AT

Karlsruhe Institute of Technology

A Personalised Dialogue System based on
Person Identification

Master’s Thesis of

Lukas Frank

at the Interactive Systems Lab
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT)

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. Tamim Asfour
Advisor: M.Sc. Stefan Constantin

16. November 2019 — 15. May 2020

Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 15.05.2020

(Lukas Frank)

Abstract

Interacting with computer systems using natural language is getting more and more
common due to the virtual assistant systems. However, when using such dialogue systems
one can notice that frequently general responses are given and the systems often cannot
interactively learn facts about the user. A personalized and to the user adapted dialogue is
the key for a natural feeling conversation.

In this work a Transformer model based approach to adapt the dialogue of a chat system
based on the knowledge about the user is presented. A computer vision pipeline is used to
identify the user, create a user profile and assign facts gathered through the dialogue to
this profile. Because of the stored facts the system can adapt the dialogue and retrieve the
facts later if needed.

These capabilities are demonstrated through an automatic evaluation, attention weight
visualization and a human evaluation. A generated validation dataset is used for the
automatic evaluation in order to check if the system behaves correctly in different scenarios.
The capabilities like greeting a user, asking for the name, saving and querying a food
preference of the user or saving and querying a location of an object are covered by the
evaluation. The experiments show that the system is capable of storing and retrieving
facts of a user and generating a proper response with an average F1 score of 89%.

Zusammenfassung

Die Interaktion und Steuerung von Computer Systemen durch natiirliche Sprache wird
wegen der raschen Entwicklung und Verbreitung von virtuellen Assistenten immer iibli-
cher. Durch das Nutzen solcher Dialog Systeme kann man jedoch feststellen, dass haufig
allgemeine Antworten gegeben werden. Auflerdem sind die Systeme oft nicht in der
Lage interaktiv Wissen iiber einen Nutzer aufzubauen. Ein personalisierter und an den
Nutzer angepasster Dialog ist jedoch wichtig fiir eine sich natiirlich anfithlende Konversa-
tion.

In dieser Arbeit wird ein Transformer Modell basierter Ansatz vorgestellt, der den Dialog
eines Chat Systems personalisiert basierend auf dem Wissen tiber einen Nutzer. Eine
Bilderkennung wird verwendet um den Nutzer zu identifizieren und um ein Profil zu
erstellen. Informationen die der Nutzer wéahrend einer Konversation preisgibt, werden
dem Profil zugeordnet. Da das System Informationen iiber einen Nutzer behalten kann,
konnen diese in dem weiteren Gespréachsverlauf ebenfalls genutzt werden.

Die Fahigkeiten des Systems werden durch eine automatische Evaluation, eine menschliche
Evaluation und durch die Visualisierung der Gewichte des Netzes belegt. Ein synthetisch
generierter Validierungsdatensatz wird bei der automatischen Evaluation verwendet, um
zu priifen, ob sich das System in verschiedenen Szenarien richtig verhélt. Fahigkeiten
wie das Begriifien des Nutzers, das Erfragen des Namens, das Speichern und Verwenden
von Essenspriferenzen oder das Speichern und Verwenden von praferierten Ortern von
Gegenstanden werden durch die Evaluation abgedeckt. Die Experimente zeigen, dass das
System die Fahigkeiten besitzt Fakten zu speichern und diese im Dialog verwenden kann.
Auflerdem wird eine angemessene Antwort mit einem durchschnittlichen F1-Score von
89% gegeben.

1ii

Contents

Abstract i
Zusammenfassung iii
1 Introduction 1
1.1 Motivation e 1
1.2 Goal. e 2
1.3 Structure 2
2 Fundamentals 3
2.1 Natural Language Processing 5
2.1.1 Recurrent Neural Networks 6

2.1.2 Transformer Network 8

2.2 Computer Vision L e 12
2.2.1 CNN . . e 12

222 ResNet e 13

3 Related Work 15
4 Architecture 17
4.1 OVEeIVIEW o o e e e e 17
411 GPT2. e 18

4.2 Dialogue System 20
421 DataGeneration 20

422 Training L e 22

423 Inference 23

4.24 Inputand Special Tokens 24

425 Memory e 25

4.3 Personalization 27
43.1 Overview e 27

43.2 Architecture 27

5 Experimental Setup 31
5.1 Frameworks 31
5.2 Dataset 31
6 Evaluation 35
6.1 Hyperparameters 35

Contents

6.2 Evaluation Methodology
63 Results e
6.3.1 HumanEvaluation
6.3.2 Automatic Evaluation
6.3.3 Attention Visualization.
6.4 End-to-endexample

7 Conclusion

7.1 Summary . .

7.2 Future Work

Bibliography

vi

36
36
36
37
39
40

43
43
44

45

List of Figures

2.1 Fully Connected Network with three inputs, four hidden and two output

neurons. [5] e 4
2.2 Training (blue) and validation (red) error plotted over training steps. Model

starts to overfit at the marked point. [13] 5
2.3 In time unfolded Recurrent Neural Network. [19] 6
2.4 Encoder-Decoder model composed out of two RNNs modeling a translation

task. [4] 8
2.5 RNN with attention to utilize the context vector to focus on specific tokens

oftheinput. [20] 9

2.6 Left: The structure of a single Scaled Dot-Product Attention block. Right:
Multi-Head Attention block composed out of h Scaled Dot-Product Atten-
tion blocks. [27] 10
2.7 Visualization of the entire Transformer model which is composed using
multi-head attention as main building block for encoder (left stack) and

decoder (right stack). [27] 11
2.8 Comparison of two networks with different network depth. The accuracy
of the deeper model saturates which results in a higher error rate. [7] . . 14

4.1 The dialogue component needs two inputs in order to generate a personal-
ized response: the user input and the memory which is selected according

toanimage. L L 18
4.2 Visual representation of the three embeddings which form the network
mputS . . . 25

4.3 On the left a sample input image of the multi-stage convolutional neural
network is shown. On the right an automatically aligned, scaled and
cropped image produced by the neural network is visualized. 28

4.4 Three dimensional representation of the face embeddings. The size and the
position of the images correlate with the spacial position in the coordinate
system. The four faces in the front are from the same person and cluster
well. In the background there are two more clusters of other persons. . . 29

6.1 Attention visualization of the same input but of different tokens. 40
6.2 Attention visualization of three different inputs. Left: user input which
requires a memory lookup but fact is not present in the memory. Mid-
dle: user input which requires a memory lookup with fact present in the
memory. Right: user input which which does not require a memory lookup. 41
6.3 Normalized camera input images of the same identity. 42

vii

List of Tables

4.1

5.1
5.2

6.1

6.2
6.3
6.4

Summary of the special tokens which are added to the dictionary. The
special tokens might indicate an access to the memory (action) with a
specific parameter.

Dataset broken down into scenarios including the number of each samples.
Triggered special tokens based on the user input and the confidence of

the person identification system. The special token also corresponds to a
natural language response. Lo

Human evaluation results after one chat session. Average rating of all
testers, only computer science testers and the group with no computer
science background. Lo
Accuracy and F1 score broken down to the scenarios.
Memory query error types.
Accuracy of given responses dependent on the number of facts in the

memory.

26

32

37
38
39

39

ix

1 Introduction

1.1 Motivation

In the recent years computer science research made a big progress in developing machine
learning based systems. The society gets in touch with intelligent systems in many areas.
The field of application of machine learning, especially deep neural networks, is ranging
from search engines or diseases prediction to self driving cars or virtual personal assistants
like Amazon Alexa or Siri. This technological influence also changes the interfaces between
humans and technical systems and shifts it to a more natural manner like using natural
language. However, while interacting with such a dialogue system one can notice a
difference between the responses of a human or a machine. Often the dialogue does
not feel natural because the systems are not capable of adapting the dialogue to facts
mentioned by the user earlier in the conversation. Instead of that, general responses are
given in the majority of the cases.

Below is an example of a usual conversation between a human and a dialogue system. The
dialogue raises from a conversation with the voice assistant Amazon Alexa. It demonstrates
the lack of the capability to save and recall information about the interlocutor. For humans
it is a natural task to associate newly obtained information with an interlocutor and to
use it in the later course of conversation.

HUMAN: Hi, my name is lukas.

SYSTEM: Hey.

HUMAN: [like to eat spaghetti

SYSTEM: Bingo, there are several recipes on chefkoch.
LATER IN THE DIALOGUE:

HUMAN: Do you remember my name?

sYsTEM: I don’t know exactly who is talking.

HUMAN: 'm hungry, what can I eat?

sysTEM: I am happy to help you. !

This work is describing the approach and the findings of the research to personalize a
dialogue system using an explicit memory representation. The system utilizes a transformer

Transcript of a sample dialogue with the voice assistant Amazon Alexa (https://alexa.amazon.de)

1 Introduction

model based architecture to generate natural language responses. A computer vision
component is used to manage the identities and the facts belonging to them. In combination
the system is able to assign facts to an identity and to use them in the further course of
the dialogue.

1.2 Goal

In this thesis the goal is to develop a prototype of a personalized dialogue where the domain
is restricted to a kitchen scenario. The problem space was chosen to have the possibility
to test the system later using the KIT assistance robot ARMAR as a platform. The idea is
to empower the system with the capability to incrementally build up knowledge about
different people interacting with the robot. For instance, the system should learn the name
of the identity and associate further information with it. Information such as the preferred
location of objects like a cup, or a plate, or the favorite food can be interactively learned.
At a later time point in the dialogue the user is able to query this information.

The entire system contains a computer vision and a natural language processing component.
The usage of information from an image input is needed to identify a person and to select
accordingly a memory which contains facts about this person. The facts are injected into
the natural language processing component in order to adapt the dialogue using this bias.
To interact with the dialogue system itself, a chat interface is provided to allow the user to
have a natural language conversation.

1.3 Structure

In Chapter 2 the relevant fundamentals are provided with a focus on natural language
processing topics. Different architectures like recurrent neural networks as well as the
transformer model are introduced including important concepts like the attention mecha-
nism. Furthermore, a brief introduction on convolutional neural networks is given.

Related research is discussed in Chapter 3.

Chapter 4 introduces the developed approach. The base model GPT-2 is described along
with the dialogue and the personalization component. The Chapter covers the data
generation, training and inference of the model. The introduced special tokens and the
approach how to utilize the memory is explained.

The used frameworks are described in Chapter 5. Apart from that the final dataset and the
characteristics of it are given.

In Chapter 6 the results are presented including the methodology how the model was evalu-
ated. Besides that, the used hyperparameters and end-to-end examples are provided.

