS) is determined instead of n-
gram overlaps. This approach means consecutive matches are not required, as
it allows in-sequence matches on sentence-level order. Moreover, no predefined
n-gram length needs to be specified, and it works for any sequence length. One
drawback, however, is that consecutive matches are assigned the same score as
non-consecutive matches. To address this issue, with ROUGE-W weights are
introduced. The F1 metric is applied to take recall and precision equally into
account.

30



6. Methodology

6.3. Experience Replay for Sequence-to-Sequence Models
This section describes the implications of using (prioritized) experience re-

play in a sequential setup. Figure 6.1 presents a visualization of both classic
approaches and the thesis’ modified versions.

6.3.1. Experience Replay

Typically, Q-learning approaches with deep neural nets (i.e., DQNs as de-
scribed in Section 2.3.5) store transitions experienced by the agent in a buffer
called experience replay. These transitions are reiterated during the training
process. A transition is defined by its state St and action At at time step t, the
next state St+1, and the reward Rt+1 received by the agent: (St , At , St+1, Rt+1).
For seq2seq models, however, this approach has to be adjusted. As explained
in Section 6.1, the state is defined by the previous hidden state of the de-
coder and the previous action [ht−1, yt−1]. However, given that the hidden
state representation is not static, but learned during the training process, it is
not suitable to be replayed in later phases of training. Here, the alternative
state representation [x , y1:t−1] can provide a solution. Rather than storing
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Figure 6.1: Classic and modified versions of (prioritized) experience replay
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single transitions, it allows for storing the entire input and output sequence
(x , y, RT ) to represent the states and actions of the whole episode. The entry
is completed by a scalar reward RT , as only the final transition issues a reward
for the full sequence.

6.3.2. Prioritized Experience Replay

As noted in Section 6.3.1, experience replay is modified to store episodes
instead of transitions. This decision has some implications, especially for pri-
oritized experience replay, one of the extensions, which has been combined
with others in [18]. In the original paper [24] by Schaul et al., the absolute
TD error δ (see Section 2.3.5) is utilized as the criterion of importance for
the transitions in the buffer. However, here it is necessary to deal with whole
episodes, which consist of many transitions. Consequently, there is a need to
aggregate the TD errors of the steps in episode e. For this approach, there are
at least two options:

• Summing the errors: pe =
∑T

i δi

• Averaging the errors: pe =
1
T

∑T
i δi

It may be expected that the summation of errors leads to an advantage of
longer sequences at the expense of shorter ones; this outcome could be disad-
vantageous for the overall success. In fact, early experiments have indicated
that averaging is superior.

6.4. Teacher Forcing
As discussed in Section 6.3.1, entire episodes must be stored in the experience

replay buffer to combine it with sequence-to-sequence models. However, as the
name suggests, it is necessary to replay the episodes. This is where a technique
that is widely used in supervised learning for seq2seq models comes into play:
teacher forcing (see Section 2.2.2). Instead of feeding the decoder’s output to
the input of the next sequential unit (as in the inference stage), the ground-
truth sequence is fed into the network. The same idea can be applied to replay
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episodes, but in place of the ground-truth sequence, the stored output sequence
is inputted into the recurrent units of the decoder. The essential difference is
that the output sequence does not necessarily have to be one of the “good
examples”. The examples in the experience replay buffer are usually collected
by the model itself, substantially reducing the exposure bias caused by the
distributional mismatch of decoder inputs in the training and inference stages.
Here, the model’s own predictions are replayed in the training stage, syncing
the input distributions. Consequently, while the algorithm applied is the same
for supervised learning and the RL approach taken in this study, its aim and
motivation is entirely different. Moreover, teacher forcing has computational
benefits since it allows parallelization.

6.5. Utilization of Demonstration Data
Although it is highly flexible in defining its goals and rewards, reinforcement

learning also has some downsides: it is usually exceedingly sample inefficient
and converges much slower than supervised learning. Furthermore, data collec-
tion is time-consuming. This is why, as part of this work, methods are explored
with which available information can be utilized to accelerate convergence.

