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Congratulations, Shinya Yamanaka
on Nobel Prize in Physiology or Medicine

]
[0 Education
|

He received his M.D. at Kobe University in 1987 and his Ph.D.
at Osaka City University Graduate School in 1993.

[0 Professional career

B Between 1987 and 1989, Yamanaka was a Resident in orthopedic surgery at the National
Osaka Hospital.

B During 1993-1995, he was a Postdoctoral Fellow at the Gladstone Institute of
Cardiovascular Disease, which is affiliated with the University of California, San
Francisco.

B During 1995-1996, he was a staff research investigator at the UCSF-affililated Gladstone
Institute of Cardiovascular Disease.

B Between 1996 and 1999, he was an assistant professor at Osaka City University Medical
School.

B During 1999-2003, he was an associate professor at the Nara Institute of Science and
Technology. Durmg 2003-2005, he was a professor at the Nara Institute of Science and
Technology. Between 2004 and 2010 Yamanaka was a professor at the Institute for
Frontier Medical Sciences.?

B Currently Yamanaka is the director and a professor at the Center for iPS Cell Research
and Application in Kyoto University, Japan.

[0 In 2006, he and his team generated Induced Pluripotent Stem Cells — pluripotent stem
cells from adult mouse fibroblasts. In 2007, he and his team were able to generate
Induced Pluripotent Stem Cells from human adult fibroblasts (028
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About NAIST ?

[0 Nara Institute of Science and Technology, Japan established 1991.
B Japanese national university for basic research and higher education.

B 1* rank research evaluation among Japanese universities in #papers, #grand
per faculty.

B  Three graduate schools (No undergraduate school)
[0 Information Science

[0 Biological Science: Prof. Yamanaka IPS Cell.
[0 Material Science

B Sister school: JAIST, Japan Advanced Institute of Science and Technology

[1 Graduate School of Information Science
B 20 laboratories

B 10 collaborative laboratories
(ATR, AIST, NEC, Panasonic, NTT, NICT, Fujitsu, Docomo, OMRON)

2012/10/24 Prof. Satoshi Nakamura 6
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NAIST Ranking

Overall : Ranked 1¢

Highest Evaluated University in Japan

based on data in Thomson Reuters’‘Essential Science Indicators”and
published in“University Ranking 2010”by the leading Japanese
newspaper“Asahi Shimbun”

in the top 5% A+

Three research areas in the Graduate School of Information Science
recetved top scores in a survey conducted by the Ministry of Economy,
Trade and Industry

Ranked 1st in “Research”and“Education”among all national universities
in Japan published in the weekly magazine “Toyo Keizai”.

Number of Grants-in-Aid for scientific research Ranked 1st per faculty
member*

Grants-in-Aid for scientific research Ranked 1% per faculty member*
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National Institute of Information and
Communications Technology, NICT
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About NICT ?

4 1952 1979
g y4 Radio Research Lab Telecommunications
Q g \ 4 and Broadcasting E« A
0 g 1988 Satellite Organization ® o
S & Communications 4 é’ =g
< Research Lab 1992 =. :"5?
X \ 4 Telecommunications g -
2001 Advancement
Communications Organization l

Research Laboratory

2004

National Institute of Information and

o
NI CT Communications Technology
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lL.ocations

Hokuriku Research Center ——

f
/
Keihanna Research (&= —
Laboratories |—’—1 Sendai Research Center
, /
Kobe Research Laboratories [— e / | Ohtakadoya-yama LF Standard Time (=1
P and Frequency Transmission Station
[ ¥
I _._.IIl
! !'*_ -'f—| Kashima Space Reserch Center
[ i 7
_., i ‘—L|—1 Headquarters
“j I| _Il'
& | / sy ;" —"’f—1 L{ Service Platform Architecture Reserch Center
f

| = =

..If I|II _II .i-.-_l

Hagane-yama LF Standard Time and (G
Frequency Transmission Station

| Okinawa Subtropical Environment
| Remoto-5ensing Center

| Yokosuka Research Laboratories

* Headquarters(Tokyo)

A Research Laboratories

% Reserch Center

B Observation and Research Center

& LF Standard Time and
Frequency Transmission Station
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NICT Kethanna Research Laboratories

(Open)  since 1. April, 2008
(Location) Kansai Science City

(Number of Staffs) about 160

camel .

Kyoto

Oosaka
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Overcome the barriers in ICT society

(1) Barriers of language

@)
7 R&D on the multi-lingual technology
D) Bartiers of ability
5 Q
? spoken language and nonverbal interaction technology
J

(Il Barriers of information quality

Information analysis with information credibility criteria

A~ TR

IV) Barriers between the real and the cyber world

D Natual, real-time connections between the two worlds

(V) Barries of distance

of “being there” via all five senses, etc
2012/10/24 Prof. Satoshi Nakamura
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About ATR?

[0 ATR: Advanced Telecommunication Research Institute International
ATR was founded in March 1986.

Innovative lechnology
(forHuman Communication

- S
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ATR Laboratories

[l Brain Information Communication Research Labs Group
B Computational Neuroscience Lab.
B Cognitive Mechanisms Lab.
B Neural Information Analysis Lab.
[1 Social Media Research Labs. Group
B Intelligent Robotics and Communication Lab.
B Hiroshi Ishiguro Lab.
B Adaptive Communications Research Lab.
B Wave Engineering Lab.

L1 Spoken Language Communication Research Labs.

[0 Media Information Science Labs

2012/10/24 Prof. Satoshi Nakamura



History of Speech Translation Research

1986 1992 1999 2006 2008 2010
| | | | | L,
ATR NICT
A A

Read Daily Wider and
Speech Conversation - Real Domain
*Syntactically correct *Standard expression *Wider and real domain
*Clear utterance eUnclear utterance “International Travel” MIC & NICT
— = — i . . . & CSTP PJ
* Limited domain e Limited domain *Realistic expressions

“Conference Registration”“Hotel Reservation” *INoisy speech
*J-E, J-C speech translation

C-STAR A-STAR (— U-STAR)

(ATR,CMU, UKA, CLIPS, IRST, ETRI,

10/24/2012 15




Source Coding

[0 Contents of the lecture

Information Theory:
Source Coding + Channel Coding + Encryption

O Goal
B Understanding of Source Coding by theory and application

[0 Contents:

Amount of information, modeling of information source
Zero-memory source, Markov source, hidden Markov source
Source coding theorem, compact codes

Universal coding, rate distortion theory

Source coding of analog signal, vector quantization

Modeling and coding of language and speech

2012/10/24 Prof. Satoshi Nakamura
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Text book and references

[0 Norman Abramson: “Information Theory and Coding”, McGraw-Hill,
1963

O A.Gersho, R M.Gray: “Vector Quantization and Signal Comptression”,
Kluwer Academic Publisher

[0 T.C.Bell, J.G.Cleary, I.H.Witten: “Text Compression”, Prentice Hall

2012/10/24 Prof. Satoshi Nakamura
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Role of information theory

[0 Information Theory:
Measure for Information Amount, Modeling of Information Source

[0 Claude Shannon:

““Mathematical Theory of Communication" (1948),
Bell System Technical Journal

B "Shannon entitles his theory a mathematical theory of communication:
Theory of carriers of information."

B "Theory about carriers of information-symbols and not with information
itself.”

"The semantic aspects of communication are irrelevant to the engineering
problems."

2012/10/24 Prof. Satoshi Nakamura
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Transmission model

Information Messagf

»

Source

Transmitter

(Coder)

Code | Transmission

channel

Code

A

Noise
Source

Efficient usage of transmission channel

[0  Digital channel: Reduction of transmission codes

[0 Analog channel: Reduction of transmission time and frequency bands

Improve reliability
[0  Digital channel:

Reduction of transmission errors

n Analog channel: Improve Signal to Noise Ratio

Recetver

| (Decoder)

Message

Decoded

Information

2012/10/24
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Separate modeling

Decoded
Information

~ Coding Decoding
Information | Source Channel | Transmission Chanel Soruce
Source | Coding Coding channel Decoding Decoding
A
Noise
Source

[1 Separate optimization:

Source coding + Channel coding

2012/10/24 Prof. Satoshi Nakamura
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Amount of information

0 Amount of Information:
Defined by statistical property of an overall set not by individual events.

[ Statistical Structure

B Statistically definable Sets
=> Memoryless source, Markov source

B Non-statistical sets and unknown-structured sets

[J Unknown-structured information sets
B Universal Coding

B Lempel Zip Coding

B Arithmetic Coding

2012/10/24 Prof. Satoshi Nakamura
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Hierarchical model of codes

Transmitter Receiver
Intention » Intention
A
y
Meaning » Meaning
A
Intelligent 4
Coding Concept » Concept
A
y
Recognition | Structure, | Structure,
-based coding | Symbol Symbol
4
Y
P tt1
arametric Model » Model
coding
A
A\ 4
Waveform signal > Signal
coding T l
Information Source Recetver

2012/10/24 Prof. Satoshi Nakamura 23



What is information

[l Messages which reduce uncertainty

B Measurement of body temperature

Prediction whether he caught cold or not is possible.

B Weather forecast
Prediction of tomorrows weather is possible.

[1 Information theory:
B Measurement of information

B Higher efficiency and reliability of transmission

2012/10/24 Prof. Satoshi Nakamura
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Properties of information

L0 Non-negativity:
Information amount is non-negative. If probability of the event equals to
0 or 1, amount of information becomes 0.

B Events which does surely happen or doesn’t happen, don’t have any
additional information. The amount of information of these events is 0.

B To know the events whose probabilities are 0<p<1 bring certain amount of
information since it reduces ambiguity.

[0 Monotonic decreasing:
The more amount of information the less probability the event has.

B Amount of information is bigger if the event is unexpected.

2012/10/24 Prof. Satoshi Nakamura 25



Amount of information: Additivity

How much is the amount of information, I(pg), of an joint event with
probability p and ¢ 2,

where,

I(p): amount of information of an event with probability p

I(g): amount of information of an event with probability ¢

Iipg) = 1(p) + 1(g)

means,

amount of information is same if given once or one by one.

2012/10/24 Prof. Satoshi Nakamura
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Amount of information

O

O O

Only function form which satisties the above three properties is,

1 (p) =—log( p).

Now, I(P) 1s defined as amount of information.

Units of amount of information
" _log,(p) I[P

~log, (p) "
|Oglo(p) dlt or Hartley]

If p=0.5, I(p) is maximum. -> only valid for the average case!

Amount of information by [bit] represents average number of [yes/no] questions to

know what event has happened.

2012/10/24 Prof. Satoshi Nakamura
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What 1s coding?

Decimal Binary [l Binary coding of the decimal digits.
Bombe fepreseniaiion B Message Symbols:

0 0000 0,1,...,9

1 0001 B Code word:

2 0010 0000,0001,0010,...

3 0011 B Backward decoding is straight-

4 0100 forward in this example.

5 0101

6 0110

7 0111

8 1000

9 1001

2012/10/24 Prof. Satoshi Nakamura 28



What 1s coding ?

[1 A binary code.
B Backward decoding is NOT

straightforward.
Message Binary B 111001 can be generated by
Symbols | representatio < » 7 »
y P - S,S,” and “S,S,S,
sl 0
s2 01
s3 001
s4 111
2012/10/24
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What 1s coding ?

[0 Another binary code
B Use “0” as a separator.

B Backward decoding is unique and

Message Binary Straightforward.
Symbols representation
sl 0
s2 10
s3 110
s4 1110
2012/10/24
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One problem in coding

[ Weather in San Francisco

Message Binary
Symbols representation O Code alpha:
Serny 1/4 B Two binary digits are used.
e 1/4 B “Sunny, Foggy, Foggy, Cloudy,”
, comes to “00111101”.
Rainy 1/4 . -
B Two binary digits are necessary
Foggy 1/4 .
to backward decoding.
Message Codes
Symbols
Sunny 00
Cloudy 01
Rainy 10
Foggy 11
2012/10/24 Prof. Satoshi Nakamura 31



One problem in coding

[0 Weather in Los Angels

Message Binary [J Code beta:
Symbols representation B ‘Two binary digits are used.
Sunny 1/4 B Probabilities are non-uniform
Cloudy 1/8 B “Sunny,Smoggy,Smoggy, Cloudy”
o /8 comes to “1000110”.
Ay B Waiting for 0 is necessary to backward
Smoggy 1/2 decoding.
B Average code length =1 7/8
Message Codes < 2 binit.
Symbols
Sunny 10 L = 2Pr(Sunny) + 3Pr(Cloudy) + 4 Pr(Rainy) +1Pr(Smoggy)
1 1 1 1
Cloudy 110 =i
Rainy 1110 :1g binits / message
Smoggy 0
2012/10/24 Prof. Satoshi Nakamura 32



Amount of information

[0 TV: Black, white, and gray dots, with roughly 500 rows and 600 columns.
Namely 500x600=300,000 dots may take on any one of 10 distinguishable
brightness levels. (p= 1/10 00000

| (E) =300,000l0g10 =~ 10°bits

L1 Radio: 10,000 words vocabulary announcer selects 1,000 words randomly.
(p=1/10,000 1099

| (E) =1,00010g10,000 ~1.3x10"bits

Ll TV picture is worth more 1,000 words.