Finally, in Chapter 7 the work is summarized, discussed and an outlook with further ideas
to proceed with this research is given.

2 Fundamentals

This chapter provides a fundamental overview of the structure of neural networks, activa-
tion functions, learning problems and the training of neural networks. However, a basic
knowledge is assumed as given in the history of machine learning approaches like the
Bayes’ Theorem, Rosenblatt perceptron [22], x-or problem, Support Vector Machines [23]
and backpropagation. The following sections give a rough overview of relevant approaches
in the field of computer vision and natural language processing.

The most basic architecture is called fully connected feedforward neural network or
multilayer perceptron. Figure 2.1 visualises a graphical representation of a network with 3
layers. Every neuron (circle) is connected with all neurons of the next layer. A specific
function f* which maps input values x to output values y like y = f*(x) should be usually
represented or approximated by a neural network. An example is, for instance, a function
which takes a day of the year and maps the day to the temperature of this specific day.
The training of a neural network f means to find a set of parameters 6 which solves the
problem: § = f(x, 0) with § — y minimal according the ground truth data.

Once the network is used for more complex tasks like for image classification, usually a
deeper model is chosen. A deep network means that several layers (f©®, £, f(V) are
stacked on top of each other

) = FOFD Y ()))

to apply the layers consecutively. The layers of a network usually contain a non-linear
function o, also called activation function. A network containing only linear layers can
be contracted to a one linear layer network. This implies that the network can only
approximate linear functions which means that, for instance, the xor problem is not

solvable with such an architecture. A sigmoid o(x) = ﬁeﬂ , tanh o(x) = % or relu
o(x) = max (0, x) function are common activation functions to build a layer f"44¢" such

as fhidden(x) = o(wlx) with w C 0.

The training of a neural network depends on the data and the chosen learning approach
like supervised learning, unsupervised learning or reinforcement learning. In case of
supervised learning the idea is to use data points including attached label attributes to
check if the prediction of the neural network is correct. If the prediction is not correct, the
learnable parameters (weights) are updated with the goal to have a smaller error in the
next iteration. A loss function, also called error function E(t, f(x)), is used to measure the
performance of a network f on a specific sample x. The L1 loss

E(t, f(x)) =t = f(x)]

2 Fundamentals

Hidden

Input

Output

Figure 2.1: Fully Connected Network with three inputs, four hidden and two output neu-
rons. [5]

is one of the simplest error functions which measures the absolute distance between the
target t and the prediction f(x). The backpropagation algorithm calculates the gradient §
regarding the weights in all the layers. Every weight is getting updated with a factor 7
which is the learning rate:

W wHnxdxx

In the training process the samples are pushed through the network, the error gets calcu-
lated and then the gradient gets propagated back through the network in order to optimize
the parameters iteratively.

In order to test the performance of the trained neural network on unseen data, the available
data gets split in several disjoint sets like training and test data. The training data set is only
used to optimize the learnable parameters, to find feasible values for the hyperparameters
like a good learning rate or to decide for the network architecture itself. The amount of
data which is needed to optimize a neural network depends mainly on the complexity
of the neural network (for instance, amount of trainable parameters) and the complexity
of the problem which should be learned. The test data is exclusively used for testing
the performance once the entire training process is done. It is quite common to split the
training set again in two subsets (training and validation set). The data samples of the
validation set are used during the training, for example, to prevent overfitting. The Figure
2.2 visualizes the error of the network during the training using data points from the
training and the validation set. The error made on the training data (blue line) is constantly
decreasing. Starting at the marked position, the predictions on unseen data from the
validation dataset are getting worse. The error (red line) increases which means that the
model tries to memorize the training data instead of solving the problem generalized.

2.1 Natural Language Processing

.
>

Figure 2.2: Training (blue) and validation (red) error plotted over training steps. Model
starts to overfit at the marked point. [13]

2.1 Natural Language Processing

This section provides an overview of common network architectures for natural language
processing problems. The recurrent neural network architecture and the related challenges
will be presented in Section 2.1.1. In Section 2.1.2 the Transformer Network is discussed.
The representation of language data, backpropagation through time and parameter sharing
will be also briefly introduced.

Natural language processing is a research direction in artificial intelligence with the
approach to use natural language like English as interface between humans and machines.
Using language as interface brings challenges for computer systems like the representation
of the language, the need to resolve ambiguities and the capture of the actual intent of the
users.

There are several ways to feed written language into a neural network. Depending on the
task the characters, pieces of words, words or entire sentences/paragraphs are encoded
as input. In the following, a naive word representation and the byte-pair-encoding is
introduced.

Taking all unique words of a corpus (i.e. Wikipedia crawls) and assigning each unique word
an index is forming a word vocabulary. The input of the neural network is now the index of
the word instead of the word itself. One major issue of this approach is that the vocabulary
usually gets quite huge because subwords or related words have different indices. For
instance, sun and sunny would have a different index in the dictionary. Furthermore, it
can happen that words with typos are not in the dictionary at all and, therefore, they have
to be assigned to an index which represents an unknown token.

The byte-pair-encoding overcomes these problems by composing words together out
of subwords. The vocabulary contains a symbol for every seen character plus merges
of symbols. To calculate the merges, the entire corpus gets replaced through symbols.
Afterwards, the occurrence of adjacent symbol pairs is counted and the most frequently

2 Fundamentals

e 0%
[—v_Aj: A— A

T
6 & & o o

Figure 2.3: In time unfolded Recurrent Neural Network. [19

®
l

v

.
»

seen pair gets replaced through a new symbol. The mapping of the pair and the new
symbol is a merge.

2.1.1 Recurrent Neural Networks

Processing natural language implies inherently the necessity of the model to care about
the variable input length of the sequence. On the one hand, the data can be padded to the
same input length and then passed into a network which is dependent on the length like,
for example, a feed forward network. On the other hand, a recurrent neural network can
be used to process data of variable length.

The idea of a recurrent neural network is that the sequence xD . x(D is read token by
token in T time steps. A further input of the network is the internal state of the network
itself. The Figure 2.3 shows two equivalent graphical representations of a recurrent
network which maps the input sequence to an output sequence. On the right side the
recurrence of the network is unfolded in time, however, the left one still contains the
cycle.

The definitions below will be used to formalize an instance of an Elman recurrent net-
work:

+ Weight matrix: U,V, W

« Bias: b, c

« Input at time t: x(*)

« Hidden state at time t: (!
« Output at time t: 0o*)

« Loss at time t: L)

« Prediction at time t: g(”

« Target at time t: y(t)

The hidden state k() is actually the point where the RNN differs from a feed forward
architecture because of the recurrence. The weighted previous hidden state Wh(~1
together with the the weighed input Ux(®) are getting activated. The output 0" is a linear

2.1 Natural Language Processing

transformation of the hidden state and can be used to calculate, for instance, the discrete
prediction "), The activation functions used here are interchangeable.

« K = tanh(b + Wh'=D + Ux®)
e o) =c+ VAW
« 7 = softmax(o®)

The recurrent network is trained with the backpropagation through time algorithm. The
computational graph gets unfolded in time and the weights U, V, W are shared which
means that each weight matrix is updated with the aggregated and the same value. The
overall error of the network is the sum of the errors of all time steps L. To update one
weight matrix ,the error from one sample is calculated, propagated back and summed up.
Every path from the loss to the weight is included in the sum and the weight is updated
only once using the calculated sum.

One major issue of RNNs is the exploding and vanishing gradient. Essentially, the problem
occurs because the gradient is a product that contains multiple times the same term.
Repeatedly multiplying gradients with values smaller or larger than 1.0 will lead to the
vanishing or exploding gradients. In the worst case the network is not trainable because of
the number under-/overflows or the training is not stable due to the large changes of the
weights in each update. The problem can be fixed by using another recurrent architecture
like Long Short-Term Memory Network.

In general the natural language problems can be divided into three major classes: variable
length input with fixed output, variable length input with same length output and variable
length output with variable length. The first two can be trivially implemented with a
RNN.

An example for the variable length input with fixed output problem is, for instance,
sentiment analysis. A sentence/paragraph is feed token by token into a recurrent network
and the last prediction 7*) can be interpreted as a semantic summarization. The fixed
length output can be used to classify the sentiment.

However, the part of speech tagging problem has a variable length input with the same
length as the output. The goal is to assign to every token a grammatical tag like noun or
verb. A plain RNN can be trained so that the prediction §*) corresponds to the grammatical
tag of the token ¢.

Translation is a sequence-to-sequence (seq2seq) problem where the source and target
sentence of the two languages usually do not have the same length. Figure 2.4 shows an
encoder-decoder architecture build out of two recurrent networks. The input sequence is
getting condensed into the vector s using the last hidden state h(!) of the encoder RNN.
A secend RNN - the decoder - is initialized with the vector s to decode the semantic
representation to the target sequence. The sequence gets decoded token by token whereby
the already generated tokens are used as next inputs. Since there is no input at state t = 0,
a special token like <BOS> (begin of sentence) is used to start the decoding process. A

2 Fundamentals

Er liebte zu essen .

He loved to eat

Figure 2.4: Encoder-Decoder model composed out of two RNNs modeling a translation
task. [4]

special token like <EOS> (end of sentence) is used to indicate the end of the sentence and
to abort the decoding process.

2.1.2 Transformer Network

In this chapter the Transformer Network is introduced. The general idea, different depen-
dency types and the building blocks of the architecture are discussed.

The Transformer model is a sequence-to-sequence model which relies fully on attention.
It is simpler and more computing efficient due to removed recurrent connections which
leads to shorter training times. Dependencies between the source and target sequence are
well captured by the model.

2.1.2.1 Dependency types

A linguistic dependency describes the relation between two words. In the following
example the word they resolves to two girls. Two girls are in the restaurant. They order the
same dish. It is for many tasks essential to capture these kind of dependencies to perform
well. Essentially, there are 3 main types of dependencies in sequence to sequence tasks:
dependencies between the source and target sequence, within the source sequence and
within the target sequence. Whereas a basic RNN model can capture the dependencies
between the source and target sequence reasonable well, the Transformer model captures
better the dependencies within the source and the target [27].

2.1.2.2 Position-Encoding

Since the model has no recurrent structure to encode the relative or absolute position of
the tokens, this information is injected manually. To the input and output embedding a
positional encoding is added. Usually a sine and cosine function with different frequencies
are used as a positional encoding.

2.1 Natural Language Processing

2.1.2.3 Attention

In this section the idea of the attention mechanism will be introduced. Furthermore,
the main building block of the Transformer model, the multi-head attention, will be

defined.