6.5.1. Preloading Replay Buffer

DQNs learn from transitions being collected by the agent and stored in the
experience replay buffer. In the case of this work, however, human demon-
stration data is already at hand, as there are some corpora available to use
(see Chapter 5). The simplest way to leverage such data is to preload it into
the replay buffer instead of filling the buffer with random experiences in the
beginning. For practical reasons, the experience replay buffer typically has a
size limit. This is why older transitions get replaced by more recent experi-
ences. However, to prevent the displacement of exemplary data, such data
is excluded from the “first in, first out” replacement policy and instead is
permanently stored in the buffer.
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Figure 6.2: Transfer learning: initialization with the supervised model

6.5.2. Transfer Learning

This approach is inspired by classic transfer learning. As Yosinski et al.
[51] have shown, layers in a deep neural network for image classification, that
were trained on a specific task can be transferred to others to varying degrees.
The new model is then able to train faster. In particular, early layers in the
network are rather general, agnostic regarding the specifics of the input, and
therefore easily transferable. In the context of this work, this method entails
pretraining a typical seq2seq network using supervised learning (as described
in Section 2.2). The parameters of this model, or specifically, the parameters
of the encoder, decoder, and the embedding layers while discarding those of
the generator, are utilized to initialize the Q-learning model, which has its
own randomly initialized generator (cf. Figure 6.2). Thus, the recurrence
and embeddings may not have to be learned from scratch. This approach is
similar in conception to those in [14], [32], and [31]. However, for PG methods,
it is not necessary to replace the generator because both generators produce
probabilities for the defined set of tokens. On the contrary, in DQNs, the
output layer utilizes a linear activation function. Additionally, the number
of neurons in the output layer differ when employing distributional RL (cf.
Section 3.5).

34



6. Methodology

Figure 6.3: Multitask learning: sharing a common feature extractor

6.5.3. Multitask Learning

Transfer learning works optimally when the training data and training ob-
jective of both tasks are similar. In this study, however, the objectives differ
substantially, as [31] suggests. On the one hand, there is the MLE criterion; on
the other hand, Q-values, the estimated future rewards, are to be predicted.
Thus, instead of using transfer learning, it would be possible to treat these
objectives as two different tasks, but to employ a shared “feature extractor”,
which, in this case, is the encoder RNN, the decoder RNN and the embedding
layers (cf. Figure 6.3). The general idea is known as multitask learning, and it
has been successfully applied to a broad range of applications, including NLP
[52] and computer vision [53]. Originally, multitask learning was described by
[54]: it is usually implemented by sharing hidden layers between several tasks
while having task-specific output layers. These tasks are learned jointly by
alternating the optimization steps for each. The different tasks benefit from
each other as they introduce regularization and reduce the hypothesis space.
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7
Implementation

This chapter focuses on the implementation. It presents an overview of the
development environment, the libraries, and the reference implementations
(see Section 7.1) while also highlighting some of the non-trivial implementa-
tion issues (see Section 7.2, 7.3, and 7.4). The implementation of the work
conducted is available online.1

7.1. Environment and Tools
The implementation was realized with the Python framework PyTorch and

is generally based on OpenNMT (Open Neural Machine Translation) [55], as
the library provides efficient implementations of sequence-to-sequence architec-
tures. On top of that, there are some reference implementations for the Rain-
bow approach2,3. The modified prioritized experience replay buffer is based
on the high-quality baseline implementation by OpenAI4. BLEU is borrowed
from TensorFlow5, while for ROUGE, there is a Python package available6.

1https://github.com/ScientiaEtVeritas/rainbow-dialogues
2https://github.com/qfettes/DeepRL-Tutorials
3https://github.com/higgsfield/RL-Adventure
4https://github.com/openai/baselines
5https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
6https://pypi.org/project/rouge/
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7. Implementation

7.2. Episodes
Most of the implementation effort is required because the model presented

in Chapter 6 does not work with batches of single transitions as in Rainbow
reference implementations, but rather with batches of whole episodes (i.e.,
sequences of transitions). This difference adds another dimension to the tensors
and calculations.

The additional complexity can be observed, for instance, when calculating
the target q̂θ for multi-step learning (cf. Equation 3.6):

q̂θ = Rt+1 + γRt+2 + . . .+ γ(n)max
a′

qθ̄ (St+n, a′) (7.1)

This procedure requires the combination of the reward tensor R and the tensor
for estimates of optimal future values maxa′ qθ̄ (St+n, a′), as visualized in Figure
7.1. Due to taking multi-steps, a window of n rewards must be considered
at a specific time step t while there is a n − 1 shift for the value estimate
tensor. To obtain the target via simple addition of the tensors, the estimates
tensor can be transformed to be of the same shape, discarding the first n− 1

steps while zero-padding n final states. The reward tensor, conversely, can be
“dewindowed” utilizing convolutions (see Section 7.4).