2012/10/24 Prof. Satoshi Nakamura 33



Average amount of information

[l Amount of information is defined by,

1 (p) =—log( p).

] Average amount of information of the information source A is

defined by,

H (A) — i P(ei)l (ei) = _Zn: P(ei) |092 P(ei)
and, H(A) satils:fies, &

O0<H(A)<log,n

Entropy = Average amount of information  (bit).

2012/10/24 Prof. Satoshi Nakamura
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_J

Entropy

L1 Entropy represents ambiguity of the information source.
When one message ¢; 1s received, ambiguity of the information
H(A) 1s decreased.

This amount of decrease is equivalent to the amount of
information of the message ¢,

2012/10/24 Prof. Satoshi Nakamura 35



Properties ot Entropy

[l Now we have source alphabet {0,1}, and
PO =w, PO =1-w=w.

08 F

Entropy function 1s like,

0.8
0.7
0.6
0.5
0.4}
03 F

02 F

a1

0

0 0.2 0.4 0.6 0.8 1
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Amount of information for multiple events

[0 Amount of information for multiple events can be defined by the decrease of the
Entropy.
Now let P(a;)) be a prior probability of a message a,, and P(a, | b,) be a posterior
probability of a; given a message b;. A prior Entropy of information source A is defined

by,
1

P(&)

H(A) = Z P(ai) log
A
and, a postetior Entropy of information source A given a message b; is defined by,

H<A/b,-)=ZP<ai’bj)'°gW

Therefore,
Amount of information of multiple events

—H(A)-H(A/b))

2012/10/24 Prof. Satoshi Nakamura 37



Conditional Entropy

[0 Conditional Entropy is expectation of H(A |b).

n m

H(AIB)==3 > P(b;)P(ab;)log P(alb;)
:—anzm: P(ai,bj)log P(a, |bj)

i=1 j=1

[l And following inequality holds,

0<H(A|B)<H(AB)<H(A) +H(B)

2012/10/24 Prof. Satoshi Nakamura
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Mutual Information

[0 Amount of information of multiple events

H(A)—H(A/b,)
[0 What is an amount of information if we know information source B not
a single message of bj of B.

I(A'B)—H(A)—H(A/B)

_ZP(a)Iog ) —Z (a;,b;) log ra /b)
= P(a,b,)
_;B:P(ai,bj)log P@)P(b)

I(A;B) is called “Mutual Information”.

2012/10/24 Prof. Satoshi Nakamura 39



Joint Entropy

L1 Entropy of joint information source A and B is defined by,

H(A B)= —anzm: P(a;,b;)log P(a;,b;)

i=1 j=1

2012/10/24 Prof. Satoshi Nakamura
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Mutual Information

[l Mutual Information I(A;B) holds,

0<I(A;B)<H(A)

|(A;B)=1(B;A)
—H(B)—H(B|A)
=H(A)+H(B)-H(A B)
N
o fﬂREMB-RHIMQ
Qm) ( “ram CD
HE, B]

2012/10/24 Prof. Satoshi Nakamura
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Mutual Information (example)

A B Play (b,) Not Play(b,) P(a)
Win(a,) 0.42(0.6) 0.28(0.93) 0.7
Lose(a,) 0.28(0.4) 0.02(0.07) 0.3

P(b) 0.7 0.3 1.0

O  Initial Entropy of A, H(A) is,
H(A)=-0.7log0.7—-0.310g0.3=0.88

The winning rate after we know he plays a game becomes 0.6. The Entropy H(A | b)) is,
H(A|b,) = —-0.610g0.6—0.4l0g 0.4 = 0.97

Entropy increases by knowing the information of bi.

If we know he doesn’t play, the winning rate is 0.93. This time, Entropy decreses.

H(A|b,) =-0.9310g0.93—0.0710g 0.07 =0.17

Now mutual information is,

I(AB)=H(A)-H(A|B)
=0.88—(0.7x0.97+0.3x0.17) =0.88—0.79 = 0.09> 0

2012/10/24 Prof. Satoshi Nakamura 42



Goal of 1st day

2012/10/24
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ROLE OF SOCIAL MEDIA
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Credibility Increased information Source

0.0%% 10.0% 20.0%

30.0%

NHK [, o ov

Portal sites - R
Social media |G 1
Academia [N o2
Government [ 7.8%

Commercial TV B

News papers [ 25

40.0%

N=3 224

2012/10/24
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Credibility Decreased Information Source

‘ 0.0% 10u0% 20.0% 30.0% 40.0%

Government [ o
Commercial TV | >~
Social media I ; o
Academia B

News papers [ 5.9%

' NHK [ 47

Portal sites [ +.2% N=3,224
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Trends of Social Media Users

| by Neilsen Netview

Hthousands users O mixi O Twitter Facebook

18,000
16,000

14,000

12,000

10,000

8,000

6,000

4,000 -
2,000 Oty O —e N

n
March June | Aug, Oct. Dec. Feb. Mar. ‘11

(B FA)
48 5H Y= 78 88 98 108 | 118 | 128 18 2H 3R

mixi 9,344| 9,559| 9,242 9,930 9,632| 9,557| 9,744| 9,608| 10,214 11,228 10,659 13,211

Twitter 9,882 9,157 9,100 9,496 10,069 11,129| 11,778 | 12,444 12,901 | 14,211 12,8241 17,571

Facebook | 1,873 1,653 1,596| I,719( 1,928]| 2,080 2,819| 2,934| 3,077| 4.598| 6,030| 7,659
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Weekly Trends of Husers

Qa0 .00
B Fac=book- Erand

Bl mixi- Brand

2000 .00 _
B Twittar.com - Erand

Fooo.oo0

GO00.00

S000.00

4000.00

2000.00

1000.00

13-FEE-11 27-FEE-11 13-MAR-11 27-MAR-11
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Models for information sources

Zero-memory
information
source

Stationary
Information

source

Information

source

Non-stationary
information
source

With memory
Information
source

Stationary
Information

source

Ergodic
information
source

Non-stationary
information
source

Non-ergodic
information
source

2012/10/24
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Models for information sources

[0 Zero-memory information source:
Soutce alphabets in $={s;, 5, §3...,5,} are mutually independent and
independent to alphabets in history. Zero-memory information source is
completely described by the source alphabet S and their probabilities,

P(s),P(55),-.,.P(s,).

[0 Markov information source:
Probability of the source alphabet §,is described by previous m alphabets.
If m=1, it is called 1% order Markov Model. Probabilities of the alphabet is

described by, P(s; | 5-7,&2,..,%) =1,2,..q;7,=1,2,...9.

2012/10/24 Prof. Satoshi Nakamura 50



Models of information source

[0 Stationary information source:
Probabilities of the specific source alphabets are invariant to time shift.

[0 Ergodic information source:
Observed source alphabet sequence becomes same as a representative one
with probability 1, when we observe the source alphabet sequence for
long time.

2012/10/24 Prof. Satoshi Nakamura 51



/.ero-memory information source

Source > .

[0  Zero-memory information source:
Successive symbols emitted from the source are
statistically independent, which is described by source .
alphabet S and the probabilities with which the symbols P(Sl)’ P(SZ )’ : P(Sq )

OocCcufr:

[0  An amount of information for one symbol s, is,

bits

1
1(s;) =log
[0 An average amount of information for information P
source S is,

2 P(s)I(s)

L Entropy H(S) of zero-information information source is,

H(s) = ZP(S )Iogﬁ

2012/10/24 Prof. Satoshi Nakamura 52



1

Examples

3 SoureeS s {55, 1 P(s) = P(s) = P(s) =

B 1 1 1 3 .
H(S)=—log2+—log4+—1log4 =—Dbits
(S) 5 g 1 g 1 g i

L1 IfI(s,) is measured in r-ary units, we have

H(S)=> P(s;)log, % r —ary units
H, (5) =)
log r

1

2012/10/24 Prof. Satoshi Nakamura
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Some properties of Entropy

y=X—1 lies above y:ln)( 3

ith equality if, and
< y 1 With cquality i,
In X<x-1 only if x=1

In—>1—Xx

Figoire 2-%, The mivlural |'I.I|£;-l-|'.||-|l-ll.'- of

= a
in Iogizli X. InL , und 2 — |
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Some properties of Entropy

with equality if, and only if, x;=y. for all 7.
This 1s called Jensen’s inequality.

2012/10/24 Prof. Satoshi Nakamura
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Some properties of Entropy

q
H(s) = ZPi Iogi
= P
g

q
09q~H(s) =Y, Rlogq—_ P log—
i=1 i i

=1 i

q
=2 PloggR
i=1
q
=—loge) P IngP
i=1
d 1
logg—H(s) >loged P(1-—
= qR H(s) always less than or equal
] 1GP to, log g. Equality holds if, and
=loge() P—=>» —* ’ ’
J (|Z:1: B¢ By PI) only if, P;=1/g for all 7.
=0
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Properties ot Entropy

[l Again, we have source alphabet {0,1}, and

1

P(0)=w, PQ) =1-0=w

Entropy function 1s like,

08+
0.8
0.7
0.6
0.5
0.4}
03 F

02 F

a1

0

0 0.2 0.4 0.6 0.8 1
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O

O

Extensions of a zero-memory source

Extensions to blocks of symbols.
For instance, suppose two binary source alphabet case, 00, 01, 10, and 11.

Definition:
Let S be a zero-memory information source with source alphabet {s,,s,,.. .,sq} and
with the probability of 5; equal to P. Then the n-th extension of S, §, is a zero-
memory source with ¢” symbols o;,0;.....0,,

Each 5 corresponds to some sequence of n of the s. P(o,), the probability
of o;, 1s just the probability of the corresponding sequence of s/’s. That is, if o,
corresponds to (5,,5,5..,5, ), then P(o; )=P,,P,,...,P,

7 m’
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Extension of zero-memory source

1
P(o)

D Eﬂtl'OpY: H (Sn) — Z P(O_I) |Og
1 s

:Zq:Pil Iogi H(Sn)ZHH(S)

2012/10/24 Prof. Satoshi Nakamura
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Markov Information Source

[0 A more general type of information source with q symbols than the zero-memory
source is one in which the occurrence of a source symbol 5, may depend on a finite
number m of preceding symbols. Such a source, zth-order Markov source, is
defined by giving the source alphabet S and the set of conditional probabilities.

P(s;/s;.S;:....s; ) for i=12,...,q;],=12,...,9

[ State: the probability of emitting a given symbol is known if we know the m

preceding symbols. We call the 7 preceding symbols as a state of the mth-order
Markov source.
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Markov information source

a1 e

Non-Stationary
Ergodic Markov source Non-ergodic Markov source
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Entropy for Markov source

1f we are in the state specified by (;1,8,- - ,8;), then the conditional probability of receiving
symbol s; is P(8;/81,8,--,8;)- The information we obtain if s; occurs while we are in state

(8{158125+5Sjmm) 185
1
P(Si/S; S-S )

amount of information per symbol while we are in state (s;;,8,. -+, S, ) 1S given by,
H(S/s; S, -8 ) =D P(5/5;,5; -8 (S, /5;,S; 1-- 1S )
S

If we average this quantity over the q,, possible states, we obtain the average amount of
information by a product of the above entropy and steady state probability , namely the
entropy of the mth-order Markov source S.

1(s;/S,+S,.-»S; ) =log

H(S)=)> P(s;.S;.....5; JH(S/s,,5; ,....5; )
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“ntropy of Markov source

O Entropy of mth-order Markov soutce is given by,

H(S)= ZP(S,, oS 2 P58, Sjm)'OQ’P(s/S 1
1
= 2, PS8 P/8 88, 00 e
1
:S;P(Sh,sj, +S5,.5:)10g P(S/S,, ——r

0 If S is zero-memory source,

P(Si/sjl’sjz"“’sjm): P(s)
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Example

Probabilities for the Markov source

¥yp Ah, S ey, 54l i*a;, a5

iy 2 84
1HD s 5/14 4/14
(T 0.2 5/14 1/14
O .5 1/14 1/14
ol k.5 1/14 1/14
1{HI .5 1/14 1/14
LA R b5 1/14 1/14
114 2 5/14 1/14
il 4.8 5/14 4/14

Thue the entropy B caloulated wing (2-248):

2012/10/24

H{8)

- ‘E‘[Fl:-!]. Fr :i._:l ."I- ].‘
|

nﬂ:’:]’["t‘ﬁ -r—‘.-.‘:-:-;'-.-luu_i

= 0.Bl bit/binig
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Adjoint source

[0 Definition: Let S={s,,s,,.. .,J‘q} be the source alphabet of an mth-order
Markov source, and let P, P,,...,P, be the first-order symbol probabilities
of the source. The adjoint source to S , written S | is the zero-memory
information source with source alphabet identical with that of §, and with
symbol probabilities P,,P,,...,P p
here the following relationship holds,

H(S) < H(S).
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Adjoint source

[0  LetS bea 1% order Markov source,

Z P(s.,s.)log P(s;)P(s)

P(s;;8)
By applying Jensen’s mequatlon :

ZP(S,, s;)log PP (S)—Z P(s;,s,)log P <

P(s;,S:) P(s; Isi)
1
H(S) =3 P(s; )log ( 5= &PEps)loo g s

—ZZP(S |s.)P(s,)log—— ( )

—ZP(S)Iog

=H(S)

( )

q
> x; log Yi <0 or,

g 1 g
> X log— <> x
i—1 X; i—1
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Extension of a Markov source

Definition: Let § be an mth-order Markov information source with source
alphabet (5;,5,,...,5,) and conditional symbol probabilities P(5,/ 5,5, - -,5;,)-
Then the #th extension of §, §”,1s a M th-order Markov source with ¢”
symbols, 01,0;,....0,,. Each 0} cortesponds to some sequence of # of the
5, and the conditional symbol probabilities of o, are P(s;|o;,0,,....0;) .