A plain RNN applied to the translation task will encode the entire sequence to a vector
v and then decode it. The intuition behind the attention mechanism is to provide the
decoder with a context vector to focus on certain tokens of the source. Each context vector
is a basically a weighted sum of the hidden states of the encoder. The attention weights
are learned during the training. Figure 2.5 visualizes that for the current decoding step the
token I in the input sequence is more relevant then the others. The weighted sum of the
hidden states multiplied by the attention weight represents the context vector.

le suis étudiant </s>

attention

context

| am a student <s> Je suis étudiant

Figure 2.5: RNN with attention to utilize the context vector to focus on specific tokens of
the input. [20]

However, the Transformer model is based on a multiplicative attention which is called
Scaled Dot-Product Attention. The following equation represents the attention and can be
visualized like in Figure 2.6.

Attention(Q,K,V) = softmax(Q—Ij)V with Query Q, Key K and Values V.
k

K and V has the dimension di which is used to scale the dot-product since it tends to grow
with the dimensionality. The mechanics of this attention is the same like in the above
described additive attention that certain values V are more relevant regarding the query
Q and the current keys K which are comparable to a context. Multiple Scaled Dot-Product
Attention blocks are used in parallel, the results are concatenated and then projected
through a linear layer to the dimensionality of the value V' (Figure 2.6).

2 Fundamentals

Scaled Dot-Product Attention Multi-Head Attention

MatMul

Scaled Dot-Product
Attention

L LI 1

J o= Ll Ll
[Linear]_][Linear),][Linear],]

\ K Q

Figure 2.6: Left: The structure of a single Scaled Dot-Product Attention block. Right: Multi-
Head Attention block composed out of h Scaled Dot-Product Attention blocks.
[27]

2.1.2.4 Encoder & Decoder

The entire architecture can be divided into an encoder and decoder stack. N identical
layers are stacked like visualized in Figure 2.7. In the following the focus is put on how
the Multi-Head Attention is reused and connected.

The encoding layer is built out of two sub-layers. The first layer includes the Multi-Head
Attention, a residual connection and a layer normalization. The second layer is built out
of a fully connected network, a residual connection and a layer normalization. In the
encoding stack Q, K and V of the Multi-Head Attention block is set to the same value in
order to implement a self-attentive behaviour.

The encoding layer is built out of three sub-layers. The first layer includes the Multi-Head
Attention, a residual connection and a normalization layer. However, in the decoder the
Multi-Head Attention is masked to prevent that the model can attend tokens which will be
generated in later time steps of the decoding process. The second sublayer consists of the
Multi-Head Attention, a residual connection and a layer normalization. The Multi-Head
Attention uses in this layer the output from the encoder as K and V and Q from the layer
below. The third layer is built out of a fully connected network, a residual connection and
a normalization layer equivalent to the second layer in the encoder.

2.1.2.5 Training & Inference

The training and the inference of the Transformer model is slightly different in terms of
how the data is fed into the model. The main difference is that the inference needs several
runs to generate the entire sequence.

The model is trained using input sequence I = Iy, ..., I, and output sequence O = O, ..., O,
tuples. The embedding of I is fed into the encoder. A special token to indicate the begin
of a sentence is prepended to the sequence O, then embedded and fed into the decoder.
The training objective is to predict the sequence O postpended with a special token to

10

2.1 Natural Language Processing

Qutput
Probabilities

Linear

Add & Norm
Feed
Forward
| Add & Norm IT:
e R Multi-Head
Feed Attention
Forward T 7 Nx
— 1
Nt Add & Norm =,
p—>| Add & Norm | Vasked
Multi-Head Multi-Head
Attention Attention
At At
— J . —
Positional Positional
Encodi D & :
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.7: Visualization of the entire Transformer model which is composed using multi-

head attention as main building block for encoder (left stack) and decoder (right
stack). [27]

11

2 Fundamentals

indicate the end of the sentence. The begin of sentence token <BOS> is basically used
to introduce a shift that the first token (begin of sentence) of the input of the decoder
maps to Oy. During the training additionally an attention mask is used to prevent leftward
information flow in the decoder.

At inference time the sequence I is fed into the encoder and the output gets iteratively
generated. The begin of sentence token <BOS> is fed into the decoder to predict the first
token. The generated token gets attached to the token <BOS> input token to predict
the next token. The procedure is repeated until the end of the sentence token <EOS> is
outputted. This greedy decoding strategy depends on the first predicted token. To lower
the chance of decoding a wrong sequence, for example, due to the wrongly predicted
first token, algorithms like Beam Search are used. Beam Search keeps while decoding
the N most probable sequences. After all sequences are fully decoded, the most probable
sequence is taken.

2.2 Computer Vision

In the field of computer vision algorithms are developed to process visual data such as
images or videos. In the recent years the approaches evolved from algorithms which
depend on hand-crafted features to end-to-end learned neural networks. Some of the
models achieve in specific tasks close to human level performances. In the following,
the convolution operation and the Convolutional Neural Networks (CNNs) are briefly
introduced.

Usually images are represented in a grid-like data structure where every grid entry belongs
to a pixel value. While a gray scale image can be represented with only one matrix
containing the gray values, an RGB color image is represented with 3 matrices where each
matrix represents one color channel. Features of an image like edges can be extracted
with a mathematical operations called convolution. They are used to describe the content
of the image. In the recent approaches these convolution functions are learned through
training.

2.2.1 CNN

In this section the use of Convolutional Neural Networks is motivated and the main
building blocks are briefly introduced.

Convolutional Neural Networks are introduced here because plain feed-forward networks
have practical limitations in processing visual data. They can also be interpreted as an
extension of the time delayed neural networks [29]. The issues like heavy computing com-
plexity, the many needed parameters and shift-variant learned knowledge are approached
using convolutional layers, pooling layers and a classification layer.

In the convolutional layer small matrices are learned which are often called kernel or filter.
By sliding a two-dimensional filter h over the input f the convolved output G is calculated.

12

2.2 Computer Vision

The pixel representation of the input is addressed with the index m and n and j, k denotes
the index to the value of the filter.

G(mn) = > > hljkl flm—jin—Kl
J ok

The filters are learned during training and the parameters of a filter are shared which
means that a single filter has only j * k parameters. In comparison to a fully-connected
approach, the representation is sparse and invariant to the position. A convolutional layer
usually contains multiple filters activated by a ReLu function.

Usually a pooling layer is stacked on top of a convolutional layer. A pooling function
summarizes the characteristics of the input in a rectangular neighborhood. For example,
a max pooling only outputs the maximum of the input. Because of this layer a local
translation and rotation invariance can be introduced and no parameters are added because
the function is not learned. If no padding is added to the input, the repeated application of
convolutional and pooling layers will reduce the dimensionality of the initial input.

Once a specific dimensionality is reached, a fully-connected layer is applied as the last
processing step. Depending on the task, the output is used, for example, to classify the
content of the image.

2.2.2 ResNet

The ResNet architecture utilizes residual connections in order to build deeper computer
vision models. In this chapter the idea of the approach is presented.

The trend in computer vision before the ResNet publication was to build deeper and deeper
models. However, the authors of the ResNet paper have shown that deeper models might
lead to worse performance compared to the models with lower capacity. Figure 2.8 is
visualizing the result of an experiment where two models are compared. Both models are
not overfitting because the training error and the test error is decreasing. However, the
performance of the model with less layers still outperforms the other one. In order to be
still able to train such deep networks, utility losses are often used to introduce a further
learning signal.

The main idea of the ResNet architecture is to introduce an identity shortcut connection.
The also called skip connection enables to bypass several convolutional layers. The authors
claim that adding several identity layers do not influence the performance of the network.
Furthermore, they argue that it is easier for the network to learn an identity function using
the residual connection instead of adapting the weights of the kernel to achieve that.

This approach is picked up by many successor papers and gets extended. For instance,
instead of using only two paths (convolutional layer path and residual path) the model
gets extended through further convolutional paths with different kernel sizes. As a result
the network is able to select the fitting kernel size or to skip the layers if they are not
needed to solve the task.

13

2 Fundamentals

201

201
S ~
v S 56-layer
3=
5o S 1 20-layer
a0
g 56-layer S
g 3
8 -
= 20-layer
% 1 2 5 6 % i 2 s 6

3 4 3 ;I
iter. (1e4) iter. (1e4)

Figure 2.8: Comparison of two networks with different network depth. The accuracy of
the deeper model saturates which results in a higher error rate. [7]

14

3 Related Work

In the survey of Chen et al. [2] an overview of the different dialogue systems and the related
architectures is given. They group the approaches in task-oriented and non-task-oriented
systems. The task-oriented systems are designed to solve a specific task like to book a flight
or to find a restaurant. An approach is to interpret the dialogue as a pipeline of several steps
like language understanding, dialogue state tracking, policy learning and natural language
generation. Recent work is focusing on end-to-end approaches to avoid limitations like
the credit-assignment problem or to get more adaptable to the new domains [35]. The
non-task-oriented systems are sub-divided into generative, retrieval-based and hybrid
methods. According to their differentiation this work is a non-task-oriented dialogue
system with a way to partially incorporate memory.

In the work of Qian et al. [17] the goal is to generate more realistic and natural responses
by tying a personality to the dialogue system. The idea is that the user can ask for the
gender of the system and it acts according to the given personality. A sub-network predicts
if the response should be generated by a general decoder or if some profile information
is needed which is used by another decoder. The profile information contains key-value
pairs where one tuple gets selected according to the key based on the user input. The
value is used to generate a grounded response. One difference in this work is that they
assign a personality to the dialogue system instead of having a profile for every single
user. The system tries to imitate the behaviour of a real person. However, their dialogue
system does not build a profile of the user to generate a personalized response based on
this knowledge. That means a user is not able to ask facts about his identity.

In the paper of Ghazvininejad et al. [6] a knowledge-grounded conversation model is
introduced. The model relies not only on the conversation history but also on external facts
to generate a response. The facts that are available to the system are taken from external
sources and are not covered by the conversational corpora. Facts which are relevant for
the user input are selected through keyword matching. The conversation as well as the
relevant facts are encoded and fed into the decoder. The focus of their network does not
lie on task completion and is trained in a multi-task learning fashion. Their objective is
comparable to the one in this thesis. Instead of person related facts they query world facts.
However, their architecture does not allow to learn from a dialogue and does not store
these facts.

The foundation of this thesis is the work of Wolf et al. [31]. Compared to the previously
often used architectures, they used a transformer network based approach instead of a
recurrent neural network. The network is trained on the persona-chat dataset in order to
condition the model to a specific persona. Because of that, the network uses the injected

15

3 Related Work

persona data to generate responses which are related to this data. This approach gives
the model itself a personality, however, in this thesis knowledge of the user is injected to
modify the dialogue.