Furthermore, the differences in length of the episodes necessitate the careful
application of sequence padding and masking as one proceeds.

7.3. Normalization
In many implementations of sequence-to-sequence models, bucketing and

padding of sequences is applied. However, bucketing cannot be used in con-
junction with an experience replay buffer which samples whole episodes (i.e.,
sequences instead of single transitions; see Section 6.3 for details). The lengths
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Figure 7.1: Calculating targets for multi-step Q-learning in a seq2seq setup

of sequences in a batch are completely randomized, which may lead to a con-
siderable gap between minimum and maximum sequence length in a batch.
In early experiments, this led to the effect that normalization of the loss by
the number of tokens is superior to normalization by the batch size or no
normalization at all.

7.4. Multi-Step Learning as Convolution
For the multi-step learning case (see Section 3.4), the target is obtained by

Rt+1 + γRt+2 + . . . + γ(n)maxa′ qθ̄ (St+n, a′). Thus, instead of utilizing a single
reward, the next n steps are summed while being exponentially decayed us-
ing the discount factor γ. However, in sharp contrast to most applications
of multi-step learning, this thesis works with batches of sequences, which al-
lows viewing the term as a convolution. Specifically, it is a one-dimensional,
axis-aligned convolution whose input array’s values beyond the edge are filled
with a constant value of 0. The kernel can be calculated in advance with
[γn−1,γn−2, . . . ,γ, 1].
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8
Results

8.1. Experimental Setup

8.1.1. Models

In the following experiments, four models are investigated:

• As comparative model, a supervised trained seq2seq model conditioned
on the maximum likelihood objective is employed (cf. Section 2.2.2).
Such a model can be considered a strong baseline because the CE loss is
known to approximate BLEU and ROUGE quite well.

• A seq2seq network trained purely with reinforcement learning, based
on the Rainbow method introduced in Chapters 2 and 3, including the
methodological modifications needed presented in Chapter 6. In this
setup, the replay buffer is preloaded with demonstration data, as de-
scribed in Section 6.5.1.

• A transfer learning model, as presented in Section 6.5.2, is not fully
evaluated because early experiments have shown it to usually converge
to suboptimal solutions (for further analysis, see Section 8.2.4).

39



8. Results

Vocabulary Size Dataset Size Word Minimum Frequency

111 1,311 900
201 3,484 680
401 9,230 130
806 18,523 50

Table 8.1: Dataset vocabulary sizes

• A multitask network (see Section 6.5.3), which jointly trains the super-
vised learning and reinforcement learning models described above.

8.1.2. Dataset

For subsequent experiments, the Cornell Movie Dialogue dataset is utilized
(see Section 5.2). As part of this work, only smaller vocabulary sizes are eval-
uated and a clean comparison between the models is striven for. Accordingly,
the chosen dataset’s high quality outweighs the relatively small quantity of
data, in contrast to the OpenSubtitles dataset which has a higher quantity
but lower quality.

8.1.3. Hyperparameters

All four models (see Section 8.1.1) share some architectural hyperparame-
ters, which are presented in Table 8.2. Moreover, the SL model and the RL
model have additional hyperparameters, shown in Table 8.3 and Table 8.4,
respectively. Since both models are part of the multitask learning and transfer
learning model, all hyperparameters are also applied to it. Furthermore, a
mixing ratio between those two models is introduced with multitask learning,
along with a number of supervised lead iterations for transfer learning settings
(see Table 8.5).
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Parameter Value

Optimizer Ranger [56] [57]
Learning rate 1 · 10−3

Batch size 32
RNN unit Bidirectional GRU
RNN unit size 500
Number of RNN layers 1
Embedding layer size 100
Dropout rate 0.0

Table 8.2: Shared seq2seq hyperparameters

Parameter Value

Beam search size 3

Table 8.3: Supervised learning hyperparameters

Parameter Value

Discount factor γ 0.99
TD step size n 4
Target network update period τ 10,000
Number of quantiles N 5/21
Experience replay buffer size 1,000,000
PER α 0.6
PER β 0.4
PER β max iterations 1,000,000
Noisy nets σ0 0.4
Sample generation period 8

Table 8.4: Reinforcement learning hyperparameters

Parameter Value

# SL iterations for transfer learning 100,000
MTL mixing ratio (SL:RL) 25 : 100

Table 8.5: Pretraining hyperparameters
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8.2. Evaluation and Discussion
In this section, the different models (see Section 8.1.1) and their aspects are

evaluated and discussed. This task includes assessing the scalability in Section
8.2.1, ablating several DQN improvements in Section 8.2.3, and exploring dif-
ferent techniques to utilize demonstration data (see Section 8.2.4). On top of
that, exemplary outputs of the various models are discussed in Section 8.2.2.