H is given by g =[m/n], here [ ] is a minimum integer number bigger
than »/n. Entropy is given by,

H(S") =Y. Y P(0,,0)log P(G-1|0-)

H(S") = nH (S).
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Extension of a Markov source

H Example:

m=1Ln=3 u=[m/n]=1

P(o; | O-j) = P(St2:Sti1 St 1 St-30 S0 Sea)

O 0O

O 0 0

= P(St+2’st+1’ St | St—l)

1 E4+2 4+l t -1 -2 -2
H(S") = P(o.,o0;)lo
(") SZ; (0;,07) gp(q/gj)
1
:ZP(aj,ai)logP( o)
SZn O-i GJ
H(S" P lo
(S%) = Z (0;,0)) gp( /S)
P(oc.|o.)=P(s ,S ,..,S |[S.
(O-||GJ) (l1 iy |n| J) +ZP(O'j,O'i)IOg 1 4
=P(5,.S,:8;.:5;) 1 P(s)) 5 P(s, /s;,)
1
= = — _ : -+ P(o:,0;)log
I:)(SJ.)P(S,“|S,“ ..... S, S;)P(S, 1.5, S)) SZ j P(s. /s, )
=P(s, s, )P(s, Is, )-P(s, Is,)P(s, 1s)) =nH(S)
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Adjoint source of extended Markov source

[0 Adjoint source of extended Markov source, s" .
Let P(c,),P(c,).....P(c,,) be the first-order symbol probabilities of the o; symbols
of the #th extension of the first-order Markov source. Since 0; corresponds to the

sequence (S;,S; ,...,S, ), we see that P(c;) may also be thought of as the nth-order
joint probability of the S;.

Ik

1
P(o))

H(S") =3 P(c;)log

=Y P(s,.S;.-.»S; ) log
Sﬂ

If S is a first-order Markov source.
P(Sil 1 Si2 pee s Sin ) - P(Sil)P(Siz /Sil)P(Si3 /Si2 ) e P(Sin /SiH)

— 1 tlog— Lt
MY =2 P05, ) 00 s+ 100 eyt 0g ey

=H(S)+(n-1)H(S) or
H(S") = nH(S)+[H(S)—H(S)]
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Adjoint source of extended Markov source

H(S")=nH(S)+¢,
H(S")
n

H(S") > H(S") =nH(S)

=H(S)+m
n

This inequality becomes less important as n becomes larget.

lim H(S)

n—oo n

—H(S)

For larger 7, the Markov constraints on the symbols from §” becomes
less and less important. The adjoint of the nth extension of § is not the
same as the #th extension of the adjoint of §.

B H(S") = H(S)
If S isazero-memory source,

H(S")=nH(S)
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Example

Probabilities for the Markov source

¥yp Ah, S ey, 54l i*a;, a5

iy 2 84
1HD s 5/14 4/14
(T 0.2 5/14 1/14
O .5 1/14 1/14
ol k.5 1/14 1/14
1{HI .5 1/14 1/14
LA R b5 1/14 1/14
114 2 5/14 1/14
il 4.8 5/14 4/14

Thue the entropy B caloulated wing (2-248):

2012/10/24

H{8)

- ‘E‘[Fl:-!]. Fr :i._:l ."I- ].‘
|

nﬂ:’:]’["t‘ﬁ -r—‘.-.‘:-:-;'-.-luu_i

= 0.Bl bit/binig
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Examples

H (S) = 0.81bit
H (S) =1.00 bit
H(S2) =2H(S) =1.62 bits

H(?):ZP(S.,si)Iogﬁ:

—1.86 bits
H (S®) = 2.66 bits
H (S®) = 3.47 bits

Note how the sequence approaches H(S).

H(S?)
2

H(SY) _ggopit, H)

H (S) =1.00 bit, — 0.93 bit

= 0.87 bit
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Example: English

L1 27 symbols: 26 alphabets + space

H(S) = log 27 FEW TS Y NSADXESYIRGQY _WOECLI _0BYERBQPOLE
YR BUAWYLHTQUNIKFME _KMYUTCBRSAX HLIRIE M
=4.75 blts /SymbOI Fruke 2-6, Xorodh nppeogimation w Boglia.

Tanry 28, Poosspiirress oF Sysnoba f Begumn (Tees, 191

1 Sy Pr'.-.l!luhilir!,l Spul.l'nll' J"nl[m!.ﬂ'fl'.]y
H(S)=> P log

3 F’I Brsace i, 1859 N 0.0874
. A iy, OGAE 0 0,32
=4.03 bits / symbol B .0127 P 0,018z
i 021 E (4] 0. BO0E
ix 0317 it (. {EE
[LH ik, J3L = 54
Al _MGAR ITE _NME _ASAEV _O0E_BAITNTITA LY ¥ 1. 20 1 00T
T e e 2 A b A R i — - — L . a5 U R R
HU__|.1UE:| | -] [ ]'.!';'!I' r.i.l'l!.lb'l'it W _E":]]'U.l'lu Hu_=Eu_C_F H 00407 ¥ 0 (&L
T _WSREM _DIY_EESE . _F_0O_ SRS _k__ __UNNASHOR | 1. 0575 W 076
Fiaune 2-7. Firsi Il.jlllrll-ll.lllhl.i.lll LET] ll'.:II‘“HII. A I, LEKIH X T
K 0, 0049 ¥ R IFIS
L i 21 A . OG

5 0. L9
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Example: English

[1 15t order Markov source:

= 1 .
H(S)=) P, lo =3.32 Dbits / symbol
(S) ;(J) gp(”j) y

URTESHETHING _AD_E__AT_TFOULE_TTHALTORT W
ACT_D__STE _MINTSAN _GLINS _TWI D _OULY _TE_I*

DG O Y S U T AY T FA D (P TPAVED

Faawvng 3-8, Beound l.|.l|||l.lj.:|.|||.|.||:uu Lu Hllrﬂ::-ll.

[1 21nd order Markov source

LAMENE _CAN OV _ANG _RLER _THATIED _OF_Io_H
HOR _OF _TO_HAVEMEM _A_1_MAND _AND_BUT
WHIESLITALLY _THERYERCGH _EIGIFTE _TAKTLLIS _TA

Frovme 2% Thisl npprosimetion 1o English.
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Example: English

[l Word-based zero-memory source

HEFRESENTING AND SPERDILY B AN GOOL AP
O COME CAN DIFFERENT NATURAL: HERE HE
THE A IN CAME THE TO QF T EXPERT
GIAY COMLIE IO FUMMNISHES THE LINE MES-
BAGE HAD BE ‘THESK

Fiosung 2-10. Fourth sppeoximative to Kaglsh,

[0 Word-based 15t order Markov source

THE HEAD AND IN FRONTAL ATTACHK ON AN
ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT 18 THEREFUORE ANIHER MIETTICOL
FOlk THE LITTTERS THAT THE TIME OF WHO
EYELRL TOLD THE FPROBLEM FOLR AN UNEX-
FECTIEL

Frovne 3-11. Filth npproximation v Esglial,
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Estimation of parameters ot Markov source

[0 Estimation of P,/ s/) from samples emitted from
the information source.

=

Fib | b}=0.
Falal=0T
b
P(b la}=0.3 (bl aj=1
Q/\r;‘w f;m

Pia |b}=0.2 P ke

L= ]

Regular 1% order Markov source ~ Non-regular 1% order Markov source
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Estimation of parameters ot Markov source

[0 The state transition sequence of the Markov source associated the emitted output symbols is
uniquely determined. We maximize the following probability P, if P is a joint probability of N
observed samples.

P :WO PA (a)q PA (b)c2 PB (a)c3 PB (b)c4 F

,where W,, F ate initial and final state probabilities, respectively. P ,(@)=P(a|a) is conditional
probability of state transition.

Now find conditional probabilities which maximize /g P under the following

constraints by the Lagrangean method.

Y ¢ =N, P,(a)+P,(b)=1,P;(a)+ P; (b) =1

The optimal conditional probabilities are given by,

C

PA(a)=Cl+1C2,PA('O)=Cl(:fc2 P,(@)=—2—,p,(b)=—=
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Estimation of parameters ot Markov source

[0 The Lagrangean Method:
P :Wo PA(a)Cl ’ PA(b)C2 ’ PB(a)C3 ’ PB(b)C4 ’ F

Our aim is to maximize the above objective function under constraints

of P.@+P,b)=1P,@)+P,b)=1. For simplicity, we maximize the O=/og P function

instead.

Q =log P+ 4, (P, @)+ P,0)-1)+ 1,(P, @)+ P,(b)-1)

By taking derivative for each parameter, now we have,

= :O, = :Ol
P @) =V ap @ P A
aQ _C2°P+ﬂ/:0 aQ _C4.P+i :0

oPalb) Palb) "ops(b) Ps(b) P.(a)= = & P, (a)=
Qoo L +C,
511 - PA( ) PA(b) 1 0, PA(b): C (-::C ,PB(b):
S5 =Pela):P,b)-1=C -

Finally, we obtain,

2012/10/24 Prof. Satoshi Nakamura
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Estimation of parameters ot Markov source

P,@)=—,P,b)=—2—,P, (b)=—

P.(2)= C,+C, C,+C, C,+C, C,+C,
[0 These are nothing but a relative frequencies of symbols sequences observed
through state sequences. Now let N ; be a frequency of state 4 and N (b)) a
trequency of the symbol b produced at state 4.

p(b|a) can be calculated by,
N (@b)_N,b)
P,.(b)=plb|a)= = -
’ N@ N,
Ll Let P(A,a) be a joint probability of symbol a produced at the state A4, and P(A) be
a probability of state A.

P(A a)
P(A)

P.(a)=nplala)=
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State transition matrix

O

Definition: Matrix representation of conditional probabilities.

P {p(ala) p(bla)}

~Lp(alb) pblb)

Let P(a),P(b) be state transition matrices for symbol 2 and 4, and let A, W,=/1,0/, W:=/1,1]

be an initial state, an initial state probability and a final state probability.
[plaja) © P(b :{0 p(b|a)}
Pla)- e o] PO)|o b
Now we can calculate a probability for the observed symbols with arbitrary length.

M =W, P(S,)P(S, )..... P(S, W, S ={a,b}

2012/10/24 Prof. Satoshi Nakamura
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State transition matrix

[0 Limit distribution: Let I, be an initial state probability vector with an initial
probability 7, at state  time #=0, and let P and
W =[z", z{",..., "] be a state probability vector at state 7, time 7.
Limit distribution is given by,

W =limw, = limw, P"

N—0co N—00

2012/10/24 Prof. Satoshi Nakamura
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Regular Markov source

[0 Definition:

B [ converges to an unique matrix pP* as 7 becomes large.

B FEach column vector converges to an unique state probability vector
\W =, where each element 1s positive.

B Steady state distribution exists uniquely and is equal to W ™.

[0 Steady state distribution is Z=(%,,%,,...,%,), which satisfies,

ZP -7, }Zi-t

L0 Example:
The steady state vector s,

0.72.+0.2z,=z,

_(0.7 03 0.32,:+0.82.= 7,
02 0.8

Z,=04,2,=06
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Example

P(ala)=P(a| A =1/4,P(b|a) = P(b| A) =3/4,
P(a|b) = P(a|B)=1/2,P(b|b) = P(b| B) =1/2

[P@@lA) PBIA)] [1/4 3/4
Pib b=/ =
Palws “|P@a|B) PM®|B)| |1/2 1/2
Plfblﬂ.bﬂ“i 1/4 3/4:|

(B] (za,zb)=(za,zb)L/2 1D
Fia |lbl=1/2 II 1 1
a Z :_Za+_Zb,Za+Zb:1
) 3
Now we have, Zz.= P(A):g,zb = P(B):g.
Entropy 1s given by H(s)=> P(S,IS)P(S)) log '
> o U RS IS)

— P(a| AP(A)log P(al 5~ POIAP(A)Iog

P(bA)

+P(a|B)P(B)log = al 5) +P(b|B)P(B)log t 0.92

P(b]B)
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Example

L1 Entropy of the extended Markov source is,

= 2 1 3 1
H(S)=—=log—+—=log— = 0.97
) 5 g2/5 5 g3/5

2012/10/24 Prof. Satoshi Nakamura
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Goal of 274 day
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Hidden Markov information source

[0 Information source with k symbols can be represented by #th Markov source with £&”
states.
If we merge states which have similar behavior, we can have a non-deterministic
automata. This is called a hidden Markov source model.
The hidden Markov source model doesn’t have unique state sequence for the
observed symbol sequence.
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Hidden Markov source

[0 Definition: Non-deterministic probabilistic automata or Markov source model.
The unique state sequence cannot be obtained by observed symbol sequences.