Recently before the submission of this thesis the paper [21] from Facebook was published.
Their work covers an extensive investigation on how to build open-domain chatbots. In
particular, the work focuses on properties of the dialogue system like empathy, personality
and maintenance of a consistent persona of the system. All the developed models of
their work are based on the Transformer model. Using human evaluation, their model
outperforms a comparison baseline model in terms of engagingness and humanness. Their
work follows the same research direction like the work presented in this thesis which
underlines even more the importance of building personalized dialogue systems.

An architecture with three different components is developed by Tanaka et al. [26] to
incorporate external facts. The system consists out of a Reranker, a Fact Retrieval (FR)
component and a Memory-augmented Hierarchical Encoder-Decoder (MHRED). The
Reranker component selects the most probable response generated by the MHRED and FR
and outputs it to the user. The dialogue context together with the encoded facts are in the
MHREC used to generate a fact grounded response. The Facts Retrival component selects
relevant responses based on a given metric from a database. In comparison to the model
of this thesis they are using well prepared datasets to train every component.

In the work of Zhang et al. [34] they used a GPT-2 model which is fine-tuned on Red-
dit comment chains to generate more relevant and contentful responses. The data is
extracted from Reddit through filtering out irrelevant information resulting in a dataset
with 147,116,725 dialogues. They observed that the model performs better than an RNN
counterpart since it pays more attention to the context. The objective of their work is not
to inject external knowledge in order to adapt the dialogue.

Recent research activities show that there is interest in developing more engaging dialogue
systems. It is approached through using high-capacity models or injecting additional
knowledge into the model. However, the literature research resulted in a fact that there
is no relevant or well-known work focusing on building up a representation of the user
which is used later while interacting with the dialogue system.

16

4 Architecture

This chapter provides a general overview of the entire architecture and motivates the
usage of the chosen components. The details of the dialogue component are elaborated.
Topics like data generation, training, inference and special tokens are covered. Finally,
the personalization component and the related functionalities like memory selection are
introduced.

4.1 Overview

The developed architecture consists of two main components:

+ The dialogue component generates personalized responses based on user input
and facts of previous dialogues (memory).

« The personalization component keeps track of the facts gathered during conver-
sations and returns a memory that is based on the recognized person.

The dialogue and the personalization components are not jointly trained, however, at the
inference time the models run at the same time.

To build the dialogue system a Transformer Model is used because it performs well in
seq-to-seq tasks and can handle dependencies well. Because of the small amount of training
data the approach is to fine-tune a model which already learned the concepts of language
like, for instance, the recently published models BERT and GPT-2. The BERT model is
not autoregressive in contrast to the GPT-2 model. Since a dialogue system is based on
language generation, the GPT-2 model is better qualified for this task.

The two neural networks which are used in the personalization component do several
steps in order to transform a input image into a face embedding. Because of the assumption
that the images from a camera are not perfectly aligned, a pre-trained [30] multi-task
network[33] is used to do the pre-processing steps. The processed image is embedded
using a pre-trained Inception ResNet[24] as a feature extractor.

The two components follow the same execution order for every conversation turn. In the
following the steps are listed how a personalized response is generated:

1. Camera image gets preprocessed and embedded.
2. User profile gets loaded according to the embedding.

3. User input is expected.

17

4 Architecture

4. Response generation based on input and user profile (memory).
5. Update user memory if needed.
6. Print response to the user.

A visual overview how a personalized response is generated is shown in Figure 4.1. The
Figure basically visualizes the step 1 - 4 in the above mentioned list. The different steps
are elaborated in Chapter 4.2 and 4.3 in detail.

Personalization)
Component

o |

Dialogue
Component
\ ID
- user input response
= memory
\ J

Figure 4.1: The dialogue component needs two inputs in order to generate a personalized
response: the user input and the memory which is selected according to an
image.

4.1.1 GPT2

The GPT-2 model developed by OpenAlI [18] is essentially a language model and predicts
the next word given a context. It is based on the decoder stack of the transformer model
and was trained on a 40GB text dataset.

18

4.1 Overview

The authors of the GPT-2 model are targeting the lack of task-independent models in
the natural language understanding domain. They claim that the currently developed
approaches are "narrow experts rather than generalists"[18]. Furthermore, they identified
that there will be a limit in scaling the datasets in order to be able to solve certain natural
language understanding tasks.

The GPT-2 model is composed out of the Transformer decoder blocks ranging from 12 up
to 48 layers. The Transformer architecture is only slightly changed. In each sub-block the
layer normalization was moved to the input of the block. Furthermore, they added another
layer normalization at the final attention block, increased the context size from 512 to 1024
tokens and scaled the initialization of the residual layers. For GPT, the successor model of
GPT-2, exactly the same decoder block of the Transformer model is used.

The improvements of GPT-2 are focusing more on how to train the model itself rather than
on architectural changes. The general approach is to split the training into two stages:
unsupervised pre-training using the language modeling objective and the supervised
fine-tuning to optimize the downstream objectives. The following likelihood is maximized
and represents the language modeling objective:

Li(U) =) log P(ului-.....ui-1:0)
i

U represents the set of all tokens in the dictionary, k the context window and 6 are the
model parameters. The conditional probability P is modeled by the transformer decoder
where h,, is the output of the last decoder block and W, is the token embedding matrix.

Plug,...,u_q) = softmax(hnWeT)

Text data out of multiple domains is used for the pre-training, although usually the
dataset is carefully designed with samples of the same domain. The intention is to present
many different aspects of natural language to the model while training to achieve a good
adaptability to different tasks. A new dataset called WebText was created by the authors
of GPT-2. The dataset contains web crawls of pages among which the link to the page
was posted on Reddit. Karma points of the posts were taken as a relevance metric to filter
out web pages with less then 3 points. After duplicate removal and heuristic cleanup the
collection contains roughly 8 million documents which results in 40 GB of text.

For the supervised fine-tuning an annotated data set C is required where each sequence
x!,...,x™ is assigned to a target y. The pre-trained network is used to get the activation
of the last decoder block which is then passed into the linear output layer with the weights
W.

P(ylx',....x™) = softmax(h, W)

The loss of the fine-tuning is defined as following:
L,(C) = Z log P(y|x',...,x™)
(xy)

The authors of GPT-2 finally proposed to use a weighted loss L = Ly(C) + AL;(C) since it
turned out to be beneficial to use language modeling as an auxiliary objective.

19

4 Architecture

4.2 Dialogue System

This section covers the implemented algorithm to generate training data, the model which
is used as the dialogue component to respond to user queries, the training and inference
of the model.

4.2.1 Data Generation

The objective of the model is to generate responses which should be grounded on the facts
in the memory. To fulfill this requirement the samples in the training data set need to have
at least the properties below:

« facts which represents the memory
« chat history
« response to be generated

Due to the special requirements of the samples, the data can not be easily crawled or
extracted from public sources like movie subtitles or Reddit. In the most cases it is not
easily possible to build up a memory of a user using crawled data. Furthermore it was
not intended to use humans (Crowdworkers) for the data generation because it is often
exhausting and expensive. Therefore an algorithm is used to generate artificial training
samples. A formal grammar defines dialogue snippets and rules how to generate samples
for the training and the test dataset. The data is structured similar to the samples in the
persona chat dataset [31].

Listing 4.1 represents one sample where the dialogue has one turn. The memory key of the
JSON includes an array of facts within the memory. These facts refer to the entire dialogue.
The array referenced by the utturances key represents the turns of the dialogue. One
turn entry has two more keys: the history key and response candidates key. The dialogue
history is represented by an alternating sequence of user inputs utterances and utterances
generated by the dialogue system. The history key contains this information. Furthermore,
the candidates key includes N responses. Only one response is the intended response since
the history and the memory is taken into account. This correct response is always the last
element in the array. The N — 1 additional utterances serve as distractor responses and
are random samples from other dialogues. The data generation algorithm ensures that the
random samples are always distractors which means that they do not match the context
of the user input. The multiple-choice head of the model is trained with the N candidates.
However, only the correct response is used to train the language-modeling head.

The data point in listing 4.1 assumes that the user wrote Hello to the dialogue system.
Since the dialogue system knows the name of the user (for example because of a previous
dialogue) the system should greet the user with his name. The response candidate in line
11 serves as a distractor and is not the intended response because the dialogue system
already knows the name.

20

10
11

12
13
14
15
16

o e NN

10
11
12
13
14
15
16
17
18
19
20
21
22
23

4.2 Dialogue System

Listing 4.1: Sample instance which is used to train the model.

"memory": [
"name: Peter",
15
"utterances": |
{
"history": [
"Hello"
15

"candidates": [

"<ask_name> <sep> Good afternoon, I haven’t met you so far, what’s

your name?",
"<greet> Peter <sep> Good afternoon, Peter"

Listing 4.2: Excerpt of a two turn dialogue.

L

"utterances": [

{
"history": [
"Good evening"
Il
"candidates": [
"<greet> Miguel <sep> Hi, Miguel",
"<ask_name> <sep> Good afternoon, what’s your name?"
]
b
{
"history": [
"Good evening",
"<ask_name> <sep> Good afternoon, what'’s your name?",
"It’'s Marcella"
Il
"candidates": [

"<ask_name> <sep> Hi, I haven’t met you so far, what’s your name?",

"<new_identity> Marcella <sep> Hello, Marcella"

21

4 Architecture

Listing 4.2 shows a training sample with a two turn dialogue. The intended network
response is appended to the history of the next turn. For the training every sub-dialogue
is used as a training sample. This means that every turn instance in the utterances key is
used at least once in the training. That guarantees that the history of the conversation is
also considered for the response generation.

The generated dataset is encoded with a byte-level Byte-Pair-Encoding tokenizer of Hug-
gingfaces!. The tokenizer is pretrained and has a dictionary size of 50257 elements. Special
tokens (<bos>, <eos>, <pad>, <sep>) are added to the dictionary to indicate the begin of
sequence, end of sequence, to pad the sequence and to separate parts within a sequence.
Furthermore, task-depended special tokens (<system>, <human>, <new_identity>, <en-
sure_identity>, <use_fact>, <new_fact>, <ask_name>, <greet>, <help>) are added. The
usage of them is discussed in Section 4.2.4.

4.2.2 Training

The personalized dialogue system is built on top of the TransferTransfo[31] architecture
introduced by Huggingfaces which is respectively a pre-trained GPT-2[18] architecture.
The system consists of a GPT-model with different heads for training and inference. For
the training two heads are attached to the GPT-2 backbone: a language modeling and a
multiple-choice classification head. However, for the inference only the language modeling
head is used. Hereafter the training procedure and the reason for using different heads is
discussed.