8.2.1. Scalability

Metric / Reward Model Vocabulary Size
111 201 401 806

BLEU

SL 0.71 0.70 0.77 0.77
RL 0.74 0.71 0.81 0.71

MTL SL Layer 0.73 0.71 0.81 0.67
RL Layer 0.73 0.71 0.75 0.42

ROUGE

SL 0.6 0.60 0.63 0.60
RL 0.6 0.63 0.65 0.61

MTL SL Layer 0.58 0.61 0.64 0.49
RL Layer 0.57 0.60 0.60 0.36

Table 8.6: Evaluation of presented models (supervised learning [SL], reinforcement
learning [RL], multitask learning [MTL]) in different setups to assess the scalability

Multiple experiments have been conducted to assess the scalability of the
presented model. Generally, four settings are considered. In each case, the
action space is approximately doubled, resulting in vocabulary sizes of 111,
201, 401 and 806. The dataset size exhibits disproportionate growth ranging
from 1,311 to 18,523 examples.

The results, which are displayed in Table 8.6, demonstrate that it is pos-
sible to train a seq2seq network with the methods of value-based reinforce-
ment learning. For limited problem sizes, these methods are able to match or
even surpass ambitious baselines such as supervised trained models in their
stronghold settings. While conducting the experiments, however, it became
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evident that the model is subject to scalability constraints. With the initial
parameter setting of N = 21 for the number of quantiles, it was not possible
to scale to an action space size of 401 without a drop in performance. Instead,
the hyperparameter had to be reduced to 5, which seems to lift the upper limit
of its scalability to the 806 setting.

8.2.2. Exemplary Outputs

The evaluation in this section refers to the 401 setting, as this is the setting
for which both RL models are still able to match or surpass the supervised
trained model on the respective evaluation metric. Generally, the trained
models produce largely similar results. The RLBLEU model outputs the same
sequences as the supervised model for 80.92 per cent of unique sources in the
corpus. A similar outcome holds for the RLROUGE model with 80.80%. Even
among themselves, they share outputs in a similar order of magnitude (i.e.,
81.69%).

Nevertheless, in Table 8.7, ten random examples are presented for which the
models returned different sequences. From studying these examples, possible
reasons for the differences include, that the target is still incompletely or partly
learned or, given the nature of the dataset, in which a source can have several
targets, the models simply approach different targets. Interestingly, there are
also a few examples that reveal the very distinct way of learning. For instance,
the RLROUGE model outputs “What Why?” for “What time is it?” and scores
a medium reward on the “Why?” and “What?” target with it. However, this
output sequence ultimately yields a higher combined reward on ROUGE-W
(1.51) than predicting either of the targets (1.396). This example highlights
the importance of choosing an adequate reward and the necessity that such a
reward encompasses “semantic coherence” as in [31].
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Source Target(s) RLBLEU RLROUGE SL
Of course we are. Of
course.

Then you’ll be my
best man.

Then you’ll be my
best man.

Then you’ll be my
best, go.

Then you’ll be fine.

And if I didn’t want
to come?

I guess I’d ask you. I guess I’d ask you to
ask me.

I guess I’d ask you
why.

I guess I’d ask you to
ask me.

So did you do it? Did I kill him ? Of
course not.

Did I kill him? Did I kill him? Of
course not!

What time is it? – Why?
– What?

Why? What Why? What?

You believe that? You don’t believe
me? Okay, fine.

I do if you do. No. You think bad, and
bad is what you get.

Are you okay? – I’m fine.
– I’ll be fine.
– She’ll be fine.
– I think so.
– … (8 more targets)

I’ll be fine. I’m fine. She’ll be fine.

Yeah. 132 targets Yeah.? I like nothing I bad?.
say

You’re with me now.

She’s not at home? No … they said she
was here …

No … they said she
was it.

No … they said she
want, that’s!

No … they didn’t < u
> here –

She’s out with a
friend.

Oh … do you know
when she’ll be home?

Oh … do you know
when she’ll be back?

Oh … do you know
when she’ll be?

Oh … do you know
when she’ll be home?

Now what? – We just don’t stop.
– Now what what?
– Don’t go.
– … (2 more targets)

Don’t go. We don’t know it. Now what what?