-”/E;.B 0.4 ,/E'J-.E 0.2 1-.[.'1
JHERNCEANEH

b 0.3| | 0.8 If | ]
/ \ \ /

% 545 1
) Y e\

[0 If we let an initial state be ¢,, an final state be ¢;, the symbol sequence abab can be
produced by the following state sequences.

Q,=0,20,90,20,90, Q,-0,20,90,9,%q,
Q3:q1®q1®qz®q3®q3' Q4:q1®q2®q2®qz®q3
Q,=0,90,90,20,2q, Q,=(,©0,9q,9q,®q,
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Hidden Markov source

P(Q,) can be calculated by

Now we have,

O

O

|:)Q1 =0.3%0.7%0.3%0.3%0.7+0.8%0.5%0.6 =0.0031752

P=> PR, =0.734832

[Forward calculation]: Now let the observed symbol sequence for the source,
X=X, X500 X

We try to estimate probability of P(X | M) assuming a hidden Markov information
source. An initial and final probabilities holds,

® | q¥ eF

;where I and F are an initial and final state set.
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Probability of observed symbol sequence

[0 The probability of the observed symbol sequence x on the model M is given by,
|
P(X M) =2 7, TTaff, -b) (%)
Qk i=1 9i—1,4i 9i-1,4i

P(X[M)=> P(X,Q [M)=> P(X|Q)P(Q,)
Q« Qx

Now we apply 1°f order Markov assumption,

PQ,) =11 P(q," | qi_l(k))_/' State transition probability
P(X Q) =11P(X. |q% —q.¥) Ve Emission probability

P(X [M)=>TIP(X; | = q*)ITP( | o))
Qk : :

Now,

= 2 HP@ [af)P(X; [ai) > q)
Q!

- ; H a;':_)lqi b;k)lq (%)
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Hidden Markov source

O

Now let 7: (2.7 =1) be probabilities of the initial state, the probability of
observed symbol sequence given the model is,

|
POX M) =3 7 T1a%%,q b0 (X)
allQ, 1=

and, let forward probabilities in the following,

a(1,0)=xz for 1=12.S

Weget
a(l,t) = Za(j’t_l)'aji bji(xt)

P(X|M)=> alil)

iieF

2012/10/24 Prof. Satoshi Nakamura
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Probability of observed symbol sequence

[0 If we apply a forward probability ¢7

a(i,t) = Za(i,t —Da;b; (%)
P(X |JM):Za(i, B

icF

and if we apply a backward probability 5 ,

B,t) = Zaijbij (x)B():t+1)
P(X | M)ZZﬂ(i,O)ﬂi
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Trellis calculation

L1 Three paths:

ﬂb€+d€€+éﬁfg o (state No. Node No. path
time)

N1 a
{:EO a No(O)—32— @ (0,1)

N2 d
C\ a (1,1)

¢ 1 N SN
0O g 'D D\ = (1 ,2) N3 ab+de
f
! N4 df
0. © f::- NO—g—0 | 222
— o N5 (ab+de)c+dtg
0 i > time 3 (233) :abc+dec+dfg
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Parameter estimation of HMM source

[0 State transition sequence cannot be determined uniquely in the HMM while the
symbol sequence is observed. Once number of transitions between states is
obtained, state transition probabilities and emission probabilities can be estimated
easily.

[0 EM (Expectation and Maximization) algorithm:

Iterative algorithm for parameter estimation.

B Expectation Step:
Find state sequence to observed sequence based on the assumed HMM model
parameters.

B Maximization Step:
Estimate HMM parameters along the state sequences, which maximize the
probability to observed symbol sequence.

shere HMM parameters include state transition parameters and emission parameters.
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EM algorithm

Leonard Baum proved the following important inequation.
Pé (X) = PR, (X) with equality 1if,; and only if é =0.---(1)
,where @ is an assumed HMM parameter set, ¢ is an estimated HMM parameter set by
EM algorithm.

Let A={a,} be a state sequence estimated by the observed symbol sequence. We
modify the objective function as follows,

P(AX) P(AX)
P(AX) P(A[X)

P,(X) =P, (X)
by taking logarithm,
log P,(X) =log P, (A, X)—log P,(A| X).---(3)

Now we take expectation, E, []A|Xover estimated state sequences,

E9[|Og P@(X)]A|x = ; PH(ai | X) Iog Pg(x) = Iog Pg(x)-”'(4)
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EM algorithm

If we substitute (4) with (3),
log Pé(x) =E,[log Pé(x)]A|X
=E [Iog P"(A X)]A]X -E [Iog P@(A| X)]A|X
= 2P (& | X)log F;(a;, X) —2.F,(a | X)log F;(a; [ X)---(5)

Now we recall]ensen s inequality.

[ f(xlog f (x)dx=] f(x)log g(x)dx with equality if, and only if f(x)=g(x)

,where f(x),g(x) are probability density function.

Apply Jensen’s inequality to the second term in the right side .

ZP(a | X)log P, (a; | X) < ZP (a, | X)logP,(a, | X)---(6)
,with equahty if, and only 1f

P.(a | X)=P,(a;| X), thatis, 0=6.
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EM algorithm

Now we have,
l0g P,(X) 2 EP,(a | X)log P,(a, X)~ P, (| X)log P (& | X).

If we set 1°* term in right side to be as follows,

ZPe(ai | X)Iog Pé(ai’ X) ZZ_Pe(ai | X)Iog Pe(ai’ X)(7)

Namely, &
E9[|Og P@(Av X)]A|X = E9[|Og Pe(Av X)]A|X 1 (8)

Equation (5) holds,

log P, (X)= P, (& | X)log P, (&, X) = 2P, (a | X)log P, (& | X)-+(9)
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EM algorithm

[0 In summary,
log P;(X)
= 2P,(a | X)log Pé(ai,X)—;Pg(ai | X)log P,(a; | X)
> ZZiPe(ai | X)log Pé(ai,X)—aZng(ai | X)log P,(a | X)
= aZiPe(ai | X)log Pg(ai,X)—aZin(ai | X)log P, (&, | X)
= I(i)g P, (X). |

[0 If equation (7) holds, we obtain parameters which satisfy,

log P,(X) > log P, (X).
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Parameter estimation by EM algorithm

[0  As in the previous slides, parameter estimation can be achieved by
maximizing g, [log P, (A, X)]

AX

EzaZP(ak | X)log P;(a,, X)

zz P(a‘k’x)

a P(X )
, where P(F)a(">’(>)() can be calculated using parameter @ .

log P;(a,, X)

P(a,, X)

P(X)

B  Numerator of is a joint probability of events of observing X and state

sequence 4.

B Denominator of P(#)) is a probability of observing X based on the HMM.

2012/10/24 Prof. Satoshi Nakamura 98



Parameter estimation by EM algorithm

[0 Now, we have P,(a, , X) by counting state transitions along the state sequence «,.
o \7k y g g q £
|
_ (k) (k) (k)
Pé(ak’ X) = 7o _Haq 1q.bQ.—1Q. (Xi)

k k)d
(k)al(Jq)C“b( ) .J(Xi)

,where ¢; and d; are counts of state transition a; and b(x,), respectively.
Then E can be re-written by,

ey P X) g, Pa b % (x,)

a P(X)
P(ay.X) P(ay.X) P(ay.X)
(K) s, (K) e, & ()T d;
log, " P g R g e
P(a,, X e P(a,, X )d{
if we let Ci =2, % =2, % , we have E as follows.

|(k) C'i' dli'
E=log 7'y’ a;'b;’ (%)
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Parameter estimation by EM algorithm

[0 This is nothing but a probability function of a Markov source. Thus we can obtain

parameters by maximization of E, with —=0.

6aij

P(a,, X )ei¥ : =
Pl X, can be thought as a relative counts of the state transition

from state 7 to staté 7. Thereby, we have,

For 4,64 =%,

p—
ij_z Cl ’
7

, we have,

a; ()b, (%) B; (t+1)
PICAGVEAL

If use #(, j,t)=

c'. Zt:y(lulit)

A |J

a = =
: Zj Ci th:?/(i’ J,t)
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Parameter estimation of HMM source

O

First we define backward probabilityf(i,t) , which is a probability at state g, time=¢
eMItting X, X, ;,X,4 - ..,X. Lhis probability can be etficiently calculated from the

final symbol.
for q=1,Q,
Initial setting: p(0,0)=10:1f geF
£(q,0)= 0.0 : otherwise
Iteration of backward path: for t=1-1i—-2..10

for g=12,...,Q,
BA(q,1) :z{je{j:aqj;tO} B(),t+1)- Ay 'bqj (Xe1)

The following relationship holds.

2a(g,)=1% p(q,0) 7,

ieF g;eS
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Parameter estimation of HMM source

L0 Let y(i, j,t) be an emission probability producing x, during a transition from state
g;to g. Now y(1, J,t) can be calculated using

a(i,t=1) and p(j,1)-
= a(i1t_1)°aij 'bij (x)- B(J,1)
P(x|M)

Here, 4, j, t) fepresents a probability (relative transition counts) producing x;,
during a transition from state ¢; to state ¢; assuming an HMM 0 ={a;.b;(x).7} .

y(1, J,t) =
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Parameter estimation of HMM source

[0 Now we have the following estimation formulae.

>, G, j.0)
T, <=
| lejy(l’J’l)

a. — Ztﬂ/(l,J,t) :Zta(i’t_l)'aij'bij(xt)'ﬂ(j,t)
B IO NTL (PR > ali,t)- A1)

Z‘4t:xt:k 7('1 Jvt) _ Z:t:xt:k a(i’t_l)'aij 'bij (Xt)ﬂ(J’t)

b; (k) < — : :
2. (1, J,1) 2ol t=1)-a;-b(x) B(].1)
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Parameter esttimation of HMM

O

The calculations above will be iterated until its convergence. Also parameter
estimation will be applied not to a single observation but to many symbol
observations like,

N (n) sz
& — %nﬂZt d (S)I’-J’F) '
Zn:lztzﬂ/ (1, J,t)

¥ represents a probability that information source produces a symbol x; during a
state transitions from state ¢, to ¢, assuming the symbol sequence x is observed
regardless to the state sequences.

At least the calculation for & is the same as that of the Markov source model.
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Entropy for HMM source

[0 Let Entropy per one symbol at a state ¢ is given by,
H(X]q;)=-2p(x]q;)log p(x]q;)
p(x|q;) :%ajkbjk(x)

[0 We obtain Entropy for the HMM taking expectation over all states.

H(X)=§ﬂ(qj)H(X 19;)

;where 7(q;) is steady state probabilities for the HMM states.
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An example

I:I' "'- a=09
=011

[0 Estimate HMM parameters based on observed symbol sequence “ba”.

O Stepi: State seq. b a P(a;, X)
AAA 0.3x0.1 x 0.3x0.9 =0.0081

AAB 0.3x0.1 x 0.7x0.1 =0.0021

ABA 0.7x0.9 x 0.7x0.9 =0.3969

ABB 0.7x0.9 x 0.3x0.1 =0.0189

sum0.426
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An example

O Step2: P(a]A)  0.3x09 + 0.7x0.1 =0.34
Pb|A)  0.3x0.1 + 0.7x0.9 =0.66
P@@|B)  0.7x0.9 + 0.3x0.1 =0.66
P(b|B)  0.7x0.1 + 0.3x0.9 =0.34

H(X | A)=-0.34l0g0.34—0.66l0g 0.66 = 0.9264
H(X | B)=—0.6610g0.66—0.34log 0.34 = 0.9264

(log 0.34 = —1.56,l0g 0.66 = —0.60)

P(A) = P(B) =%

Now we have Entropy for the HMM,
H(X)=H(X|AP(A)+H(X|B)P(B) =0.9264

2012/10/24 Prof. Satoshi Nakamura
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An example

[0 Step 3: Parameter estimation of the HMM.