The 12 pre-trained attention block layers of the GPT-2 backbone are trained or fine-tuned
to work as a dialogue system. The language modeling head Hy,s is used to produce a
reply based on the given input sequence. The input is passed through the attention block
layers and the hidden-states of the last layer h, are passed into a fully-connected network

frci-
Hiym = frei(hy)

The fully-connected layer calculates the prediction scores for each vocabulary token,
therefore the output layer size must be equal to the dictionary size. The cross entropy loss
CEpp combines the log-softmax function and the negative log likelihood loss and is used
as optimization criteria:

exp Hyar[target]
2.j exp HpuJ]

CErpr(target) = —log

Taking the facts in the memory into account a second head is used to enforce that the
network is using these facts. This utility objective introduces a further feedback to generate
memory-grounded responses. For example, if the memory contains the fact that the user
likes fish and chips, this information should be used to generate a personalized reply on
the query "I'm hungry and don’t know what to eat.". To achieve this the multiple choice

Thttps://github.com/huggingface/tokenizers

22

4.2 Dialogue System

head needs to select the correct reply from the different candidates in the training data.
Regarding the example above a candidate list could look like this: "I’'m not hungry.", "I don’t
know your favorite dish.", "You told me that you like fish and chips, how about that?". Based
on the memory content the last candidate is the best-suited reply. The other distractor
sentences are not intended replies since they may not consider the current memory state
or are out of the context. The multiple choice samples are generated to match exactly
this condition that only one candidate is the correct one. This approach is described in
detail in Section 4.2.1. The multiple choice head Hyc is composed out of a dropout layer
fpropour and a fully-connected layer frc. The last hidden state hj, is used as an input for
the classification head:

HMC = ﬁ:CZ (fDropout (hn))

The multiple choice head is optimized as well using a cross entropy loss. The loss takes
into account if the model selects the correct candidate:

exp Hyic[target]

CEpc(target) = —log S exp Hc]
J

The overall loss L is the weighted sum of the multiple-choice and the language modeling
loss:
L = MiCEpc + A2CEL

An AdamW optimizer with fixed weight decay is used in addition to a linear decreasing
learning rate while training.

4.2.3 Inference

For the inference the model is slightly changed. Since the dialogue system is only intended
to generate a response, the multiple choice head is discarded. The weights of the GPT-
2 base model and the language modeling head are initialized with the fine-tuned and
correlating weights. For the response generation only the current user input, the memory
and the history are fed into the model.

Beam-search is strongly sensitive to the output length [32] and in generation tasks the
beam-search distribution is different to human-written texts [8]. Because of that a sampling
method is used for decoding. In recent work the top-k and Nucleus sampling [9] is
introduced and the authors have demonstrated good results. The implementation of
Huggingface uses these sampling methods and is applied to the dialogue model. The logit
output of the language modeling layer Hyy, is scaled with factor ¢t and passed into the
fritzer function together with the two hyperparameters top, and topy.

Him
N = Softmax(f}ilter(T: l‘OPp, tOpk))
The topy hyperparameter changes the behaviour of ffjj., in the following way. The

intention is that only the top; most probable tokens should be considered for sampling.
To achieve this behaviour the logit values of the other tokens are set to minus infinity.

23

4 Architecture

Similarly, the top, hyperparameter defines a threshold for a cumulative filtering of the
sorted logit values. The function ff;j;., keeps only the tokens where the cumulative logit
values are equal or greater than the threshold top,. In practice the tokens with the lowest
logit values are filtered by setting the values of them to minus infinity. The softmax
function is applied to the result of ff;;.-. The consequence is that tokens with a minus
infinity value are assigned to a very small probability. Finally, the next token is obtained
by sampling it out of the distribution N.

To generate the entire sequence, the token is appended to the already generated tokens.
This sequence is iteratively extended and passed in the network. The decoding process will
be stopped once the <EOS> special token is sampled. To avoid infinity loops while generat-
ing the sequence the process is also stopped if a specific sequence length is reached.

4.2.4 Input and Special Tokens

Task-dependent special tokens are introduced and added to the tokenizer. The use of the
extra added tokens is discussed in the following.

The input of the network is a string representation of the memory, the history and the
reply if the network gets trained. The different parts are separated through special tokens
to support the network to differentiate the different parts of the input. The content of
the memory is represented by the concatenated facts and is in every sample between
the <BOS> and the first <human> special token located. The memory of listing 4.3 and
4.4 contains one and two facts in the memory respectively. Alternating the input of the
user and the system, response is concatenated to the memory. The input of the user is
between the <human> and the <system> special token. The already given responses of the
dialogue system are between the <system> and the <human> tokens. The string between
the <system> and the <EOS> token is the actual target reply of the training sample. The
sample in listing 4.3 contains only the user input and the target response. However, in
listing 4.4 the response "i don’t know your favorite dish" should be generated based on the
first turn and the user input "i’m hungry".

Listing 4.3: Representation of a one turn dialogue training
sample before tokenization.

<B0S> name: lukas <human> hi <system> hi lukas <E0S>

Listing 4.4: Representation of a two turn dialogue training sample
before tokenization.

<B0S> name: lukas, my computer is in the office <human> hi <system> hi lukas
<human> i’m hungry <system> i don’t know your favorite dish <EOQS>

At inference time the input does not contain the target. Once the user enters a query, it
gets encoded and appended to the history. The newly created sequence is used to predict
the response. The listing 4.5 shows an input where the user just greeted the dialogue
system. The system is intended to greet the user with his name.

24

4.2 Dialogue System

Listing 4.5: Representation of an input at inference time
sample before tokenization.

1 <B0S> name: lukas <human> hi <system>

The introduced way to model the history brings some limitations with it. Currently only
alternating dialogues can be modelled. Some logic would be needed to terminate the user
input to indicate that the model should generate a response. Furthermore, the training
data should also contain such samples. Additionally, the dialogue system can not initiate a
dialogue. The system takes a user input and generates a proper reply. As well here, one
would have to augment the dataset and implement some logic to decide when to generate
an output without an explicit trigger by the user.

The final network input § = S,...,S, is the sum of the word embedding ¢,,,,4, the
positional encoding ¢,,s and the segment embedding ¢se,.

Si = Pword(token;) + ¢pos(i) + ¢pseq(segment;)

Figure 4.2 visualizes a representation of an input like S. The topmost bar represents the
$seg embedding which is added to every token. In the middle the representation of the
word prices ¢,,orq are shown. The bottom-most bar represents the positional encoding

Ppos-

<MEMORY> <HUMAN> <SYSTEM>

name:

SO lukas

<HUMAN> hi <SYSTEM> hi . luk as . how are you? <EOS>

Figure 4.2: Visual representation of the three embeddings which form the network input S

Both the word embedding ¢,,,,4 and the positional encoding ¢, are applied like proposed
in the GPT-2 paper using Byte-Pair encoding and the sin/cos functions. The segment
embedding ¢;., is introduced to support the network to differentiate the input parts
(memory, user input, system output). Depending on the part, the related special token
(<memory>, <human> or <system>) is encoded and the embedding is added to the other
embedding. This information injects to every token the information to which segment the
token belongs to. Additionally the special tokens itself are marking the beginning and the
end of the sequence like in Figure 4.2 visualized.

4.2.5 Memory

The content of the memory is always bound to a specific person. It means that all facts in
the memory refer to the person which is currently chatting with the dialogue system. The

25

4 Architecture

memory content is represented in a symbolic way and looks, for example, like the following
example: "name: lukas, computer is in the living room, i like apples". Because of the textual
representation arbitrary information can be associated with the user and potentially used
for the response generation. There is as well the option to inject information from external
sources.

To be able to read from or to write to the memory, additional special tokens are used.
Furthermore, a particular output format of the network is expected. The listing 4.6 shows
that to the actual user response a special token and optional parameters are prepended
and separated by the <SEP> special token.

Listing 4.6: Output scheme where an action special token and parameters are added to the
actual response.

<ACTION SPECIAL TOKEN> PARAMETERS <SEP> RESPONSE TO THE USER

For example, if the user introduces himself like "hello, my name is peter”, the expected
output of the network looks like this: "<new_identity>peter<SEP>hi, peter". The special
token <new_identity>is an indicator to the dialogue system whether the following sequence
up to the <SEP> token should be added to the memory. The sequence after the <SEP> token
is finally handed back to the user as the reply. If the user enters a query which involves a
lookup in the memory, the network also prints a special token including a parameter. In
this case the parameter is only used to support the training. Experiments have shown that
the network uses the parameter as a hint to find the relevant fact in the memory. Besides
that, the generated actions may also be used by other components, for example, to call
APIs.

The Table 4.1 lists all used special tokens which represent an action, the access method on
the memory and the parameters.

special token read or write | parameter
<greet> read name
<ask_name> - -
<new_identity> write name
<merge_identity> write name
<ensure_identity> - -
<use_fact> read fact
<new_fact> write fact
<help> - -

Table 4.1: Summary of the special tokens which are added to the dictionary. The special
tokens might indicate an access to the memory (action) with a specific parameter.

26

4.3 Personalization

4.3 Personalization

The personalization component basically implements the functionality to manipulate the
memory based on the camera input. This section gives a general overview and introduces
the developed architecture.

4.3.1 Overview

The intent is to use the entire system in the kitchen robot ARMAR. Therefore, it is necessary
to detect the person which is at the moment interacting with the robot. To be able to
extend the system to achieve this goal, the approach is to select the best matching memory
based on the camera input. It allows consequently for the system to recognise different
people and use the associated memory to adapt the dialogue.

The entire personalization component consists out of three main modules like already
visualized in Figure 4.1:

+ Multi-task CNN (MTCNN): Automatic face detection and image pre-processing.
« ResNet: Network to compute face embedding,.
« k-nearest neighbors classifier: Selection of best memory profile.

In order to query the user profile, create and update the profiles and to be able to add facts
to the memory, the above mentioned modules are executed sequentially. A new camera
snapshot is taken in a cyclical interval and saved to a specific directory. The new image is
passed every turn into the pipeline to get the correct memory corresponding to the latest
image.

4.3.2 Architecture

In this section the pipelines steps are explained in detail. Finally, the operations are
introduced which are realized using the processing pipeline.