Table 8.7: Examples for which the presented models generate different responses;
the models included are the reinforcement learning models conditioned on either
BLEU or ROUGE (RLBLEU, RLROUGE) and the supervised trained model (SL).

8.2.3. Ablation Study

The presented model, which is based on Rainbow, combines several DQN
improvements. In order to reach a better understanding of how these exten-
sions behave in this work’s high-dimensional sequence-to-sequence setup, an
ablation study was conducted. In this study, the influence on performance and
convergence of some algorithmic ingredients was assessed by removing them
one at a time from the complete setup. The results are displayed in Figure
8.1.

# Quantiles N # Parameters (401) # Parameters (806)

No Distributional RL 4.617,305 5,306,820
2 5,020,109 6,115,434
5 6,228,521 8,541,276
21 12,673,385 21,479,100
51 24,757,505 45,737,520

Table 8.8: Influence of the number of quantiles N on the number of parameters
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Dueling nets. Although the dueling architecture is motivated by problems
with many similar-valued actions and larger action spaces, the ablation study
does not indicate a significant impact of the extension on the model. No effect
is observed, either in terms of performance or in light of convergence speed.
These results are in line with findings by [18]. It is notable, however, that
the performance of the dueling architecture lags behind in the early stages of
training, although it catches up later.

Prioritized experience replay. This extension is an essential contribution to
scalability and performance, given that the results unambiguously and signif-
icantly worsen for the ablated model. To a certain extent, these results can
also validate the modifications made to prioritized experience replay in Sec-
tion 6.3.2. Presumably, PER is especially effective in this setup because the
memory is preloaded with demonstration data (see Section 6.5.1).

Multi-step learning. Based on the ablation study, it is clear that the most
influential extension is multi-step learning. The ablated model did not learn
at all for a vocabulary size of 806, while it performed only slightly better
in a setup with 401. [18] also found it to be the most important extension,
with ablation resulting in a substantial drop in early and final performance.
However, the adverse effects of ablation are much more strongly reflected in
the thesis’ setup. Presumably, the reasons for this outcome are to be found in
the different nature of the problem. Here, rewards are issued only at the very
end of the sequence, which is cataclysmic in combination with the last action
always being the end token. In this particular case, only q(s,</s>) is able to
obtain immediate, unbiased targets. Conversely, all the other actions’ targets
can rely solely on the model itself, via bootstrapping.

Distributional reinforcement learning. The quantile regression extension
exercises a noticeable effect on the performance. That said, the model is
highly sensitive to the number of quantiles N chosen. In the original paper,
[27], the authors suggested N to be 32. However, the researchers only probed
their models on small action spaces, which are different in magnitude com-
pared to this thesis’ setup. In general, distributional RL requires the model
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to learn more and make auxiliary predictions, increasing the difficulty of the
task while introducing synergy effects and easing approximation. Moreover,
the output layer size is defined by |A| ·N , which will dominate the model’s size
and complexity for larger action spaces, introducing a disproportion between
the problem’s complexity and the model’s complexity. This relationship is
shown in Table 8.8. While N = 21 works well on vocabulary sizes of 111 and
201, it already slightly hurts performance for 401, and it fails for 806. For the
latter two sizes, a value between 2 and 5 seems to be a reasonable choice. By
means of these parameters, distributional reinforcement learning contributes
to scalability and final performance. To conclude, there are presumably two
opposite effects resulting from QR-DQN: the model benefits from learning aux-
iliary tasks while a larger quantile number leads to a larger model and more
difficult prediction task, necessitating a careful trade-off.

8.2.4. Utilization of Demonstration Data

This section deals with techniques intended to utilize the provided demon-
stration data. These techniques are introduced in Section 6.5. The learning
curves for the different models are depicted in Figure 8.2.

Preloading PER. Preloading the prioritized replay buffer is demonstrated to
be a key element in all presented settings. With preloading, the model does
not need to rely on random sampling only but can utilize demonstration data.
The number of potential sequences grows exponentially with the vocabulary
size, which is why, without preloading, the model is practically unable to learn
at all in a setting with a vocabulary size of 806, while it seems to converge to a
suboptimal solution in a 401 setting. However, this result is notable, because
in other settings like [58] preloading had less of an impact. Moreover, in a
replay buffer with up to 1 million entries, the amount of demonstration data
is vanishingly small.
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Transfer learning. Transferring the weights of the supervised learning model
to the GRU and embedding layers of the RL model worsens performance sig-
nificantly. While these models tend to start slightly better compared to pure
RL settings, their learning curve quickly flattens, and they converge to subop-
timal solutions. Through transfer learning, the hypothesis space seems to be
narrowed in a disadvantageous way, hinting that predicting token probabilities
based on the CE loss and predicting Q-values based on BLEU or ROUGE as
a reward are very different tasks. This outcome suggests the problem is more
suitable to be framed in a multitask learning than a transfer learning setup.