. D prob.of state sequences with transition A— A

== Z prob. of state sequences with transition from A

0.0081 0.0021
X 2+

= 0.426 0.426
0.0081 0.0021 0.3969 0.0189
X 2+ X 2+ +
0.426 0.426 0.426 0.426

6§ " prob. state sequences with transition A — A producing symbol "a"

= Z prob. state sequences with transition A — A

0.0081

= =0.4426
0.0081x2+0.0021
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An example

[0 There is another way of estimation using

a, f-

Time
0 ,(A)=10

Symbol
a,(B)=0.0

1 o(A)=a,(A)x0.3x0.1 (B)=¢,(A)x0.7x0.9 b

=0.03

2 a,(A)=0a,(A)x0.3x0.9
+a,(B)x0.7x0.9
=0.405

2 B,(A)=1.0

=0.63
a,(B)=0a,(A)x0.7x0.1
+a,(B)x0.3x0.1 a
=0.021

/Bz(B) =1.0

B.(A) = p,(A)x0.3x0.9 £,(B)=f,(A)x0.7x0.9

1 + £3,(B)x0.7x0.1
=0.34
By (A) = B,(A)x0.3x0.1
0 +3,(B)x0.7x0.9
=0.426

+/,(B)x0.3x0.1 a
=0.66

A -O—0O
g O —0Q
symbol b a
time 0 1 2

2., (S;)=0.426

2012/10/24
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An example

b a
5 _ %o(A)aubu (%) A (A) +0,(A)aubu ) Bo(A) _ 4 0400
~ 2o (A) By (A) + e, (A) (A
a
0, (A)a0, (%) Bo(A) _ 04476
0o (A)apaDaa (%) Bu(A) + a1 (A)a b (%) 5, (A)
b a

6AA (a) =

2012/10/24 Prof. Satoshi Nakamura
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An example

P(a
P(b
P(a
P(b

A) =0.0420x0.4426 +0.9580 x 0.0050 = 0.0234(18)
A) =0.0420x0.5574+0.9580x 0.9950 = 0.9766(19)
B) =0.0455x1.0+0.9545x1.0=1.0 (20)
B) =0.0 (21)

2012/10/24
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An example

H(X | A) =-0.0234l0og0.0234—0.976610g 0.9766 (22)

—0.1601 (23)
H(X|B) =0 (24)
ZP=2,>7 =1
.7 0.0420 0.9580) .7
ATB/ 09545 0.0455) - ATE

Z, =0.499,Z, =0.501

H(X)=H(X |AP(A)+H(X|B)P(B)  (25)
— 0.1601x0.499 = 0.0799 (26)
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First goal of 3 day
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Some properties of codes

Sl Xl
SZ X2
S3 X3
. >S . x S'_>X-:(Xi,Xi — ,Xi_)
. | | 1" 2 j
Information
soutrce : : Code word

SOI X

J

r J
Source Code

alphabet alphabet

[0 Definition: Let the set of symbols comprising a given alphabet be called
S=1{5,55.. .,sq}. Then we define a code as a mapping of all possible sequences of
symbols of .§ into sequences of symbols of some other alphabet X={x,x,,...,x }.
We call § the source alphabet and X the code alphabet.

2012/10/24
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Classification of coding

] code

— Block——

— Non-block

— Singular
code

code

—> Nonsingular
code

Uniquely
—, undecodable
code

Uniquely

— ° decodable —

— ,Noninstantaneous
code

code

, Instantaneous
code
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Block code

[l Definition: A block code is a code which maps each of the symbols
of the source alphabet § into a fixed sequence of symbols of the
code alphabet X. These fixed sequences of the code alphabet
(sequences of x) are called code words. We denote the code word
corresponding to the source symbol s; by X Note that X denotes a
sequence of x/s.

Source symbols code
S, 0
s, 11
s, 00
s, 01
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Nonsingular block code

[l Definition: A block code is said to be nonsingular if all the words of

the code are distinct.

Soutce symbols code
S, 0
= 1
s, 00
S, 01

It 1s still possible for a given sequence of code symbols to have an

ambiguous origin. For example, the sequence 0011 might represent

either s;5, o §,5,5,.

2012/10/24
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Extension of block code

[l Definition: The #th extension of a block code which maps the
symbols s; into the code words X 1s the block code which maps the
sequences of source symbols (5;, 5, ..., 5, ) into the sequences of

code words (X, X ..., ).

Y

Source symbols code Source symbols code
5.8, 00 5.5, 000
5.5, 011 5,5, 0011
5.5 000 5,5, 0000
5.8, 001 5,8, 0001
=2 110 5,8, 010
5,5, 1111 5.5, 0111
5,55 1100 5,55 0100
5,8, 1101 5,8, 0101
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Uniquely decodable code

O

O

Definition: A block code is said to be wniguely decodable if, and only 1f, the
nth extension of the code 1s nonsigular for every finite 7.

Any two sequences of source symbols of the same length are distinct
sequences of code symbols, if the code is uniquely decodable.

Two sequences of the different length should also be distinct, if the code
is uniquely decodable.

Suppose we have source symbol sequences §, and §, which lead to the
same sequence of code symbols, X S and S, and §, may be sequences of
source symbols of different lengths.

Now let us form two new sequence source symbols, S, and §,’, where
S,=5,5,5,=5 5, Both of §,’and §,’ are sequence X, followed by X,
with the same length. Thus, the code doesn’t satisfy the condition of
unique decodability.
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Instantaneous code

Soutce symbol Code A | CodeB | Code C
s, 00 0 0
s, 01 10 01
= 10 110 011
s, 11 1110 0111

[l Code A : This code is uniquely decodable, since all codes have the

same length and distinct.

[1 Code B : This code is also uniquely decodable, since it is non-

singular. It is called “Comma code”, which separates code by comma,
0 in this example.

[1 Code C : This code is also uniquely decodable. However, we atre
not able to decode the sequence, word by word, as it is received.
We can decode only after recerving 0 of the next code word.
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Instantaneous code

[l Definition: A uniquely decodable code is said to be ustantaneons if it
is possible to decode each word in a sequence without reference to
succeeding code symbols.

[ Code A and code B are instantaneous. However, code C is not
instantaneous. A more general method to know whether
instantaneous or not would be helpful.

[0 Definition: Let X, =x;,x,,...x; be a word of some code. The
sequence of code symbols (x;.x;,...x;), where j<m,is called a
prefix of the code word X,

L Ex. 0,01,011,0111 are prefixes of 0771,
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Instantaneous code

O A necessary and sufficient condition for a code to be instantaneous
is that no complete word of the code be a prefix of some other
code word.,.

L1 Sufficient part:

B [f no word is the prefix of some other word, we may decode any
received sequence of code symbols comprised of code words in a
direct manner.

B We scan the received sequence of code symbols until we come to a
subsequence which comprises a complete code word.

B The subsequence must be this code word since by assumption it is
not the prefix of any other code word.
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Instantaneous code

[l Necessary part:

B We assume that there exists some word of our code, say Xi, which 1s
also a prefix of some other word X

B Now, if we scan a received sequence of code symbols and come upon
the subsequence X, this subsequence may be a complete word, or it
may be just the first part of word X,

B We cannot possibly tell which of these alternatives is true, however,
until we examine more code symbols of the main sequence-thus the

code 1s not instantaneous.

Non-block
code Singular
Block code
_> —_—
code Nonsingular
code

Uniquely
undecodable code

— Uniquely —

Noninstantaneous
code

decodable code

L—»
Instantaneous
code

2012/10/24 Prof. Satoshi Nakamura

123



Construction of an Instantaneous code

[l Example code synthesis:
B Assign 0 to symbol s

B If we assign 1 to symbols s2, this would
leave us with no symbols. we might have,

B This, in turn, would require us to start
remaining code words with 11. If |
then the only three-binit prefix still unused is 111.

B And we might set,
and

[1 Other alternatives:

B [f we synthesize another binary instantaneous code.

B  Then we may set.

B We still have two prefixes of length 2 unused.

s, >0

s, =10

s; > 110

s, >1110
s, >1111

s, > 00
s, >01
s, >10
s, >110
se >111
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Kraft inequality

[J Constraints on the size of words of an instantaneous code.

Consider an instantaneous code with source alphabet,
S :{Sl’...’sq}

and code alphabet X={x,x,,...,x }. Let the code words be
XXX p and define the length (number of code symbols) of
word X as /. It is often desirable that the lengths of the code words
of our code be as small as possible. Necessary and sufficient
conditions for the existence of an instantaneous code with word

lengths /,,4,,...,/, are provided by the Kraft inequality.

[ Kraft inequality: A necessary and sufficient condition for the
existence of an instantaneous code with word lenghts /,,2,.. .,/g s

q
that Z <
i=1

where r is the number of different symbols in the code alphabet.
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Kraft inequality

L1 For the binary case, the Kraft inequality tell us that the li

must satisfy the equation.

Source symbols Code A | CodeB | CodeC | CodeD | CodeE
S, 00 0 0 0 0
S, 01 100 10 100 10
S5 10 110 110 110 110
S, 11 111 111 11 11

2012/10/24
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Kraft inequality

Ll
Ll

4
Code A: > 2 =224274+27%427%=1
i=1

Kraft inequality does not tell that code A is an instantaneous code.

The 1nequality is merely a condition on the word lengths of the

code and not on the words themselves.
4
-

Code B: 2.2 =2t 427427420 = o<l
i=1
i | 1 2 3 3
. 27 =2"+2°+27+2°=1
Code C: Z
4
Code D: St =2t 420420122 =1
s < i=1
Code D is not an instantaneous code.
4 1
Code E: Y 2h=21422427°4+27 =1§
i=1

Code E is not an instantaneous code.
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One more example

O

Suppose we wish to encode the outputs of a decimal source,

$={0,1,2,...,9}, into a binary instantaneous code.

Suppose there is some reason for encoding the 0 and 1 symbols of the decimal
source into relatively short binary code words.

If we were to encode Os and 1s from the source as,

0—-0

If we require all these eight code Words t(:)l' %e of the same length, say / the Kraft
inequality will provide us with a direct answer to the equation.

Zz <1

By assumption we have /,=7,/,=2, cmd L,=05=...=l,=/ Then,

l+£+8(2")£1
2 4

or

| >5
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The Kraft inequality - Proot

L1 First we prove that the inequality is sufficient for the existence of

an instantaneous code by actually constructing an instantaneous

code, satisfying

(1) can be written as,

on multiplying by 7,

rearranging terms,
n =0

dividing by r,

iterate the operation,

q L
iér_li <1 @) Zi:ni =0 L islargest of /

>e.onr'<i1
ziLzl nir—i+|_ <rt

nrt+nr 4+ +n <rt

n<r-—nr-t-nr-*—.-n_r
n_r<n +n_r<r-—-nr-*—._..-n_r?
n_, <rt—-nr-=*—..-n_r

n,<r’—nr’—nr=(r-n)r—n)r
n,<r’-nr=r(r-n)
n<r

2012/10/24
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The Kraft inequality - Proot

L1 Steps:

B We assign 7, word of length 1.

B There are r possible such words that we may form, using an r~symbol
code alphabet.

B We can select these 7, code symbols arbitrarily, n<r

B We are then left with 77, permissible prefixes of length 1.

B By adding one symbol to the end of each of these permissible

refixes, we may form as many as —r?

\P;fords o’f 1engthy2. o (F=n)r=r-=nrs

B As before, we choose our 7, words arbitrarily

among our r,-#,7 choices, we are left with, (r—n)r-n,

unused prefixes of length 2, from which we may form

permissible prefixes of length 3. 2

(r’=nr—-n)r=r’—nr’—n,r

2012/10/24

Prof. Satoshi Nakamura 130



McMillan’s inequality

Ll Proof for the necessity conditions for uniquely decodable codes ?

Consider the quantity, O3 rh = (r"l Sr g g )"
we have ¢, terms, each terms of L
&2 BT :r_k k=1 +1 +..I .
y Iy I In
If we let I be the maximum of the word length /. n<k<nL

We define N, as the number of terms an - n
of the form r-£, then, (L) = Ner )
N, 15 also the number of strings of # code words that can be formed
so that each string has a length of exactly £ code symbols.

If the code 1s uniquely decodable, q nL
N, must be no greater than 7, the > r)" < Dorr
number of distinct r-ary sequences = =
of length 4. Thus, we have =ME=nFI=NE{*)
Bernullr's inequality:
For x>1, n is arbitrarily large, X" >nl holds.
Considering this inequality and equation (*),
we can prove, I rti<]

2012/10/24
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O

Example

Assume we wish to encode a source with 10 source symbols into a trinary
instantaneous code with word length 1222223333

ITITITITOT

Applying the test of the Kraft inequality, we have,

10
D> 3th= i 5(3] * 4(i)
i1 3 9 27
= 28 >1
27

This doesn’t satisfy the inequality.

Assume we with to encode symbols from a source with nine symbols into
a trinary instantaneous code with lengths 1,2,.2.2.2 233 3. Applyint the
test of the Kraft inequality, we have,

S L, 1), 4L
We show the example. ;3 =3 (gj 3(27j

s, = 0,s, =»10,s, =»>11,
s, >12,s. > 20,5, = 21,
s, = 220,58, > 221,85, — 222
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Coding information sources

[l For a given source alphabet and a given code alphabet, however,
we can construct many instantaneous codes forces us to find a
criterion by which we may choose among the codes.

Perhaps the natural criterion for this selection, although by no
means the only possibility, is length.

[l Definition: Let a block code transform the source symbols
SpSneerS, into the code words X, X,..,.X , Let the probabilities of
the source symbols be P,,P,,.. .,Pq, and let the lengths of the code
words be /,/,.. .,/q. Then we define I, the average length of the
code, by the equation

q
L = P|I
=1
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Coding information source

[l Average length and Entropy:
Definition: Consider an instantaneously decodable code which
maps the symbols from a soutce S, 5,,5,...,5, with probabilities
P,P,...,P, into code word composed of symbols from an r-ary
code alphabet. We have the following relationships.