4.3.2.1 MTCNN

The multi-task CNN [33] is the first step in the processing pipeline. The input of the
network is the camera image which might have variable dimensions. The model detects
the faces on the image and returns the cropped face jointly with a detection probability.
An image pyramid is built and passed into the network. That means that the image is
resized to different sizes to be invariant to different face sizes on the image. It is an easy
approach compared to modifying the network architecture to achieve scale invariance.
The network itself consists out of P-Net, R-Net and an O-Net.

The P-Net is a fully convolutional network and serves as a proposal network. The network
detects all faces on the image which are bigger than 20x20 pixels. Face candidate bounding
boxes are generated and roughly calibrated.

27

4 Architecture

The R-Net is used to filter the majority of the generated boxes. The network also performs
a calibration and a bounding box regression.

The O-Net network again refines and outputs the left over candidates. Furthermore,
overlapping boxes are merged. The network generates additional facial landmarks to
describe the face more detailed.

For the further processing only the candidate with the highest probability is kept. The
final step is to crop and resize the face to a 160x160 pixel output. The Figure 4.3 shows
a sample image input and output of the network. The input was not aligned before the
processing step.

Figure 4.3: On the left a sample input image of the multi-stage convolutional neural net-
work is shown. On the right an automatically aligned, scaled and cropped
image produced by the neural network is visualized.

4.3.2.2 ResNet

The output image of the MTCNN is used by the InceptionResnetV1 [25] to compute a
face embedding. The network is trained originally on the VGGface2 [1] dataset to classify
persons. In order to get an abstract representation of the face, the last linear layer for
classification is discarded. Consequently the network generates a 512 dimensional vector
representing the face. Experiments have shown that the distance is small between two
embeddings of similar looking faces. In the experiment multiple photos of a person were
embedded and visualized in a 3-dimensional space. In general, clusters are formed by faces
of the same person. Figure 4.4 is a three-dimensional representation of the 512 dimensional
face embeddings. The dimensionality is reduced using a principal component analysis.
The four face embeddings in the front are from the same person. They are well separated
from the two other clusters of two additional person embeddings.

4.3.2.3 k-NN

To retrieve the correct memory profile according to the face, the spacial proximity of the
same identities is a precondition. Since this is given, a k-nearest neighbors algorithm

28

4.3 Personalization

Figure 4.4: Three dimensional representation of the face embeddings. The size and the
position of the images correlate with the spacial position in the coordinate
system. The four faces in the front are from the same person and cluster well.
In the background there are two more clusters of other persons.

can be used to retrieve the memory profile. This approach is chosen since the algorithm
does not need exhaustive training and still gets better over time with more samples. In
order to decide which memory should be selected the three closest data points are used
to determine the profile. The average distance to the next samples is interpreted as the
confidence level.

4.3.2.4 Operations

The above introduced pipeline is used to provide the following operations in order to
interact with the memory:

 Query user profile
+ Create and merge user profiles

« Add facts to user profile

29

4 Architecture

In general, the special token emitted by the dialogue networks indicate which operation
should be executed.

Query user profile The query user profile selects the best matching profile based on the
image input. The processing pipeline is used to obtain the reference to the actual memory.
The confidence level of the k-NN classifier is attached to the memory profile. Thus, the
dialogue component is able to adapt the dialogue.

Create and merge user profiles New profiles are added by inserting the face embedding
into the k-NN data structure. Then the name is associated with the new data point. This
routine is triggered every time when the dialogue network outputs the special token
<new_identity>. In this case the first parameter is used for the name. To avoid the creation
of ghost profiles, the dialogue network ensures with whom it is interacting through asking
if the assumed name is correct. If the user agrees, the <merge_identity> special token is
triggered to link the additional face embedding to the already existing profile. Otherwise,
if the user corrects the dialogue system, the <new_identity> special token is generated to
introduce an empty profile.

Add facts to user profile The dialogue network is conditioned to always output the
<new_fact> special token if it is likely that the user input is relevant for the later conversa-
tion. For instance, if the user tells what food he likes or where the objects are placed, the
input utterance is saved. To extend this behaviour to further scenarios, the training data
has to be extended. Before the network assigns the fact to a user profile, it ensures that
the confidence is high that it is the correct profile. Since merged profiles only keep the
reference to the initial created profile, the reference has to be resolved while adding new
facts to the memory.

30

5 Experimental Setup

This chapter gives a brief overview of the used frameworks. Furthermore, the generated
training and evaluation dataset is introduced.

5.1 Frameworks

In the last years TensorFlow [12] and PyTorch [15] have distilled out as the major frame-
works for building neural networks. PyTorch is an open source machine learning frame-
work introduced by Facebook. Since PyTorch supports dynamic computational graphs, it
is often used in the language research community. The developed models in this thesis are
based on PyTorch.

The HuggingFace! project provides several state of the art models for natural language
understanding and natural language generation. The models have an abstract interface
which works with TensorFlow as well as with PyTorch. Therefore, the weights of the
models are interchangeable and usable for the both frameworks.

The tool Weights&Biases” is used to document and visualize the training runs. There is
only a little modification in the code needed in order to get started. The tool automatically
collects metadata like the argument parameters, GPU utilization and the TensorBoard logs.
The gathered data is available online after the training run. The main benefit is that the
training runs are documented well in the different states of the development process. It
makes it easier to follow the changes of the implementation of the model and thus the
performance of the model.

Scikit-learn [16] is a machine learning library with a big amount of various models. The
focus is not put on deep learning approaches like neural networks but more on traditional
ones. The framework is used since it provides implementations for the k-nearest neighbour
algorithm.

5.2 Dataset

The dialogue network is trained on the generated dataset which is presented here. Since
the objective of the network is to generate a personalized greeting and to gather simple
facts, the dataset needs to represent samples of such dialogues to archive this behaviour.

https://huggingface.co/transformers/
https://www.wandb.com

31

5 Experimental Setup

Scenario # Samples
Greeting 20000
Query name 10000
Query memory 5000
Ask for help 5000
Insert food preferences 5000
Query food preferences 12500
Insert location of object 7500
Query location of object 12 500

Table 5.1: Dataset broken down into scenarios including the number of each samples.

Confidence / Greeting with name without name
low <new_identity> <ask_name>
mid <new_identity> | <ensure_identity>
high <merge_identity> <greet>

Table 5.2: Triggered special tokens based on the user input and the confidence of the
person identification system. The special token also corresponds to a natural
language response.

The training dataset contains in total 92 500 data points and covers the scenarios which
are shown in Table 5.1.

The Greeting scenario covers the different ways how a user can greet the dialogue system.
Based on the confidence of the person identification, the dialogue flow is different. If the
personalization component is sure about a person, the dialogue system greets straight
away the person with the stored name. Otherwise, a question whether the assumption is
right or if the user can tell his name is more appropriate. Table 5.2 shows the different cases
how the system is intended to behave based on the confidence of the person identification
and on the user input. If the user is not recognized (conficence: low) and a greeting without
a name is entered ("hello"), two turns are needed. The first turn models the <ask_name>
special token and a corresponding natural language reply ("hi, I haven’t met you so far.
what’s your name?") to ask for the name. In the second turn a user input with his name is
expected jointly with the reply of the dialogue system.

The Query name scenario covers cases when the user is asking for his own name. The
dialogue system answers with the name stored in memory. Query memory needs the
network to read from the memory, however, all the facts should be returned. Ask for
help includes samples where the user tries to figure out what capabilities the dialogue
system has. The response is generated with no reference to the memory content. Insert
food preferences and Query food preferences are containing samples to store and retrieve
food preferences of the user. The user is also able to teach the system where household
objects are placed. The samples are covered by Insert location of object and Query location
of object.

32

5.2 Dataset

The validation dataset contains 2714 samples and is generated with different variables.
Person names, the places of the objects, the objects itself and the favorite dishes are
different compared to the training set. The distribution of the scenarios in the validation
dataset is the same as in the training dataset.

The memory is constantly growing during inference time since facts are added but not
removed. In order to guarantee that the model generates proper responses with a memory
that contains many facts, additional random entries are added. Between one and ten facts
are randomly added to the memory containing the fact which is needed for the training.
The entire memory is additionally shuffled to avoid same ordering in the memory.

33

6 Evaluation

The chosen hyperparameters of the dialogue network are introduced in this chapter.

Next,

the evaluation metrics are defined and the training results of the network are

presented.

6.1 Hyperparameters

The best results presented in the following are achieved using the set of hyperparameters
which are listed here. The hyperparameters are chosen based on the evaluation of the
trained model.

Number of epochs: The model is trained 1 epoch on the above described dataset.
Optimizer: The AdamW optimizer [11] is used for training.

Learning rate: The learning rate is set to 0.0000625 and linear decreased down to
0. The learning rate of AdamW is initialized at every epoch.

Gradient accumulation: The gradient of 4 steps is accumulated before the weights
are updated.

Gradient clipping: The gradient is clipped to 1 if it is larger than 1.
Language modeling loss: The weight of the language modeling loss is set to 1.5.
Multiple choice loss: The weight of the multiple choice loss is set to 1.

Number of distractors: The multiple choice head selects out of 10 distractor
options the correct response.

History: A history of the last two utterances are used while training.

The transformer model related hyperparameters like, for instance, the 10% dropout are
not changed®.

'Hyperparameters of the transformer can be found here: https://huggingface.co/transformers/
model_doc/gpt2.html

35

https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/model_doc/gpt2.html

6 Evaluation

6.2 Evaluation Methodology

The fully-automated evaluation of dialogue systems is still an open research topic [3].
Especially challenging to evaluate are conversational agents since they open domain
conversations and aren’t designed to fulfill a specific task. Because of that it is not obvious
what characteristics of the conversation should be measured [3].

The developed dialogue system combines attributes of a task-oriented and conversational
agent. The domain is restricted to a kitchen scenario but the conversation follows no
concrete structure. Nevertheless, the intention is to gather information of the user which
is connected to the introduced task dependent on special tokens. Since there is no public
dataset similar to the generated dataset including memories, the neural network cannot be
tested on other data. It is also not possible to evaluate the model against a public baseline
since the objective is not a common one.

To still obtain an impression on how well the model works, this work is evaluated on three
different levels.

« Human evaluation: Through human evaluation the natural language response is
evaluated.

« Automatic evaluation: The automatic evaluation measures if the correct actions
are triggered.

« Attention visualization: The internals of the model are visualized to understand
if the memory is used for the response generation.

The focus of the evaluation is put on the dialogue component since the overall system per-
formance heavily depends on it. In the following chapters the results are presented.

6.3 Results

In this section the performance of the trained dialogue network is presented. The evaluation
of the model is divided into human and automatic evaluation followed by the visualization
of the attention mechanism.

