
Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 228–236
July 9-10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

228

Towards Stream Translation: Adaptive Computation Time for
Simultaneous Machine Translation

Felix Schneider
Karlsruhe Institute of Technology
felix.schneider@kit.edu

Alexander Waibel
Karlsruhe Institute of Technology
alexander.waibel@kit.edu

Abstract

Simultaneous machine translation systems
rely on a policy to schedule read and write op-
erations in order to begin translating a source
sentence before it is complete. In this paper,
we demonstrate the use of Adaptive Compu-
tation Time (ACT) as an adaptive, learned pol-
icy for simultaneous machine translation using
the transformer model and as a more numer-
ically stable alternative to Monotonic Infinite
Lookback Attention (MILk). We achieve state-
of-the-art results in terms of latency-quality
tradeoffs. We also propose a method to use
our model on unsegmented input, i. e. without
sentence boundaries, simulating the condition
of translating output from automatic speech
recognition. We present first benchmark re-
sults on this task.

1 Introduction

Simultaneous machine translation (MT) must ac-
complish two tasks: First, it must deliver correct
translations on incomplete input as early as possi-
ble, i. e. before the source sentence is completely
spoken. Second, in a realistic usage scenario, it
must deal with unsegmented input, either speech
directly or automatic transcriptions without punc-
tuation or sentence boundaries. Until now, staged
models (Niehues et al., 2016), which have a sep-
arate component to insert punctuation (Cho et al.,
2012) achieved the best results in this task. In this
paper, we will present the first step towards an end-
to-end approach.

In recent years, a number of approaches for neu-
ral simultaneous machine translation have been
proposed. They generally build on the com-
mon encoder-decoder framework (Sutskever et al.,
2014), with the decoder deciding at each step
whether to output a target language token based
on the currently available information (WRITE) or

to wait for one more encoder step in order to have
more information available (READ).

In order to do this, the decoder relies on a wait
policy. The published policies can be broadly di-
vided into two categories:

• Fixed policies, which rely on pre-programmed
rules to schedule the read and write operations,
such as wait-k (Ma et al., 2019a) and wait-if
(Cho and Esipova, 2016).

• Learned policies, which are trained either
jointly with the translation model or sepa-
rately. Examples include MILk (Arivazha-
gan et al., 2019) and the models of Satija and
Pineau (2016) and Alinejad et al. (2018)

However, all of the above approaches train and
evaluate their models on individual sentences. We
want to work towards a translation system that can
work on a continuous stream of input, such as text
without punctuation and sentence segmentation. In
a realistic usage scenario, segmentation informa-
tion is not available and an end-to-end solution
without a separate segmentation component is de-
sirable. We therefore propose the use of Adaptive
Computation Time (Graves, 2016) for simultane-
ous machine translation. This method achieves
a better latency-quality trade-off than the previ-
ous best model, MILk, on segmented WMT 2014
German-to-English data. By extending this model
with Transformer-XL-style memory (Dai et al.,
2019), we are able to apply it directly to unseg-
mented text.

2 Background

As Arivazhagan et al. (2019) point out, most pre-
vious work in simultaneous machine translation
focuses on segmenting continuous input into parts
that can be translated, whether it is utterances
speech or sentences for text (Cho et al., 2012, 2017;

229

Fügen et al., 2007; Oda et al., 2014; Yarmoham-
madi et al., 2013). For statistical machine trans-
lations, some approaches for stream translation
without segmentation were known (Kolss et al.,
2008). The more recent neural simultaneous MT
approaches simply take this segmentation as given
and focus on translating simultaneously within a
sentence.

Several approaches (Grissom II et al., 2014;
Niehues et al., 2018; Alinejad et al., 2018) try to
predict the whole target sentence in advance, be-
fore the input is complete. It may be possible to
extend such approaches to work on an input stream,
but they have the undesirable property of overrid-
ing their old output, which can make reading the
translation difficult to follow for a human.

Satija and Pineau (2016) train the wait policy as
an agent with reinforcement learning, considering
the pre-trained and fixed MT system as part of the
environment. Such an agent could learn to also
predict the end of sentences and thus extend to
stream translation, but it would be effectively the
same as an explicit segmentation.