H(S)<Llogr
H.(S)<L

[0 Compact code:
Definition: Consider a uniquely decodable code which maps the
symbols from a source S into code word composed of symbols
from an r-ary code alphabet. This code will be called compact
(for the source ) if its average length is less than or equal to the
average length of all other uniquely decodable codes for the same
source and the same code alphabet.
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Compact code

L1 Proof of the relationship:

B Consider a zero-memory soutce S, with symbols s,,5,,...,5, and symbol
probabilities P;,P,,...,P, respectively. Let a block code encode these
symbols into a code alphabet of r symbols, and let the length of the
word corresponding to s; be /. Then the entropy of this zero-memory
source 1s,

q
H(S)=-) RlogR

i=1 5
B let0,0, ....0, beany g numbers such that Q >0for all if and > Q=L
B By the Jensen’s inequality, we know that =L

S Plog = <3 Plog -~
Jlog= <> Plog—
i=1 | gPi i=1 | gQi

with equality if and only if P=0). for all z. Hence,

H(S)<-3 Rl0gQ ()
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Compact code

B FEquation 1s valid for any set of nonnegative numbers Q1 which sum

to 1. We may choose, O

r

X

Q

B We obtain,

H(S) <=3 P(logr ™)+ R (log Y r¥)-—-(2)
i=1 i:1:1 '|=1 ~

\ J
Y

q <0
<logr) Pl =logrL
i=1

HES) <LorH(S)<L
log r
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Compact code

[l A method of encoding for special soutce.
Considering eqns. (1)(2), a condition for equality in the last
inequality is,
Srii=1

=1

Then we see that a necessary and sufficient condition for equlality 1s,

Pi:Qi

r
q

S

j=1

=r" for all i.

or

log, % =|. for all i---(4.9b)
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Compact code

[l We may say that, for an instantaneous code and a zero-memory
source, I must be greater than or equal to H,(§). Furthermore, L
can achieve this lower bound if and only if we can choose the word
lengths / equal to log, (71/P,) for all i. For the equality, therefore,
log , (1/P,) must be an integer for each 7

L1 In other words, for the equality the symbol probabilities P; must all
be of the form (7/7)”, where a;is an integer.
Note that if these conditions are met, we have derived the word
lengths of a compact code. We simply choose / equal to 4,
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Compact code

Source symbol Symbol prob. code
a¥ 1/2 0
5 1/4 10
53 1/8 110
Sy 1/8 111

1)
0
2
4
L=S"p1 =13
i 4
. 1 .3
H=SPlog==1>
2 Rlog o =17
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Example: Compact code

Source symbol Symbol prob. code

S, 1/4 00

5 1/4 01

S5 1/4 10

Sy 1/4 11
Source symbol Symbol prob. code
S 1/2 0

5> 1/4 10

S5 1/8 110

Sy 1/8 111
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Example: Compact code

Source symbol Symbol prob. code
S, 1/3 0
S5 1/3 1
S5 1/9 20
Sy 1/9 21
S 1/27 220
iy 1/27 221
s, 1/27 222
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Shannon’s first theorem

[0 We now turn to zero-memory soutrce with atbitrary symbol probabilities.

[0 Equation (4-9b) tells us that if /&g (71/P)) is an integer, we should choose
the word length / equal to this integer. If log (7/P,) is not an integer, it
might seem reasonable that a compact code could be found by selecting

/;as the first integer greater than this value. This tempting conjecture 1s, in
fact , not valid, but we shall find that selecting / in this manner can lead to
some important results. . .

log, 5 <I. <log, E+1---(4—1O)

L1 First, we check to see that the word lengths satisfy the Kraft inequality.

S <rtorRert(4-1y

Summing (4-11) over all 7, we obtain,

1> Zq: r
i=1

2012/10/24 Prof. Satoshi Nakamura 142



Shannon’s first theorem

O If we multiply (4-10) by P/ and sum over all ,
H(S)<L<H(S)+1.---(4-12)
L1 In this way, if we construct the code in the way of (4-10), we can have

the lower and upper bounds of L. This is valid for any zero-memory
source, we may apply it to the nth extension of our original source S.

H (S")<L <H,(S")+1.---(4-13)
L represents the average length of the code words corresponding to

symbols from the nth extension of the source S. If 4. is the length of the
code word corresponding to symbol Ojand, P(0i) is the probability

qn
of o, then Ln:ZP(O'i)ﬂf."'(‘l_l‘l)
i=1
L. /nis the average number of code symbols used per single symbol from

S.
H (S)<S<H (S )+2---(4-15a)
n n
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Shannon’s first theorem

L1 Itis possible to make L. /7 as close to Hr(S) as we wish by coding
the #th extension of § rather than §:
lim S = H_(S)---(4—15b)

n—oo n

Equation (4-15a) is known as Shannon’s first theorem or the
noiseless coding theorem. The price we pay for decreasing I, /7 is
the increased coding complexity caused by the large number (¢”) of
source symbols.
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Shannon’s first theorem for Markov source

[l We define the first-order Markov source S, with source symbols
$pSy---5, and conditional symbols probabilities P(5;/s). We also
define §,, the nth extension of §, with symbols o,,0,,....0,, ,

and conditional symbols probabilities P(ei/o; ). We refer to the first-

order (unconditional) symbol probabilities of § and §, as P; and

P(o,10;), respectively.

[l The process of encoding the symbols s,,5,,...,5, into an
instantaneous block code is identical for he source § and its adjoint
source S. If the length of the code word corresponding to s, is /,

the average length of the code is,
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Shannon’s first theorem for Markov source

[l The average length is identical for S and S since P, the first-order
symbol probability of s, 1s the same for both these sources.
g Is azero-memory source, and we have,
H.(S)<L
This inequality may be augmented to read,

H.(S)<H.(S)<L

and, H (S")<H (S") <L,
If we now select the / according to (4-10), we may bound L. above
and below (4-12), H(S)<L <H_(S)+1

for the extended source, H.(S") <L, <H (58")+1

using (2-41) and dividing by 7,

Hr(S)+ Hr(S)_Hr(S) < L

nn <Hr(S)+ Hr(S )_Hr(S) +1

n

2012/10/24 Prof. Satoshi Nakamura 146



Coding without extensions

[l Shannon’s theorem shows the bound above and below considering
its extension. The theorem doesn’t tell us what value of L (or L /#)
we shall obtain. It doesn’t guarantee that choosing the word lengths
according to (4-10) will give us the smallest possible value of L. ( ot
L. /n) it is possible to obtain for that fixed 7.

Source symbol P Log 7/P; L Code A Code B
5, 2/3 0.58 ) 0
5, 2/9 2.17 3 100 10
= 1/9 3.17 4 |1010 11

L,= §><1+§><3+%>< 4 =1.78binits / source symbol

2

This satisfies,

However, code B gives shorter L. Ly = = x1+ % X2+ 5 x 2 =1.33binits / source symbol

H,(S)<L,<H,(S)+1

1

3
H,(S)=> P log % =1.22bits / source symbol

i=1 i
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Binary Compact Codes — Huttman Codes

Ll A compact code for a source S is a code which has the smallest average
length possible if we encode the symbols from § one at a time. We
develop a method of constructing compact codes for the case of a binary
code alphabet.

[l Consider the source S with symbols s,s,,...,5, and symbol probabilities
P,P,.. .,Pq. Let the symbols be ordered so that P >P,---> P, . By
regarding the last two symbols of § as combined into one symbol, we
obtain a new source from § containing only ¢-7 symbols.

We refer to this new source as a reduction of .

[0 The symbols of this reduction of § may be reordered, and again we may
combine the two last least probable symbols to form a reduction of this
reduction of §. By proceeding in this manner, we construct a sequence of
sources, each containing one fewer symbol than the previous one, until we
arrive at a source with only two symbols.
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Huffman codes

Original Source Reduced Soutrce
Symbols Prob. S1 52 53 54
5 0.4 0.4 0.4 0.4 —> 0.6

5, 03 03 03 03 0.4
5 0.1 0.1 — 02 }_I_’ 0.3

5, 0.1 0.1 } 0.1
5 0.06 }_l—> 0.1

56 0.04

[0 Construction of a sequence of reduced sources is the first step in the
construction of a compact instantaneous code for the original source S.

[0 The second step is merely the recognition that a binary compact
instantaneous code for the last reduced source ( a source with only two
symbols) 1s the trivial code with the two words 0 and 1.

L1 The final step is to construct a compact instantaneous code for the source
immediately preceding the reduced source in the sequence of reduced
sources.
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Huffman codes

Huffman codes for two symbols

Symbols Prob. Code
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Huffman codes

Synthesis of a compact code

symbols Prob. Code 51 Code 52 Code 53 Code 4 Code
5 0.4 1 0.4 1 0.4 1 0.4 1 0.6 0
5 0.3 00 0.3 00 0.3 00 0.3 00 0.4 1
53 0.1 011 0.1 011 0.2 010 }_l-V 0.3 01
0.1 0100 0.1 0100 0.1 011

5 0.06 01010}_r> 0.1 0101
5 0.04 01011

[0 We assign to each symbol of 5, (s, and s,) the code word used by the
corresponding symbol of S, The code words used by s,y and s, are
formed by adding a 0 and 1, respectively, to the code word used for s,

[0 There are another possibilities to decompose a reduced source in code S,
and 5,
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Huffman codes

Synthesis of compact codes

Symbols Prob. Codes S1 Codes $2 Codes S3 Codes S4 Codes
5 0.4 1 0.4 1 0.4 1 0.4 1 0.6 0
) 0.3 00 0.3 00 0.3 00 0.3 00 0.4 1
5 0.1 0100 0.1 011 0.2 010 }_r 0.3 01
5 0.1 0101 0.1 0100 0.1 011
55 0.06 0110 0.1 0101
5 0.04 0111

[0 'There atre three choices in S,. If we choose the fist one, we obtain a code
with word lengths ,
1,2,4,4, 4, 4.
If we choose the second or third, we obtain,
1,2,3,4,5, 5.

11
i=1 i=1 i

S S
L=> Pl =1875 H :ZRIOQ%:LMOZ
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Huffman codes

L =1(0.4) + 2(0.3) + 4(0.1) + 4(0.1) + 4(0.06) + (0.04) = 2.2binits / symbol
L =1(0.4) + 2(0.3) + 3(0.1) + 4(0.1) + 5(0.06) + 5(0.04) = 2.2binits / symbol
6
H=>P Iog% =2.1435
i=1

[0 Two codes have the same average code lengths. These are shortest
average length codes that can construct.

Synthesis of compact code

Symbols Prob. code S1 code
5 0.5 0 0.5 0
5 0.25 10 0.25 10
S5 0.125 110 0.125 110

Sy 0.100 1110 0.125 111
S5 0.025 1111

Compact code

S
L=> Pl =1 H=z5: Iog——08113
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Proof of Huffman codes

Assume that we have found a compact code C; for some reduction, say Sj, of
an original source S. Let the average length of this code be Lj

One of the symbols of 5, say s, is formed from the two least probable
symbols of the preceding reduction §, . Let these two symbols be s, and s,
and let their probabilities be P, and P, ,, respectively.

The probability of s, is then P =P ,+P, . Let the code for S, formed

according to rule (4-24) be called C,,

L, is easily related to L; since the words of C;and €, are identical except
that the (two) words for 5, and s, are one binit longer than the (one) word
for 5. Thus we know that

L ,=L +Pg+P,---(4.25)

and let its average length be L ;.

What we want to show is if C; 1s compact, then Cﬂ must also be compact. In
other words, if L, is the smallest possible average length of an instantaneous
code for §, then L, is the smallest possible average length for §,.
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Proof of Huffman codes

=~

=

Lj_1 =>» PL+P | ,+Pl

i al’al
i=1
k-1

Pl

+P,(0 +D)+P, (I +1)

I:)II + PaO + Pal

=L +P,+P,

J a

where,

L; = Zz(zl Bl, P, =P, +P,
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Proof of Huffman codes

[0 A proof by demonstrating that assuming the contrary leads to a contradiction.

[0 Assume that we have found a compact code for 5, with average length L, <L,,.
Let the words of the code be X, X,,..., Xy, with lengths 1,1,,...,1,;, respectively.
We assume that the subscripts are ordered in order of decreasing symbol
probabilities so that,

~ ~ ~

<l <---<|

Il 2 al

O  One of the words of this code (call it X, ) must be identical with X, except in its
last digit. If this were not true, we could drop the last digit from X_ and decrease
the average length of the code without destroying its instantaneous property.

[0 Finally, we form C,, a code for S, by combining X and X, and dropping their
last binit while leaving all other words unchanged. This gives us an instantaneous
code for §; with average length , related by

~

Lj_1 = Lj +P,+P,
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Proof of Huffman codes

[0  If we compare the last equation to (4-25), we see that our assumption
Lj_1 <L i1
implies that we may construct a code with average length
Ej <L j

This is the contradiction we seck since the code with average length L is compact.

[0 Two properties of Huffman codes.

B If the probabilities of the symbols of a source are ordered so that
PR>P,>-2>P,
, the lengths of the words assigned to these symbols will be ordered so that,
L, <l, <---<1,

B The lengths of the last two words (in order of decreasing probability) of a compact
code are identical:

If there are several symbols with probability P, we may assign their subscripts so that
the words assigned to the last two symbols differ only in their last digit.
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r-ary compact codes

[0 We would like the last source in the sequence to have exactly » symbols. The last
source will have r symbols if and only if the original source has r+a(r-1) symbols,
where « 1s an integer. Therefore, if the original source doesn’t have r+a(r-1)
symbols, we add “dummy symbols” with probability O to the source until this

number is reached.