6.3.1 Human Evaluation

Many of the automatic evaluation approaches such as word overlap-based metrics e.g.
BLEU [14] do not correlate with human judgments [10]. Because of that in this work
the language capabilities of the model are graded manually. The evaluation was realized
in a lab-like environment where the system is prepared before the user interacts with it.
The sessions were done remotely using screen-sharing while having an audio call. The
evaluation is divided into two parts, the system got reset after each part. Firstly, the user
got a list of tasks which he needed to perform. The intention is to guide the user that he
gets familiar with the system. In the second part the user was able to freely chat with the

36

6.3 Results

Metric o | CS | nonCS
naturalness 3.2 |36 2.8
logic 24 | 2.8 2.0
correctness 2.6 | 3.0 2.2
consistency 25130 2.0
variety 32|34 3.0

Table 6.1: Human evaluation results after one chat session. Average rating of all testers,
only computer science testers and the group with no computer science back-
ground.

system. The reason of the evaluation, an overview of the capabilities of the model and the
evaluation metrics were presented to the user before the actual test was started. After the
testing the users were asked to grade the system based on predefined metrics.

The model was evaluated by 10 persons where half of the participants have no computer
science background. The testers are intended to give scores from 1-4 for naturalness, logic,
correctness, consistency, and variety. The score of 4 is interpreted as a well performing
system. The average rating of every metric is presented in Table 6.1. The ratings are also
differentiated based on the computer science background of the testers.

The evaluation has shown that in general the ratings are lower if the tester has no direct
relation to computer science. These testers are also referring to already existing speech
assistants like Amazon Alexa.

6.3.2 Automatic Evaluation

This part of the evaluation assumes that the triggered action correlates with a meaningful
natural language output. If the correct action is triggered based on a certain input, the
response will be counted as a correct one. In contrast to this evaluation method plain
goal-oriented dialogue systems are often evaluated based on a task-success rate or on a
dialogue efficiency [10].

The evaluation focuses on three different aspects. Firstly, the general capabilities are
evaluated to cover the defined scenarios. Secondly, the focus is put on reading from the
memory. Finally, the system is evaluated on how the number of facts in the memory affect
the performance.

6.3.2.1 General Performance

The general performance is evaluated by 280 samples with 25 positive and 10 negative
samples covering each of the 8 scenarios. The positive samples contain varying formula-
tions to trigger the intended response. The negative input samples use formulations which
should not generate a response for the related scenario. An example for a negative sample
in the greeting scenario is, for instance, the input "i like flowers". These samples are used to

37

6 Evaluation

Scenario Accuracy | F1

Greeting and introduction 80 % 86 %
Query name 97 % 98 %
Insert food preferences 94 % 96%
Query food preferences 86 % 89 %
Insert location of object 89 % 93 %
Query location of object 89 % 91%
Query content of memory 71 % 75 %
Ask for help 83 % 86 %

Table 6.2: Accuracy and F1 score broken down to the scenarios.

explicitly test the behaviour with not intended input. The memory contains between zero
and two random facts and the fact related to the scenario if needed. Based on this setup the
accuracy ACC = w and the F1 =2 x % score? is in Table 6.2 reported.
The error analysis of the wrong predictions resulted in two insights. The network relies
on punctuation characters to determine what response should be generated. Questions
without a question mark were frequently misunderstood by the model. Furthermore, the
network generates more correct responses if the input of the network is an entire sentence.
A single word reply like "Peter” to the question of the network "hi, I haven’t met you so far.

What’s your name?" generates an incorrect action and reply.

6.3.2.2 Memory Read Performance

The memory read performance is evaluated using 40 memory samples with 3 - 6 facts. The
dialogue system is initialized with the memory. A valid read query (an utterance which
triggers a memory read) is executed on every fact. If the network gives a wrong answer,
the error type is reported. Three different types are distinguished. If the action or the
natural language response does not match with the expected response, it is counted as a
wrong action error. In case that the memory contains the needed fact but the system still
replies that the fact is not provided, it is counted as the fact not in memory error. If the
dialogue system replies only a partially correct or a wrong fact, it is counted as a wrong
fact error.

Table 6.3 visualizes the results of the evaluation. One can notice that the error categories
of different tasks do not follow the same distribution. In case of the query name task, the
error is made most frequently because of a wrong reply. An assumption is that in these
cases the formulation was too different and not well-covered by the data set. Additionally,
the network does not need to search for the name in the memory because it is always at
the first position. User-given facts like the food preferences and the location of the objects
are appended to the memory. Depending on which order the user tells this information, it
is stored in the memory. The assumption is that the lookup in the unordered memory is

2Precision = %, Recall = ZT%*-% with TP=true positive, FN=false negative, T N=true negative,
FP=false positive

38

6.3 Results

Task wrong action | fact not in memory | wrong fact
Query name 95 % 0% 5%
Query food preferences 5% 70 % 25 %
Query location of object 5% 80 % 15%
Query content of memory 10 % 5% 85 %

Table 6.3: Memory query error types.

100

95

90

85

Accuracy [%]

80

75

Facts [#]

Table 6.4: Accuracy of given responses dependent on the number of facts in the memory.

more difficult. An additional difficultly is that the added fact is exactly the input utterance
of the user. In some cases the network is not able to draw the connection between the
question and the fact in the memory input because of no uniform format. In case of query
content of memory mostly some parts of the memory were missing. The problem might be
that outputting the content of the memory is not a natural way of speaking which is not
modeled well by the architecture.

6.3.2.3 Memory Fill Level Performance

This evaluation task focuses on how the network performs with different amount of
facts in the memory. The network is initialized with 22 different memory sets. For every
number of facts (0 - 10 facts) there are respectively 2 test sets including different facts. A
single fact is queried using three different question formulations. The true positive rate
TPR = % is reported in graph 6.4 where TP are the true positive and FN the false
negative samples.

6.3.3 Attention Visualization

In this section the attention weights of the transformer network are visualized to under-
stand which parts of the input the network puts focus on. A visualization tool [28] is used

39

6 Evaluation

to generate the figures. In Figure 6.1 and 6.2 the weights of a single attention head of the
last layer are visualized. The grey highlighted token in the left columns of the visualiza-
tions is attended while the token in the right columns are being attended. The intensity of
the highlighted color corresponds to the magnitude of the attention weight.

Figure 6.1 visualizes the attention weights of the same input for three tokens to be generated.
Attention is especially put on the memory content and on the input of the user (Hello) to
generate the <greet> special token. In the middle and right visualisation the parameter of
the action is generated.

In Figure 6.2 the weights of three different inputs are visualized. In the first sample (left)
the user queries a fact which is not in the memory. Attention is put on the memory and
on the input to generate the <use_fact> special token. However, the second sample (center)
contains the queried fact. Attention is jointly put on the relevant part of the memory and
of the user input. In the last sample (right) the memory contains a not needed fact and the
user asks a memory independent question. The attention weights are visualizing well that
the network only focuses on the user input to generate the <help> special token.

Based on the attention weight visualization the assumption is that the network has learned
to put attention on relevant parts of the memory dependent on the input of the user.

<bos> <bos> <bos> <bos> <bos> <bos>
name name name name name name
I I I I | |
uk uk uk uk uk uk
as as as as as as
confidence confidence confidence confidence confidence confidence
high high high high high high
<human> <human> <human> <human> <human> <human>
Hello Hello Hello Hello Hello Hello
<system> <system> <system> <system> <system> <system>
<greet> / <greet> <greet> <greet> <greet> <greet>
lu Iu lu / lu lu lu
kas kas kas kas kas / kas
<sep> <sep> <sep> <sep> <sep> <sep>
Hi Hi Hi Hi Hi Hi
I I | | | |
uk uk uk uk uk uk
as as as as as as
<eos> <eos> <eos> <eos> <eos> <eos>

Figure 6.1: Attention visualization of the same input but of different tokens.

6.4 End-to-end example

In the following a sample dialogue is presented where the conversation flow gets adapted
based on the current camera input. One person has two subsequent dialogues with the
system. However, the appearance of the person changes from Figure 6.3 a) to Figure 6.3
b) after the first dialogue. The dialogue shows that firstly the identity is unknown to the
system and therefore it asks for a name. While interacting the fact also gets assigned to the
identity. Since the camera input has changed in the second dialogue, the system validates

40

6.4 End-to-end example

<bos>
name
|

uk

as

confidence

high
<human>
|

am
hungry
<system>

<use_fact> /

<sep>
I

guess
you
haven
't

told

me
your
favorite
dish

<bos> <bos> <bos> <bos> <bos>
name name name name name
| | | | |
uk uk uk uk uk
as as as as as
confidence confidence confidence confidence confidence
high high high high high
<human>
I my my my my
am favorite favorite favorite favorite
hungry dish dish dish dish
<system> is is is is
<use_fact> fish fish fish fish
<sep> <human> <human> <human> <human>
| I | How How
guess am am can can
you hungry hungry you you
haven <system> <system> help help
't <use_fact> - <use_fact> me me
told Fish Fish ? ?
me <sep> <sep> <system> <system>
your You You <help> / <help>
favorite could could <sep> <sep>
dish try try You You

Fich Fich can can

teach teach
me me

Figure 6.2: Attention visualization of three different inputs. Left: user input which requires

a memory lookup but fact is not present in the memory. Middle: user input
which requires a memory lookup with fact present in the memory. Right: user
input which which does not require a memory lookup.

the assumption that it is still the same identity. Since the user agrees, both input images
refer finally to the same memory. That can be verified since the system knows where the

computer is located.

HUMAN:

SYSTEM:

HUMAN:

SYSTEM:

HUMAN:

SYSTEM:

hi.

Hey, I haven’t met you so far, what’s your name?
my name is Lukas.

ok. I will not forget it.

i put my computer now in the living room.

I'll keep it in mind

INFO: Camera input changed

HUMAN:

SYSTEM:

HUMAN:

SYSTEM:

HUMAN:

hi i am back.

Hey, Lukas. Is it you?

yes it’s me

Ok, I was not sure. Good afternoon, Lukas

i can’t find my computer

41

6 Evaluation

(@) (b)

Figure 6.3: Normalized camera input images of the same identity.

SYSTEM: You told me that your computer is in the living room.

The examples below show that the dialogue system is limited to the domain covered
through the training data. Since there are no chit-chat samples represented, the system
tries to map the input to a memory query response.

HUMAN: how are you?
SYSTEM: 'm not sure where you left your objects.
HUMAN: how is the weather today?

sYSTEM: I don’t now where you are storing your weather"

42

7 Conclusion

This chapter summarizes the work and introduces further ideas how to improve the
presented approach.