Cho and Esipova (2016) and Ma et al. (2019a)
each define their own fixed policy for simultaneous
MT. Wait-k in particular is attractive because of
its simplicity and ease of training. However, we
believe that for very long input streams, an adaptive
policy is necessary to make sure that the decoder
never “falls behind” the input stream.

Most recently, the best results are produced by
monotonic attention approaches (Raffel et al., 2017;
Chiu and Raffel, 2017), in particular Arivazhagan
et al. (2019). Their approach uses RNNs, whereas
we would like to use the state-of-the-art Trans-
former architecture (Vaswani et al., 2017). Unfor-
tunately, we were unable to transfer their results to
the Transformer, largely due to numerical instabil-
ity problems. Ma et al. (2019b) claim to have done
this, but we were unable to reproduce their results
either. We therefore propose our own, more stable,
architecture based on Adaptive Computation Time
(ACT, Graves (2016))

3 Model

A machine translation model transforms a source
sequence x = {x1, x2, . . . x|x|} into a target se-
quence y = {y1, y2, . . . y|y|}, where, generally,
|x| 6= |y|. Our model is based on the Transformer
model (Vaswani et al., 2017), consisting of an en-
coder and a decoder. The encoder produces a vector

representation for each input token, the decoder au-
toregressively produces the target sequence. The
decoder makes use of the source information via
an attention mechanism (Bahdanau et al., 2015),
which calculates a context vector from the encoder
hidden states.

h1...|x| = ENCODER(x1...|x|) (1)

ci = ATTENTION(yi−1, h1...|x|) (2)

yi = DECODER(yi−1, ci) (3)

In the offline case, the encoder has access to all
inputs at once and the attention has access to all
encoder hidden states. The standard soft attention
calculates the context vector as a linear combina-
tion of all hidden states:

eni = ENERGY(yi−1, hn) (4)

wn
i =

exp(eni)∑|x|
k=1 exp(e

k
i)

(5)

ci =

|x|∑
n=1

wk
i hn (6)

Here, Energy could be a multi-layer perceptron
or, in the case of Transformer, a projection followed
by a dot product.

In the simultaneous case, there are additional
constraints: Each encoder state must only depend
on the representations before it and the inputs up
to the current one as input becomes available in-
crementally. In addition, we require a wait policy
which decides in each step whether to READ an-
other encoder state or to WRITE a decoder output.
Each READ incurs a delay, but gives the decoder
more information to work with. We denote the en-
coder step at which the policy decides to WRITE
in decoder step i as N(i).

hj = ENCODER(hj−1, xj) (7)

ani = POLICY(yi−1, hn) (8)

N(i) = min {n : ani = WRITE } (9)

ci = ATTENTION(yi−1, h1...N(i)) (10)

yi = DECODER(yi−1, ci) (11)

Note that this kind of discrete decision-making
process is not differentiable. Some approaches
using reinforcement learning have been proposed

230

(Grissom II et al., 2014; Satija and Pineau, 2016),
but we will focus on the monotonic attention ap-
proaches.

3.1 Monotonic Attention

In monotonic attention (Raffel et al., 2017), the
context is exactly the encoder state at N(i). Addi-
tionally, N(i) increases monotonically. For each
encoder and decoder step, the policy predicts pni ,
the probability that we will WRITE at encoder step
n. During inference, we simply follow this (non-
differentiable) stochastic process1. During training,
we instead train with the expected value of ci. To
that end, we calculate αn

i , the probability that de-
coder step i will attend to encoder step n.

pni = σ(ENERGY(si−1, hn)) (12)

ani ∼ Bernoulli(pni) Inference only (13)

αn
i = pni

(
(1− pn−1i)

αn−1
i

pn−1i

+ αn
i−1

)
(14)

ci =

|x|∑
n=1

αn
i hn (15)

This model needs no additional loss function
besides the translation loss. It is not incentivised
to READ any further than it has to because the
model can only attend to one token at a time. At
the same time, this is a weakness of the model, as
it has access to only a very narrow portion of the
input at a time.