Synthesis of compact codes

Symbols Prob. Codes 51 Codes 52 Codes 53 Codes
5 0.22 2 0.22 2 0.23 1 Y 0.40 0
5 0.15 3 0.15 3 0.22 2 0.23 1
5 0.12 00 0.12 00 0.15 3 0.22 2
T 0.10 01 0.10 01 0.12 00 0.15 3
5 0.10 02 0.10 02 0.10 01
5 0.08 03 0.08 03 0.10 02
5 0.06 n g 0.07 10 0.08 03
I 0.05 12 0.06 11
5 0.05 13 0.05 12
510 0.04 100 0.05 13
S 0.03 101

Dummy (12) 0.00 102

symbols :> (513) 0.00 103
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Code ettficiency and redundancy

O

Shannon’s first theorem shows that there exists a common measure for any
information source. The value of a symbol from an information source S may be
measured in terms of an equivalent number of binary digits needed to represent
one symbol from that source.

Let the average length of a uniquely decodable r-ary code for the source S be L. L.
cannot be less than Hr(s). Accordingly, we define the efficiency of the code, by

=7

It 1s also possible to define the redundancy of a code.
Redundancy =1-7
— L-H r (S)
—
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Example — 7th extension

Huffman codes for two symbols

Symbols Prob. Code
S, 3/4 0
S, 1/4 1

1 3, 4 .
H(S) _Zlog4+zlog§_0.81]blt
The average length of this code is 1 binit, so the efficiency is,
n=0.811.

To improve the efficiency, we might code 2, the second extension of S:

Huffman codes for two symbols

Symbols Prob. Code
S 9/16 0
5, 3/16 10
RY 3/16 110
Sy 1/16 111

n, =0.985

Extending to higher order, 7,=0.985 7, =0.991
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Example — 7th extension
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Compact codes: Elias codes

BABAAB 0 1

S —

00 05 1.0

010 o7 1.0

00 01 10 11

0.0 025 05 0.7h 1.0

AA AB BA BB

00 o4 07 08 10

2-ary coding
011 is a point of region [0.375,0.50] . An initial symbol 1s A.
0110 is a point of region [0.375,0.4375]. The source symbols are AAB.

[0 Elias code:
Elias codes is non-block compact codes in contrast to the Huffman codes, which
are the block codes. This is also called arithmetic codes.

[0 Elias code assign a sequence of source symbols to a fractional number, which is
obtained by dividing a number line according to the symbol probabilities.
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Elias code

[0 In Huffman codes it is necessary to consider extension of codes in order to
improve code efficiency. If the block size is large, it becomes difficult.
Also in Huffman codes code length should be an integer number.

[0 Elias code assigns a sequence of source symbols to one code. It is not necessary to
calculate all of probabilities of nth extension of symbols and we can decode the
codes iteratively.
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Elias code

[0 Procedure:

Suppose we have binary codes s, and s, with probabilities P, and P,.

Divide a region of number line [0,1) according to P,:P, and make a
region A, and A,. A, corresponds [0,P,), A, corresponds [P,,1).

If a first source symbol, 5, 1s s, then choose a region A, else choose a
region A,.

If §,=s, and a region A, is selected, divide a region 4, according to

P,:P, and obtain a region 4, and A,,.
Then a next code §,=s,, then choose a region A4, else A,,,.

Iterate this procedure until the end of the source symbol sequence
and represent a chosen region with a fractional number, which is
lower value of the region.
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Elias code

[0 Average code length: The size of the region for symbol sequence SN
becomes,

Py xR

where letting number of s, 5, be N, IN,, respectively.

[0 The necessary resolution to represent a point in this region with binary
fraction number is,

— |\Io Iog2 I:)o — N1 Iogz Pl

L1 If we take longer source symbol length N,
N N
PONO — _0, RLNl —°
N N
in this way the average code length approaches to the Entropy according
to the length NN.
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Elias code

This figure depicts the process where

1
T_ . the source symbol sequence 010011..
ja i 1 . .
is encoded by the Elias code.
AL (s I mm—— First a region [0,1) is divided into A0
b ot
; A T A g AT according to PO:P1.
o FETTIIIITATITTITT, . - -
1 At | Ay ] A0 1s chosen since a first symbol 1s 0.
ke i . . . o e
/ ) SPIRPVIIPIIR RIS .‘ In this way the subregion is divided
/]
4 ] and chosen.
o]
]
iy
a0
; A
-
4
4 Ao
; ]
j [
O R ]
i 0 0 1 1

Soutce symbol
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L-R arithmetic codes

[0 Problems of Elias code:

B Multiplication by a probability per coding one source symbol is necessary.
Required precision for calculation increases according to N.

B Coding cannot be started until receiving the last symbol.

[0 I-R arithmetic code: One approach to solve the problem for binary code.
B Approximate an inferior symbol probability by 2°Q.

B Assign a value U of the region [U,V) to the symbol sequence.
Prevent bit-reverse propagation by carry introducing bit-stuffing.

[0 Average code length:
An average code length of L-R code 1s given by,

L=P,xlog,2°-P,xlog,(1-2"%)

Coding efficiency becomes 1 if an inferior symbol probability is 2-2.
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I-R arithmetic code

[0 Coding algoritm:
M [nitialization:
Prepare a register C and a register A with V bits.
C «000...0

A<111.1

C is an initial code and A is an initial value of the region.

B Coding of source symbol Xi.

[0 Divide the register A into A0 and Al according PO:P1 of the supetior symbol
“0” and the inferior symbol “1”.

A< AxE ()
A, < AxP, (2

P, = 2" (Q: integer, called SKEW) (1) is calculated by right shift and (2) can be
calculated by A-A1=A0
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I-R arithmetic code

B Codeis,

It X. =0 C is same as it was.

If X =1 C=C+A

update the region,

If X, =0 A A
It X, =1 A< A

,where C represents the lower bound of the chosen region.
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I-R arithmetic code

[0  Decoding algorithm:
B Initialization:
C « copied from the received codes.
A < the initial value set by the coding algorithm

B Decoding:
[ Every time we receive a code, divide the region A.
A, < Ax P,
A <« AxP,

For registers,

If C-A0 1s negative, keep C as it was and choose source symbol 0.

If C-A0 is non-negative, set C ¢— C-A0, and choose source symbol 1.
Next update A,

0 A< A
1

X, =
X, = A< A
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Another advantage of L-R arithmetic code

[l We can change a inferior probability, SKEW, according to change
of a symbol probability. If we use the same SKEW in decoding, we
can decode in the same way.
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Cod

ing example by L.-R code

Sym A, A, Code Output

0 1111 1100 0011 0000

1 1100 1001 0011 1001
ren 0011 Shift 2 bit 1001

0 1100 1001 0011 100100

0 1001 0111 0010 100100
ren 0111 Shift 1 bit 100100

1 1110 1011 0011 1010011
ren 0011 Shift 2 bit 1010011

1 1100 1001 0011 101010101
ren 0011 Shift 2 bit 101010101

0 1100 1001 0011 10101010100

0 1001 0111 0010 10101010100
ren 0111 Shift 1 bit 101010101100

0 1110 1011 0011 101010101000

1 1011 1001 0010 101010110001

Code string = 101010110001
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Decoding example of 1.-R code

A A, A, C Code String Sym
1111 1100 0011 1010 10110001 0
1100 1001 0011 0001 10110001 1
P011 Shift 2 bit 0110 110001 ren
1100 1001 0011 0110 110001 0
1001 0111 0010 0110 110001 0
P111 Shift 1 bit 1101 10001 ren
1110 1011 0011 0010 10001 1
D011 Shift 2 bit 1010 001 ren
1100 1001 0011 0001 001 1
P011 Shift 2 bit 0100 1 ren
1100 1001 0011 0100 1 0
1001 0111 0010 0100 1 0
P111 Shift 1 bit 1001 ren
1110 1011 0011 1001 0
1011 1001 0010 0000 1

Decoded symbol string=0100110001
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Bit-stutfing- 1.-R code

Codc output Register C

1.@0111'&1 violoillo

¥
alrea(?ix output Register AO

5 D

Bit reverse by carry

Code output. RegisFer C

SRR AL ALARAL: OppjL|1[0

(a) Without bit-stuffing

Code output ~ Register P Register C
10 | [rfofeicfo

g

Voo tlorf]el [tfoeefto
Bit 0" +
L SR ST uu_—i .
already output insertion _ Register A0
o rpeigego
Code output Register P Register C

5001 tlatobit] latalulsto

|

No influence by the bit reverse

(a) With bit-stuffing
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Coding etticiency of L.-R code

3.8625

.
b

F:-.
5
(o)
0
3
=
O
o0
=
o
@)
U . H
T |
0.1 0.2 0.3 E 3.4 0.5

Probability of an inferior symbol
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Universal code

[ What is universal code?

B Coding which can compress source symbols belong to a fixed class,
optimally or very etficiently.

B Coding algorithm independent of a prior probabilities of source

symbols. Or coding algorithm for source symbols which have varying
probabilities.

[0 Three coding algorithms:
B Adaptive Huffman code
B Context Modeling

B Dictionary code
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Adaptive Huffman code

[0 Adaptive Huffman code (1)

B Algorithm:
Every time when we receive N source symbols (one block), update a
probability table of source symbols and re-synthesis Huffman codes. Then
send them to the decoder.

B Problems:
According to the size of a block the size of the probability table seems
relatively small, however, we cannot send a code until N source symbols.
It 1s very inefficient to re-synthesis Huffman code every N symbols.
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Adaptive Huffman code

[

Adaptive Huffman code (2)

B Algorithm:
[0 Code a source symbols and send the code based on the Huffman codes
designed by a prior symbol probabilities.
[0 Let probabilities of source symbols a4,a,,...,2,;; at time N-1 be,
Pua(@) = %Nl—fil)
If we let a source symbol at time N be a, the code for the symbol is
synthesized by Huffman codes based on the symbol probability,
Ny (a) — (N _1) pN—l(a) +1
N
o) Mm@)_(N-Dp@) e
N N

PN (a) =

[0 This algorithm doesn’t need to send a probability table of source symbols
since a decoder can update the probability table simultaneously.

B Problems:
In worst case an update of Huffman codes will be necessary for each symbol.

Higher resolution 1s necessary according to the size N.
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Adaptive Huffman code

[0  Adaptive Huffman code (3)

Algorithm:

O

O
O
O

Update the probability table only when the tree of Huffman codes changed. The timing
of the table update is calculated based not on the true symbol probabilities but on the
tollowing approximated probabilities.

W,
P

Normalization in this equation will not be applied in reality.

P(ai)=

Initialization:

Synthesize Huffman codes and their tree according to the a prior source symbol
probabilities.

Assign w; to the symbol according to the a prior probability.

When we increment one count to »; when receiving the source symbol.

If there is a change in the Huffman code tree, re-synthesize the Huffman code tree
until it satisfies a Huffman code property.

Huffman code property:
This means that the structure of Huffman codes takes a form of ordered list by
probabilities. This property 1s also called “S7bling Property”.
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Adaptive Huftman code

[0 Increment w, when we receive S ={s,5,5;4,} . If the sibling property
doesn’t hold, re-synthesize a partial Huffman code tree.

F;
s 0.5 0.5 0.5
S 0.3 03 10 05
83 04 110 02 1
s, 0.1 111

Wi
s 50 50 50
S 30 30 10 50
s, 10 110 20 1
o 10 11
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Adaptive Huffman codes

Symbol S1 S2 S3 sS4

Frequency 10 7 5 3

If we recetve 10 times S4, how does Huffman tree change?

HS4 +1 Symbol  Freq. Code Freq. Code Freq. Code
S1 10 1 10 1 — 16 0
S2 7 01 9 00 10 1
S3 5 000 7 01 }
S4 Z 001

HSA 19 Symbol  Freq. Code Freq. Code Freq. Code
S1 10 1 10 1 — 17 0
S2 7 01 10 00 10 1
S3 5 000 7 01 }
S4 5 001
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Adaptive Huftman codes

#5854 +3

#S4 +4

Symbol  Freq. Code Freq. Code Freq. Code
S1 10 00 11 1 — 17 0
S2 7 01 10 00 11 1
S4 0 10 7 01 }

S3 5 11

Symbol  Freq. Code Freq. Code Freq. Code
S1 10 00 12 1 — 17 0
S2 7 01 10 00 10 1
S4 7 10 7 01 }

S3 5 11
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Adaptive Huftman codes

#5854 +5

#S4 +6

Symbol  Freq. Code Freq. Code Freq. Code
S1 10 00 12 1 — 18 0
S4 8 01 10 00 12 1
S2 7 10 8 01 }

S3 5 11

Symbol  Freq. Code Freq. Code Freq. Code
S1 10 00 12 1 — 19 0
S4 9 01 10 00 12 1
S2 7 10 9 01 }

S3 5 11

2012/10/24
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Adaptive Huftman codes

H#HS4 +7

#S4 +8

Symbol  Freq. Code Freq. Code Freq. Code
S1 10 00 12 1 — 20 0
S4 10 01 10 00 12 1
S2 7 10 10 01 }

S3 5 11

Symbol  Freq. Code Freq. Code Freq. Code
S4 11 00 12 1 — 21 0
S1 10 01 11 00 12 1
S2 7 10 10 01 }

S3 5 11

2012/10/24
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Adaptive Huffman codes

HS4 +9 Symbol Freq. Code Freq. Code Freq. Code
S4 12 1 12 1 —> 22 0
S1 10 01 12 00 12 1
$2 7 000 }_|_‘ 10 01 }
S3 5 001
symbol S4 |S4 |S4 [S4 |S4 |S4 [(S4 |[S4 |[S4 | S4
Code 001 {001 001 |001 |10 10 |01 01 00 1

2012/10/24
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Dictionary code

L Lempel-Ziv coding:
Coding algorithm using a dictionary (code table) including source symbol
sequences had been appeared.
B Do not require a prior probability distributions of source symbols.
B Non-block codes as well as the arithmetic code.