Multitask learning. The experiments conducted show multitask learning
models to have a strong early performance (i.e., a comparably quite steep in-
crease of the average reward yielded in early training stages). However, these
models reach a premature plateau before they eventually diverge. Neverthe-
less, this result may suggest there is potential in this approach, while further
exploration of multitask learning setups may help overcome the caveats in this
specific setting.
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(a) Ablated dueling nets

(b) Ablated prioritized experience replay

(c) Ablated multi-step learning

(d) Ablated distributional reinforcement learning

Figure 8.1: Ablation for different DQN improvements
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(a) Preloading the prioritized experience replay buffer

(b) Utilizing transfer learning

(c) Multitask learning

Figure 8.2: Evaluating pretraining techniques
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9
Conclusion

9.1. Summary
In this thesis, a framework was developed, allowing the application of value-

based reinforcement learning methods to sequence-to-sequence models for the
first time. This framework contrasts sharply with existing approaches which
focus solely on policy-gradient methods and actor-critic setups because they
are easy to pretrain. However, this thesis follows a long-term goal of mak-
ing reinforcement learning approaches usable in the area of natural language
processing beyond the fine-tuning of supervised trained models.

The presented model demonstrates the theoretical possibility of training a
sequence-to-sequence model in a Rainbow setup, a state-of-the-art single-actor
DQN agent. In practice, such a model is still highly limited by its scalability.
However, it is the first step towards a generally applicable approach and an
important baseline for future improvements. Furthermore, the ablation study
included here provides valuable insights into the behaviour of several DQN
improvements in a high-dimensional NLP setup. More specifically, multi-step
learning, prioritized experience replay and distributional reinforcement learn-
ing were found to be essential components enabling the model to learn in
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the investigated settings. Additionally, the thesis explored how demonstra-
tion data can be utilized. In this context, the preloading of the replay buffer
with such data was identified as an indispensable prerequisite for learning in
higher-dimensional spaces.

9.2. Future Work
There are several directions in which this research can be furthered. Par-

ticular attention should be given to the question of how scalability can be
improved.

Recent improvements on single-actor DQNs. While Rainbow is still con-
sidered to be state-of-the-art, there have recently been some major improve-
ments in the area of distributional reinforcement learning. Models such as IQN
[28] and FQF [29] already match or even surpass the performance of Rainbow,
even without combining orthogonal enhancements. Both papers encourage us-
ing their approaches to distributional RL in a Rainbow-like setup. Also, they
might be especially effective for high-dimensional spaces as they avoid the ex-
cessive growth of the output layer with the number of quantiles, which was
presumed to be especially hurtful in this thesis.

Distributed DQNs. A potential approach for significantly improving the
model’s scalability is to switch to a distributed architecture. By decou-
pling data collection and learning, models such as ApeX [59], R2D2 [46], and
Agent57 [60] are able to increase final performance substantially while reducing
wall-clock learning speed against all single-actor agents.

Dealing with high dimensionality. Several tricks and methods are primar-
ily motivated by vast action spaces. Most recently, a promising contribution
was made with amortized Q-learning (AQL) in [61], whose method relies on a
proposal network to suggest potential actions. With value penalties, as used
in [4] or [62], an additional loss component is added, which penalizes variance
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on outputs helping with rare actions. Another idea is action branching pro-
posed by [63], who architecturally divide the action space into smaller chunks.
However, it has not yet been examined if and in which way these approaches
can be applied in the context of a Rainbow seq2seq network.

Representation of the action space. It might be beneficial for RL problems,
especially value-based methods, if actions are not formed at word-level, but at
byte-level or character-level, resulting in a significant reduction of the action
space. There is a chance that DQNs are able to cope better with longer action
sequences than an increased action space.

Besides scalability, there are other interesting research questions: for in-
stance, the application of reinforcement learning on state-of-the-art NLP ar-
chitectures such as transformers. Moreover, it might be explored how the
presented model behaves with rewards, that are more different from the max-
imum likelihood objective.
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