To address this, two extensions to monotonic
attention have been proposed: Monotonic Chunk-
wise Attention (MoChA, Chiu and Raffel (2017))
and Monotonic Infinite Lookback Attention (MILk,
Arivazhagan et al. (2019)), which we will look at
in more detail here.

3.2 Monotonic Infinite Lookback Attention

Monotonic Infinite Lookback Attention (MILk)
combines soft and monotonic attention. The at-
tention can look at all hidden states from the start
of the input up to N(i), which is determined by a
monotonic attention module. The model is once
again trained in expectation, with pni and αn

i calcu-
lated as in eqs. (12) and (14). The attention energies
eni are calculated as in equation (4).

1Although we encourage the model to make clear decisions
by adding noise in the policy, see the original paper for more
details.

βni =

|x|∑
k=n

(
αk
i exp(e

n
i)∑k

l=1 exp(e
l
i)

)
(16)

ci =

|x|∑
n=1

βni hn (17)

This method does however introduce the need
for a second loss function, as the monotonic atten-
tion head can simply always decide to advance to
the end of the input where the soft attention can at-
tend to the whole sequence. Therefore, in addition
to the typical log-likelihood loss, the authors intro-
duce a loss derived from n = {N(1), . . . N(|y|)},
weighted by a hyperparameter λ:

L(θ) = −
∑
(x,y)

log p(y|x; θ) + λC(n) (18)

Unfortunately, despite following all advice from
Raffel et al. (2017), applying gradient clipping and
different energy functions from Arivazhagan et al.
(2019), we were not able to adapt MILk for use
with the transformer model, largely due to the nu-
merical instability of calculating αn

i (see Raffel
et al. (2017) for more details on this problem). We
therefore turn to a different method which has so
far not been applied to simultaneous machine trans-
lation, namely Adaptive Computation Time (ACT,
(Graves, 2016)).

3.3 Adaptive Computation Time

Originally formulated for RNNs without the
encoder-decoder framework, Adaptive Computa-
tion Time is a method that allows the RNN to “pon-
der” the same input for several timesteps, effec-
tively creating sub-timesteps. We will first go over
the original use-case, although we intentionally
match the notation above. At each timestep i, we
determineN(i), the number of timesteps spent pon-
dering the current input. We do so by predicting a
probability at each sub-timestep sni . We stop once
the sum of these probabilities exceeds a threshold.
We also calculate a remainder R(i). Eqns. (19)
through (22) are adapted from Graves (2016) and
apply to RNNs:

231

pni = σ(ENERGY(sni)) (19)

N(i) = min{n′ :
n′∑

n=1

pni ≥ 1− ε} (20)

R(i) = 1−
N(i)−1∑
n=1

pni (21)

αn
i =

{
R(i) if n = N(i)
pni otherwise

(22)

It follows directly from the definition that αi is a
valid probability distribution. Compared to mono-
tonic attention, ACT directly predicts the expected
value for the amount of steps that the model takes,
rather than calculating it from stopping probabilites.
As-is, the model has no incentive to keep the pon-
der times short, so we introduce an additional loss:

C =
|x|∑
i=1

N(i) +R(i) (23)

Note that the computation for N(i) is not differ-
entiable so it is treated as a constant and the loss is
equivalent to just summing the remainders.

We now go on to transfer ACT to the encoder-
decoder domain. Now, instead of pondering the
input to an RNN, like in original ACT, the decoder
ponders over zero or more encoder steps. The en-
coder still works as in eq. (7) and does not use ACT.
Instead, we apply the ACT ponder mechanism to
the monotonic encoder-decoder attention. Let N(i)
denote the last encoder step to which we can attend.
We make sure that N(i) advances monotonically:

pni = σ(ENERGY(yi−1, hn)) (24)

N(i) = min{n′ :
n′∑

n=N(i−1)

pni ≥ 1− ε} (25)

αn
i =

R(i) if n = N(i)
pni if N(i− 1) ≤ n < N(i)
0 otherwise

(26)

Then we proceed as in equations (16) and (17).
Note that in this formulation, it is possible that
N(i) = N(i − 1) (i. e. the model pondering for
zero steps), indicating consecutive WRITEs. In
original ACT, it is not possible to ponder the input
for zero steps. Also, similar to MILk, we consider
p
|x|
i to be 1 always. See figure 2 for a visualisation

of αn
i on a concrete example.