7.1 Summary

In this thesis a personalized dialogue system was developed by using a camera input for the
person identification and by injecting a user profile as a bias into the dialogue system. It
represents an increment into the direction of more natural conversations between humans
and computer systems. Especially in a field of application of kitchen robot systems it is
important to use multiple modalities in order to understand the user right and to be able
to have personalized interaction.

Besides that, the presented approach shows that a pre-trained high-capacity network is
able to learn to read from a memory with a relative small training set. Instead of learning a
general probability distribution to generate universal responses, the personal information
is taken from the memory to adapt the dialogue. At the same time the approach also shows
how important the training data is. Even the network works reasonably well, there are
cases where the system does not behave right. The reason is that these cases are not covered
by the training data due to the fact that it is a synthetically generated data set. In case
that the human input differs too much from the data, the intent might not be understood
right. Additionally, the system is limited to a specific domain. However, by enriching
the training data set it is possible to extend the capabilities to further domains. It leads
to the assumption that combining two datasets works best. A mixture of a synthetically
generated data along with a dataset which contains samples of human dialogues might be
a good choice. Generating such a data set implies that the data needs to be annotated with
the memory content within the dialogue.

The proposed approach emits special tokens to store facts into the memory. Depending
on the action type the network stores the raw user input. The evaluation shows that the
accuracy degrades with the amount of facts in the memory. To avoid the issue of storing
duplicated information or providing the capability to update information, a further special
token might be introduced.

To conclude, a working prototype of a dialogue system capable of adapting to different
profiles was built. The system’s behaviour to generate a personalized response is influenced
by a memory profile that is selected by a computer vision component. When deploying

43

7 Conclusion

such a system in a real world scenario, the dialogue system might be more engaging for
the user due to the more natural and human conversation.

7.2 Future Work

There are many further directions in order to extend the capabilities of the system or to
improve the performance of the model.

Dataset improvements:

To accomplish the full potential of the developed architecture, a large scale dataset cov-
ering multiple domains is beneficial. As already pointed out, the dataset should contain
various formulations collected from natural dialogues. Two fine-tuning stages might be
one approach to avoid the need of annotating the data. Firstly, the model is trained on the
annotated and syntetic dataset. Secondly, the model can be trained on the collected dataset.
The expectation is that the model still generalizes to learn to take the memory into account.

Memory representation:

Currently the entire utterance of the users is stored in the memory. An improvement
could be to use a structured memory representation. For instance, to indicate the favorite
food an array-like data structure might be better: favorite food: apples, sea food. The claim
is that the network can query the already pre-proceed data easier.

Model improvements:

On the architectural side the model might be extended with a memory network. The
intention is that the network is capable of learning what is relevant to keep in the memory
and which entries can be overwritten or deleted. Currently facts are just added to the
memory but not updated or removed.

Robot integration:

In order to use the developed system in the ARMAR kitchen robot and to control it with
voice, an automatic speech recognition system (ASR) would be needed. Usually such
systems return the textual representation of the speech with the special characters fil-
tered out. The developed system needs to be retrained to be resistant to the output of an
ASR system. At the moment special characters are taken into account for the response
generation.

44

Bibliography

(1]

(2]

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. “VGGFace2: A dataset for
recognising faces across pose and age”. In: International Conference on Automatic
Face and Gesture Recognition. 2018.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. “A survey on dialogue
systems: Recent advances and new frontiers”. In: Acm Sigkdd Explorations Newsletter
19.2 (2017), pp. 25-35.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset,
Eneko Agirre, and Mark Cieliebak. “Survey on evaluation methods for dialogue
systems”. In: arXiv preprint arXiv:1905.04071 (2019).

Encoder Decoder Image. https://smerity.com/articles/2016/google_nmt_arch.
html. Accessed: 2020-04-24.

Fully Connected Network Image. https://www.researchgate.net/figure/Typical-
architecture - of - fully - connected - deep - neural - network_ figl_326570271.
Accessed: 2020-04-24.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao,
Wen-tau Yih, and Michel Galley. “A knowledge-grounded neural conversation
model”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385. URL:
http://arxiv.org/abs/1512.03385.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. “The Curious Case of
Neural Text Degeneration”. In: CoRR abs/1904.09751 (2019). arXiv: 1964.09751. URL:
http://arxiv.org/abs/1904.09751.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. “The curious case of neural
text degeneration”. In: arXiv preprint arXiv:1904.09751 (2019).

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and
Joelle Pineau. “How NOT To Evaluate Your Dialogue System: An Empirical Study of
Unsupervised Evaluation Metrics for Dialogue Response Generation”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin,
Texas: Association for Computational Linguistics, Nov. 2016, pp. 2122-2132. por:
10.18653/v1/D16-1230. URL: https://www.aclweb.org/anthology/D16-1230.

Ilya Loshchilov and Frank Hutter. “Fixing Weight Decay Regularization in Adam”.
In: CoRR abs/1711.05101 (2017). arXiv: 1711.05101. URL: http://arxiv.org/abs/
1711.05101.

45

https://smerity.com/articles/2016/google_nmt_arch.html
https://smerity.com/articles/2016/google_nmt_arch.html
https://www.researchgate.net/figure/Typical-architecture-of-fully-connected-deep-neural-network_fig1_326570271
https://www.researchgate.net/figure/Typical-architecture-of-fully-connected-deep-neural-network_fig1_326570271
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/D16-1230
https://www.aclweb.org/anthology/D16-1230
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101

Bibliography

[12]

46

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, lan Goodfellow, Andrew Harp, Geoftrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. URL: https://www.tensorflow.org/.

Overfitting Image. https: //en . wikipedia.org/wiki/Overfitting. Accessed:
2020-04-24.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “BLEU: a method
for automatic evaluation of machine translation”. In: Proceedings of the 40th annual
meeting on association for computational linguistics. Association for Computational
Linguistics. 2002, pp. 311-318.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
“PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Ad-
vances in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc.,
2019, pp. 8024-8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. “Scikit-learn: Machine learning in Python”. In: Journal of machine
learning research 12.0ct (2011), pp. 2825-2830.

Qiao Qian, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. “Assigning
personality/identity to a chatting machine for coherent conversation generation”.
In: arXiv preprint arXiv:1706.02861 (2017).

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
“Language Models are Unsupervised Multitask Learners”. In: (2019).

RNN Image. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
Accessed: 2020-04-24.

RNN Image. https://medium.com/syncedreview/a-brief-overview-of-attention
mechanism-13c578ba9129. Accessed: 2020-04-24.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M Smith, et al. “Recipes for building an open-
domain chatbot”. In: arXiv preprint arXiv:2004.13637 (2020).

https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Overfitting
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

[22] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Tech. rep. Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[23] Johan AK Suykens and Joos Vandewalle. “Least squares support vector machine
classifiers”. In: Neural processing letters 9.3 (1999), pp. 293-300.

[24] Christian Szegedy, Sergey loffe, and Vincent Vanhoucke. “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning”. In: CoRR abs/1602.07261
(2016). arXiv: 1602.07261. URL: http://arxiv.org/abs/1602.07261.

[25] Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi. “Inception-
v4, inception-resnet and the impact of residual connections on learning”. In: Thirty-
first AAAI conference on artificial intelligence. 2017.

[26] Ryota Tanaka, Akihide Ozeki, Shugo Kato, and Akinobu Lee. “An Ensemble Dialogue
System for Facts-Based Sentence Generation”. In: arXiv preprint arXiv:1902.01529
(2019).

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in neural information processing systems. 2017, pp. 5998-6008.

[28] Jesse Vig. “A Multiscale Visualization of Attention in the Transformer Model”. In:
arXiv preprint arXiv:1906.05714 (2019). URL: https://arxiv.org/abs/1906.05714.

[29] A.Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. “Phoneme recognition
using time-delay neural networks”. In: IEEE Transactions on Acoustics, Speech, and
Signal Processing 37.3 (1989), pp. 328—-339.

[30] Alex Waibel. Consonant Recognition by Modular Construction of Large Phonemic
Time-Delay Neural Networks. http://isl.anthropomatik . kit .edu/cmu-kit/
downloads/Constant_Recognition_by Modular_Constrution.pdf.

[31] Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. Transfer-
Transfo: A Transfer Learning Approach for Neural Network Based Conversational
Agents. 2019. arXiv: 1901.08149 [cs.CL].

[32] Yilin Yang, Liang Huang, and Mingbo Ma. “Breaking the Beam Search Curse: A Study
of (Re-)Scoring Methods and Stopping Criteria for Neural Machine Translation”. In:
CoRR abs/1808.09582 (2018). arXiv: 1808.09582. URL: http://arxiv.org/abs/1808.
09582.

[33] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. “Joint face detection
and alignment using multitask cascaded convolutional networks”. In: IEEE Signal
Processing Letters 23.10 (2016), pp. 1499-1503.

[34] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang
Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. “DialoGPT: Large-Scale Gener-
ative Pre-training for Conversational Response Generation”. In: arXiv preprint
arXiv:1911.00536 (2019).

47

https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1906.05714
http://isl.anthropomatik.kit.edu/cmu-kit/downloads/Constant_Recognition_by_Modular_Constrution.pdf
http://isl.anthropomatik.kit.edu/cmu-kit/downloads/Constant_Recognition_by_Modular_Constrution.pdf
https://arxiv.org/abs/1901.08149
https://arxiv.org/abs/1808.09582
http://arxiv.org/abs/1808.09582
http://arxiv.org/abs/1808.09582

Bibliography

[35]

48

Tiancheng Zhao and Maxine Eskenazi. “Towards End-to-End Learning for Dialog
State Tracking and Management using Deep Reinforcement Learning”. In: Proceed-
ings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
Los Angeles: Association for Computational Linguistics, Sept. 2016, pp. 1-10. DOI:
10.18653/v1/W16-3601. URL: https://www.aclweb.org/anthology/W16-3601.

https://doi.org/10.18653/v1/W16-3601
https://www.aclweb.org/anthology/W16-3601

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Goal
	Structure

	Fundamentals
	Natural Language Processing
	Recurrent Neural Networks
	Transformer Network

	Computer Vision
	CNN
	ResNet

	Related Work
	Architecture
	Overview
	GPT2

	Dialogue System
	Data Generation
	Training
	Inference
	Input and Special Tokens
	Memory

	Personalization
	Overview
	Architecture

	Experimental Setup
	Frameworks
	Dataset

	Evaluation
	Hyperparameters
	Evaluation Methodology
	Results
	Human Evaluation
	Automatic Evaluation
	Attention Visualization

	End-to-end example

	Conclusion
	Summary
	Future Work

	Bibliography