3.4 Transformer XL
Finally, we introduce two aspects of the Trans-
former XL language model (Dai et al., 2019) into
our model: Relative attention and memory.

We replace the Transformer self-attention in both
encoder and decoder with relative attention. In
relative self-attention, we calculate ENERGY as
follows:

ENERGY(xi, xj) = x>i W
>
q WE xj

+ x>i W
>
q WRRi−j

+ u>WE xj

+ v>WRRi−j

(27)

Where Wq,We,WR, u, v are learnable parame-
ters and R are relative position encodings. After-
wards, we proceed as in equation (16) and (17) for
simultaneous models or eqautions (5) and (6) for
offline models.

For our streaming model, we also use Trans-
former XL-style memory during training. This
means that we keep the hidden states of both en-
coder and decoder from the previous training step
during training. Both self-attention and encoder-
decoder attention are able to attend to these states
as well as the current input sentence. However,
no gradients can flow through the old states to the
model parameters.

3.5 Stream Translation
Our stream translation model should not rely on
any segmentation information of the input and must
be able to translate a test set as a single, continuous
sequence. To achieve this, we extend the standard
transformer model in the following ways:

• We use ACT monotonic attention to constrain
the encoder-decoder attention. The position of
the monotonic attention head also gives us a
pointer to the model’s current read position in
the input stream that advances token by token,
and not sentence by sentence and therefore
requires no sentence segmentation.

• We change all self-attentions to relative atten-
tion, as well as removing absolute position
encodings. We could encode positions as ab-
solute since the beginning of the stream. How-
ever, Neishi and Yoshinaga (2019) showed
that Transformer with absolute position encod-
ings generalizes poorly to unseen sequence

232

lengths. In a continuous stream, relative en-
codings are the more logical choice.

• We add Transformer XL-style history to the
model so that even the first positions of a
sample have a history buffer for self-attention.
This simulates the evaluation condition where
we don’t restart the model each sentence.

• During inference, we cannot cut off the his-
tory at sentence boundaries (such as keeping
exactly the last sentence) because this infor-
mation is not available. Instead, we adopt a
rolling history buffer approach, keeping nh
previous positions for the self-attention. To
simulate this condition in training, we apply a
mask to the self-attention, masking out posi-
tions more than nh positions in the past.

• During training, we concatenate multiple sam-
ples to a length of at least nh tokens. This
is to allow the model to READ past the end
of an input sentence into the next one. Nor-
mally, this is prevented by setting p|x|i = 1.
However during inference, |x| is not available
and therefore the model should learn to stop
READing at appropriate times even across
sentence boundaries.

• We use the ponder loss of equation (23) in
addition to the cross-entropy translation loss
with a weighting parameter λ as in equation
(18).

4 Experiments

4.1 Segmented Translation

In our first set of experiments, we demonstrate the
ability of ACT to produce state-of-the art results in
sentence-based simultaneous machine translation.
For comparison to Arivazhagan et al. (2019), we
choose the same dataset: WMT2014 German-to-
English (4.5M sentences). As they report their
delay metrics on tokenized data, we also use the
same tokenization and vocabulary.

All models follow the Transformer “base” con-
figuration (Vaswani et al., 2017) and are imple-
mented in fairseq (Ott et al., 2019). In addition
to the simultaneous models, we train a baseline
Transformer model. All models except the base-
line use relative self-attention. We pre-train an
offline model with future-masking in the encoder
as a common basis for all simultaneous models.

Figure 1: Quality-Latency comparison for German-to-
English newstest2015 in tokenized DAL (top), AL
(bottom left) and AP (bottom right)

For the simultaneous models, we vary the value
of λ and initialize the parameters from the pre-
trained model. We found that training from the
start with the latency loss can cause extreme la-
tency behaviour, where the model either reads no
input from the source at all or always waits until
the end. We theorize that the best strategy would
be to introduce the latency loss gradually during
training, but leave that experiment for future work.

All models are trained using the Adam Optimizer
(Kingma and Ba, 2015). For the pre-training model,
we vary the learning rate using a cosine schedule
from 2.5 · 10−4 to 0 over 200k steps. For the ACT
model, we start the learning rate at 4 ·10−5 and use
inverse square root decay (Vaswani et al., 2017) for
1000 steps.

We measure translation quality in detokenized,
cased BLEU using sacrebleu2 (Post, 2018). We
measure latency in Average Lagging (Ma et al.,
2019a), Differentiable Average Lagging (Arivazha-
gan et al., 2019) and Average Proportion (Cho and
Esipova, 2016). For direct comparison, we report
the tokenized latency metrics, but we provide the
detokenized metrics in the appendix.

Figure 1 shows our results for this task. We
generally achieve a better quality-latency tradeoff

2BLEU+case.mixed+lang.de-en+numrefs.1
+smooth.exp+test.wmt15+tok.13a
+version.1.4.3

233

as measured by DAL, and a comparable one as
measured by AP and AL. We note also that the
ceiling for quality of ACT is higher than that of
MILk. Whereas MILk loses two BLEU points to
their baseline model even when given full attention
(λ = 0.0), our model would seem to get closer to
the performance of the baseline with decreasing λ.

4.2 Stream Translation
In this set of experiments, we demonstrate our
model’s ability to translate continuous streams of
input with no sentence segmentation. For train-
ing, we use the IWSLT 2020 simultaneous transla-
tion data (which includes all WMT2019 data) with
37.6M sentences total. We choose this dataset be-
cause of a larger amount of document-level data
(3.8M sentences). Because we will use Trans-
former XL-style memory, we depend on as much
contextual data as possible. We evaluate on the
IWSLT tst2010 test set in German to English. On
the source side, we convert to lower case and re-
move all punctuation.

In addition to the baseline normal Transformer
model, we train our model in three steps: First an
offline, sentence-based relative self-attention Trans-
former, then the Transformer XL and finally the
ACT+XL model, each one initializing its parame-
ters on the last one. Both the relative model and the
Transformer XL use the cosine schedule starting
at 2.5 · 10−4 and training for 200k and 40k steps,
respectively. The ACT+XL model uses inverse
square root decay, starting at 4 · 10−5 as above and
trains for 1000 steps. We also experiment with
training ACT+XL directly from the relative model.

We evaluate as before3, treating the test set as a
single sequence. BLEU scores are calculated by
re-segmenting the output according to the original
reference based on Word Error Rate (Matusov et al.,
2005). All reported metrics are detokenized. The
baseline and relative models use beam search, the
others use greedy decoding.

Unfortunately, the range of the λ parameter that
produces sensible results is much more restricted
than for the sentence-based model (see “Analysis”,
below). We report results with λ = 0.25 and 0.3.

Table 1 shows our results. There is a drop of 4
BLEU points when moving to simultaneous trans-
lation, which is similar to our experiments on seg-
mented text. While there is room for improvement,

3BLEU+case.mixed+lang.de-en+numrefs.1
+smooth.exp+iwslt17/tst2010+tok.13a
+version.1.4.3

Model AP AL DAL BLEU
Baseline — — — 32.0
Relative — — — 33.1
XL — — — 34.4
ACT+XL
λ = 0.25 0.5 206 329 30.2
λ = 0.3 0.5 107 180 30.3
ACT+XL directly from relative
λ = 0.25 0.5 222 394 26.4

Table 1: Results for the stream translation experiment

these are promising results, and, to the best of our
knowledge, the first demonstration of unsegmented
end-to-end stream translation.

4.3 Analysis

For the segmented translation, we compare two
different latency schedules in figure 2. Both sched-
ules advance relatively homogenously. This may
indicate that the ACT attention layer needs to be
expanded to extract more grammatical informa-
tion and make more informed decisions on waiting.
Nevertheless, the model produces good results and
we even observe implicit verb prediction as in Ma
et al. (2019a). We also note that the high latency
models’ latency graph tends to describe a curve,
whereas the low latency models tend to uniformly
advance by one token per output token.

This behaviour can be explained by the proper-
ties of Differentiable Average Lagging. The ponder
loss objective that ACT is trained on may seem very
different, but actually produces somewhat similar
gradients to DAL 4, so the model incidentally also
learns a behaviour that optimizes DAL.

DAL is monotonically increasing, i. e. the model
can never “catch up” any delay by WRITing multi-
ple tokens without READing (assuming |y| = |x|).
It achieves the same DAL but with better translation
by always READing one token when it WRITEs.
Therefore, to achieve DAL = k for a given k, the
ideal waiting strategy is wait-k.

In the case of stream translation, we make two
important observations: First, that systems with
λ < 0.25 do not produce acceptable results (BLEU
scores < 10). This is because they fall behind
the input by waiting too much and have to skip
sentences to catch back up. Once an input word
is more than nh tokens behind, it is removed from

4 ∂DAL
∂αn

i
= i−N(i)− 1, ∂ACT

∂αn
i

= −1 for N(i− 1) ≤ i ≤
N(i), else 0

234

Figure 2: The same sentence from newstest2015 translated by an ACT system with λ = 0.1 (left) and λ = 0.4
(right). The shading indicates the αn

i as predicted by the ACT attention module (darker = higher probability), the
black line indicates the hard attention cutoff. The low-latency model approaches the behaviour of a wait-4 model.
Note the (incorrect) attempt of the left model to predict the verb “einbestellt” = “summons”, whereas the right
model takes the first half of the sentence as complete, leaving out the verb.

the memory and if it is not translated by then, it
may be forgotten. Therefore, we found it essential
to train more aggressive latency regimes. On the
other hand, systems with λ > 0.3 sometimes read
too little source information or stop reading new
source words altogether.

Second, that the established latency metrics
do not perform well on the very long sequence
(with our tokenization, the source is 29 317 tokens
long). While on single sentences, an AL score of
4 might indicate quite consistently a lag of around
4 tokens, a manual analysis of the output of our
λ = 0.3 system shows a delay of between 40 and
60 words, quite far away from the automatic met-
rics of AL=107 and DAL=180. Average proportion
in particular breaks down under these conditions
and always reports 0.5.5

5 Conclusion and Future work

We have presented Adaptive Compuation Time
(ACT) for simultaneous machine translation and
demonstrated its ability to translate continuous, un-
segmented streams of input text. To the best of
our knowledge, this is the first end-to-end NMT
model to do so. While stream translation model
still loses a lot of performance compared to the
sentence-based models, we see this as an impor-
tant step towards end-to-end simultaneous stream

5The full output of the λ = 0.3 model can be found here:
https://gist.github.com/felix-schneider/
1462d855808e582aa19307f6b0d576e1

translation.
We see several possibilites for future work on

this model: Training the whole model in one train-
ing rather than the multiple rounds of pre-training
may be possible by gradually introducing the la-
tency loss during training. Perhaps the latency de-
cisions can be improved by adding extra layers to
the ACT attention module.

But most importantly, we believe the model must
be adapted to the speech domain. Recently (see e. g.
Di Gangi et al. (2019)), the Transformer has shown
promising results for speech translation. For a re-
alistic application we believe that a simultaneous
translation model must work with speech input.

Acknowledgments

The work leading to these results has received fund-
ing from the European Union under grant agree-
ment No 825460.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simul-
taneous machine translation. In Proceedings of

https://gist.github.com/felix-schneider/1462d855808e582aa19307f6b0d576e1
https://gist.github.com/felix-schneider/1462d855808e582aa19307f6b0d576e1

235

the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1313–1323.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Chung-Cheng Chiu and Colin Raffel. 2017. Mono-
tonic chunkwise attention. arXiv preprint
arXiv:1712.05382.

Eunah Cho, Jan Niehues, and Alex Waibel. 2012. Seg-
mentation and punctuation prediction in speech lan-
guage translation using a monolingual translation
system. In International Workshop on Spoken Lan-
guage Translation (IWSLT) 2012.

Eunah Cho, Jan Niehues, and Alex Waibel. 2017. Nmt-
based segmentation and punctuation insertion for
real-time spoken language translation. In INTER-
SPEECH, pages 2645–2649.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988.

Mattia A Di Gangi, Matteo Negri, and Marco Turchi.
2019. Adapting transformer to end-to-end spo-
ken language translation. In INTERSPEECH 2019,
pages 1133–1137. International Speech Communi-
cation Association (ISCA).

Christian Fügen, Alex Waibel, and Muntsin Kolss.
2007. Simultaneous translation of lectures and
speeches. Machine translation, 21(4):209–252.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on empirical methods in natural
language processing (EMNLP), pages 1342–1352.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Muntsin Kolss, Stephan Vogel, and Alex Waibel. 2008.
Stream decoding for simultaneous spoken language
translation. In Ninth Annual Conference of the Inter-
national Speech Communication Association.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, et al. 2019a.
Stacl: Simultaneous translation with implicit antici-
pation and controllable latency using prefix-to-prefix
framework. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3025–3036.

Xutai Ma, Juan Pino, James Cross, Liezl Puzon, and
Jiatao Gu. 2019b. Monotonic multihead attention.
arXiv preprint arXiv:1909.12406.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005. Evaluating machine transla-
tion output with automatic sentence segmentation.
In International Workshop on Spoken Language
Translation (IWSLT) 2005.

Masato Neishi and Naoki Yoshinaga. 2019. On the
relation between position information and sentence
length in neural machine translation. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 328–338.

Jan Niehues, Thai Son Nguyen, Eunah Cho, Thanh-Le
Ha, Kevin Kilgour, Markus Müller, Matthias Sper-
ber, Sebastian Stüker, and Alex Waibel. 2016. Dy-
namic transcription for low-latency speech transla-
tion. In Interspeech, pages 2513–2517.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Proc. Inter-
speech 2018, pages 1293–1297.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimizing seg-
mentation strategies for simultaneous speech transla-
tion. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 551–556.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2837–2846.
JMLR. org.

Harsh Satija and Joelle Pineau. 2016. Simultaneous
machine translation using deep reinforcement learn-
ing. In ICML 2016 Workshop on Abstraction in Re-
inforcement Learning.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.21437/Interspeech.2018-1055
https://doi.org/10.21437/Interspeech.2018-1055

236

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Mahsa Yarmohammadi, Vivek Kumar Rangarajan Srid-
har, Srinivas Bangalore, and Baskaran Sankaran.
2013. Incremental segmentation and decoding
strategies for simultaneous translation. In Proceed-
ings of the Sixth International Joint Conference on
Natural Language Processing, pages 1032–1036.

A Segmented Translation Results

λ
Tokenized

AP AL DAL
Baseline 1.0 27.9 27.9
0.0 0.91 15.4 17.3
0.01 0.82 10.4 12.1
0.05 0.79 9.0 10.4
0.1 0.73 6.8 7.9
0.15 0.68 5.1 5.9
0.2 0.66 4.4 5.2
0.25 0.64 3.8 4.7
0.3 0.63 3.5 4.4
0.4 0.62 3.0 4.0
0.5 0.61 2.8 3.8

Table 2: Tokenized metrics for newstest2015 back-
ing figure 1

λ
Detokenized

AP AL DAL BLEU
Baseline 1.0 18.6 18.6 31.6
0.0 0.93 10.4 11.7 30.1
0.01 0.84 7.2 8.5 29.6
0.05 0.81 6.3 7.5 29.3
0.1 0.76 4.9 6.0 28.6
0.15 0.71 3.8 4.8 27.7
0.2 0.69 3.4 4.4 27.0
0.25 0.68 3.0 4.1 26.6
0.3 0.67 2.9 3.9 26.1
0.4 0.66 2.6 3.7 25.6
0.5 0.65 2.4 3.6 25.0

Table 3: Detokenized metrics for newstest2015