B Compact codes as well as the arithmetic code.

[0 In this method, coding from a source symbol sequence to a code sequence
is obtained in the following procedure.

B 1. Retrieval: Look for a source symbol sequence in the dictionary.

B 2 Coding: Code a source symbol sequence into a code sequence considering
an order in the dictionary.

B 3. Update: Update the dictionary in the decoding side.
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LZ'77 algorithm

reference“ﬂ_Ls bit ] COdlﬁg ({Ls bit)

u
' u

P

Set empty sequence ( A ) into the reference buffer.
Set a source symbol sequence into coding buffer.

Find a max symbol sub-sequence of the source symbol sequence in the
reference buffer . Here let sub-sequence starting from left most side in the
coding buffer be U and let sub-sequence with the same symbol sequence in
the reference buffer be U’. Let # be a next symbol of U, and let P be a
starting address pointer of U’. Let /be a length of U.

Now we encode a source symbol sequence into (P,/#).

Shift left by 1+1 bit until there will be no source symbol.

2012/10/24
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LZ'77 algorithm

source symbol sequence “abcabcdef”

source symbol code
a a
b
C C
a (-3,3,d)
b
C
d
e
f
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LZ'77 algorithm

[0 Properties of L.Z77 algorithm:

B [Z77 approaches to the compact code if the buffer length L. and Ls become
large.

B Sending u as a first mismatched symbol 1s inefficient.
If 1 is very short, the code length is longer than the original source symbol
length. In this case we just send the original source symbol sequence.

B Use a fixed length of U.
Also use the relative address from the left most side of coding buffer or use
“Recency-Rank” meaning a number of different types of source symbols
instead of the relative address.
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1.Z78 algorithm

L 1778 algorithm:

Universal coding based on “Incremental parsing”.
Let the source symbol sequence be,

u=u,U,,..., U,
Incremental parsing

u=uU,u,..., U,

is decomposition into a partial code sequence U,(0<m<t+1)

[0 The partial code sequence satisfies,
m Us=A

B U, U..U are different each other except Upa .
B [f we take a last symbol Un | U,d<m St)equals to U (0sssm-1)
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Example

[01100110010110000100110]
A 0 1 10 01100 101
U, U, U, U, U, U, U, ..

Um :Usum

[0 Each Uw satisfies three properties and U =U #, .
We can code the source symbol sequence into (s,U,,) using s(0<s<m-1I)
and 7,
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Example

[01100110010110000100110]

Encoder Decoder
Time In Out(s,u,,) 1;111;: Index Time In Out Add to Table Index
5 5 - 0) 0 0 0 0 0 0 0
1 1 G 1) 1 1 1 1 1 1 1
2 10 (1, 0) 10 2 2 «, 0) 10 10 2
3 01 0, 1) 01 3 3 0,1) 01 01 3
4 100 2,0 100 4 4 @,0) 100 100 4
5 101 21 101 5 5 1) 101 101 5
6 1000 4,0 1000 6 6 @, 0) 1000 1000 6
7 010 (3, 0) 010 * 7 G, 0) 010 010 7
8 o1 G 1) o1l 8 8 G 1) o1 011 8
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Example

Initial code table

Input String Index
(] 0
1 1
Encoder Decoder
Time In Out(s) I}I'cal:lialt: Index Time In Out ic::’lt: Index

0 01 0 01 2 0 0 0? 1) 2,0 2
1 1 1 1 3 1 1 1(?—1) 2= 11 3
2 10 1 10 4 2 1 1(?0) 2, 10 4
3 00 0 00 5 3 0 0(? _0) 7, 00 5
4 011 2 011 6 4 2 01(?—,. 1) 2,01 6
5 100 4 100 7 5 4 10(?— 0) 2,100 T
6 010 2 010 8 6 2 01(?—, 0) 2,010 8
7 011 2 011 9 7 2 01(?—, ) ? 9

Move pointer to the position of next decomposed code -1.
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Example

Initial code table

Input String Index

0 0

a 1

b 2

Ternary Encoder
Time Send New Entry Index Ternary Decoder

0 1 (for 0) @, 0) 3 In Out Reconstructed Sequence Add to Table
1 0 (for 0) (0, 0) 4 1 a (@.,
2 4 (for 00) (0,0,b) 5 0 0 (@)a00)oy> (a,0) (as 3)
3 2 (for b) (b,0) 6 4 ? (2),0(0)o,> ?
4 3 (for (a,0)) (a,0,a) 7
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1.7778

[0 Problems of .Z78

Coding by (s,#,) 1s inefficient since we have to send u, as it is.
The solution is to send only (5). This method is used in “compress
command” of Unix.

Incremental parsing stores all symbol sub-sequence in the dictionary
and assign addresses.

This algorithm may cause memory overflow of the dictionary. In such
a case we delete LRU (Least Recent Used) entry from the dictionary
by “Self-organizing list”.

2012/10/24
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Other code

[0 Run-length code:
B abbbbbbbab: a(b,7)ab
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Rate Distortion

[0 Coding with distortion:
An average code length per one source symbol can be reduced if we allow
coding distortion. Here, the distortion includes redundancy and errors
which prevent uniquely decodability.

[l Distortion measure:
Let x be an source information symbol of L.
Let y be a decoded output of the code.
The distance between x and y is d(x,y), and called distortion measure. We
evaluate the source coding efficiency by average distortion measure.

azggd(x, y) (X, Y)

where, p(x,y) are a joint probability distribution of a source symbol
variable X and a coded symbol variable Y.
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Rate distortion

[0 Mutual information:
For a channel without any distortion we can easily know the source
symbol x by knowing the decoded output y. The average amount of
information i1s H(X). If there is distortion, the average amount of
information 1s,

1(X;Y) = H(X)—H(X]Y)

Therefore the lower bound of the average code length is the mutual
information [(X;Y).

Distortion will be different while the mutual information is the same.
For this case we try to find codes whose distortion 0 satisfies

d <D.
Under this condition we try to find codes which minimizes the I(X;Y)

R(D) = min 1 (X;Y)

d<D

This R(D) is called “Rate-Distortion Function” of the information source..
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Rate distortion

[J Definition:
Under the condition that the average distortion is less than D,
there exist codes whose average code length per one source
symbol satisty,
R(D)<L <R(D)+e¢
for an integer €.

But there is no codes that has smaller average code length than
R(D).
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Rate distortion

[0 Derivation of RD function:
The mutual information [(X;Y) is written in the following given P _(x) and
conditional probabilities Pfy|x),

(X:¥) = ZPRI TP P(‘))

We also know P(y) and the conditional probabilities P(y|x),
P(y) =X P(X)P(y|x)

Next, d <D is written by,

d =X P(x)ZP(yX)d(x y) <D
X y
And probability constraints requests,

P(yjx)=0 %P(Y\X)ﬂ

What we need 1s to minimize I(X;Y) under the above three constraints by
the Lagrangean method.
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Rate distortion

x Coding to C, Source coding

Information WK
source :> =W 1 Of non-distortion

Minimum P ( X ?/2/) source

[l Source coding with distortion:

Suppose we choose a symbol sequence X = X, Xip,.. X (1=1,2,..K")
of length n from an information source S with k symbols. Now we
choose m codes that gives minimum average distortion.

Co={W, =w,,,W,,,...w, (j=12,.,m}
Jhere the average distortion is given by,
T
d, =D d, (%, W, (i) p(%;, W, (i))
i=1

is Wia) minimizing {d (Xi1wj); =1 2, ..., M} that s,
j(i)=argmin d_(X,w;)=argmin > d,(x,w,)

J J K=1
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Rate distortion

L1 Then apply distortion-less source coding. This method provides
average distortion d/n per each source symbol.

[l Decoding:
Decoding can be obtained by finding X. that minimizes the
distortion to code word W, .

B Maximum likelithood decoding:
Find X, that satisfies,

p(V\_ij J Xm) > p(\/\_ij J Xm)

for all m’ except m.
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Rate distortion

[l Maximum a posteriori probability decoding:
Find Ym , which maximizes,

p(%,,) P(W;[X,,)
p(W;)

p(im‘wj) =

However, a prior probability P(X,) needs to be given. This method
is equivalent to a method maximizes the mutual information.

p(W;[X,,)
p(W;)

L(W;; X)) = E{Iog
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Binary source

[0 Suppose we have a binary information source of {0,1} with probabilities

of p, 1-p and let a bit

error rate be distortion measure.
0 x=y

d(x,y):{l XY

L1 This soutrce coding can be thought as a test transmission channel problem
where the following mutual information is minimized under distortion (,

1(X;Y) = H(X) =X (X]Y)

Error source
Pr(1)= o
1 B
Source Y — X C‘B E
P [x LD g

Test transmission channel

2012/10/24
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Rate distortion

[ Y can be thought as a symbol of which an etror symbol added to a soutce

symbol x is with probability d . Here, since the addition is “XOR”,
Y = X @Eis equivalent to X =Y @ E, then,

H (X‘Y) =H(Y & E‘Y) =H (E‘Y)
Furthermore, let {(p) be a zero memory binary soutrce,

H(p)=—plog p— (- p)log(1- p).

If the error source 1s zero-memory source, H(E)= H(d) holds, and even
if the error source has a memory, H(E)<H(d) holds.

H(E]Y)<H(E) <H(d)
Therefore,

H(X]Y) < H(d)
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Rate distortion

It 0<D<0.5 the Entropy function says,
d <D= H(d)<H(D)

then, |(X;Y) > H(p)—H(d)> H(p)—H(D)

Finally, we have a RD function in the following.

R(D)=H(p)—H(D)

2012/10/24 Prof. Satoshi Nakamura
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Rate distortion

[l RD function for a binary information source

R(D)
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Source coding of analog information

L1 Analog source coding:

Here we treat analog source information that can take continuous
value not a syrnbol (ex. Speech, Image Sensory input)

f\/\f

{a3 Analog signal

.

(b} Sampling

F

uuuuu L rr e vwr e v n Lim oam a e oo oa om

s s s S I S

S e e { mmmmmmmmmm
Quantization

2012/10/24
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Sampling

L1 If the frequency band is limited to 0-W[Hz], the function f(t) can be
written by,

& sina(2W, —k)
fO= 2% o i

X, =f(k/I2W)k=..-1,0,12,...

AR 1 2740007 TR 142000 )

g

[s1-R o

04

QzpF

02

a4 i ]
0001 Rl o oz oo
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Sampling

[ Let spectrum of (t) be a F(w), it can be written,
F(w) = [" f (t)e™dt 1)

If F(w) is band limited in =22W <W<22W _ it can be transformed by
Fourier expansion. 27w o kw

Fw) = Yae * =Yae (2)
k=—o00 k=—o0

1 27W T
, here 8, = | P dw @3)
From (1), f(t) :ir’ F (w)e™dw
o
=1 P Fwye™d 4
Ty S (w)e™ dw (4)
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Sampling

k

No eset t=—
W W W

f (%) _ i [ F (w)e" 2w (5)

comparing (3) and (5),

1 k
& =onr f(ﬁj (6)

Therefore, we get > 1k wk
F(w) = _Z Gt (7)

(0= 2 e ™
i K S|n7z'(2\Nt—k)

— CTL Z(2Wt —k) ®)

2012/10/24 Prof. Satoshi Nakamura

214



Entropy of analog source

[0 The Entropy for digital source is defined,
H=-> plogp

How can we define Entropy for stochastic variable x that takes

continuous value?
Now we divide a region into small region AX of x. The probability of

which x takes a value between xi and % +2X can be approximated by,

p(X;)AX
The smaller the 2 is, the better approximation we have. Then,

H'= lim (=3, p(x,)Axlog{ p(x)Ax})

AX—0

= 1im (=" p(x ){log p(x)}Ax+ lim (=" p(x {log AA

= —'[ p(x)log p(x)dx—AIimOIog AX
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O

Entropy of analog source

The second term goes to infinity. We only use this Entropy to compare
various analog sources. We define Entropy of analog source only by the

first term.
H =—[ p(x)log p(x)dx

Unit Entropy:

The analog source has n stochastic variables x,x,,...,x,, we define
Entropy by,
H :—I...j P(X, X,,...X ) 10g p(X, X, ,... X, )AX dX,...dX
The Entropy per one variable s,

1
H =—lim HII P(X, X, ,...X)10g P(X;, X, ,...X )dX,dX,...dX,

N—o0

This is called an unit Entropy. And, Entropy normalized by T 1s called an
Entropy per second, H. By N=2TW | the following relationship holds.

H'=2WH
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Conditional Entropy

[0 Definition:

HY1X) = [ pOOH(Y b=~ [ p(x tog 2 % P vy

H(XY) = [ BOH(Xy)dy == [ p(x,y)log p&’y? dicly
,Jhere P(x),P(y) are marginal probability distributions.
p(x) = | p(x, y)dy
p(y) = [ p(x, y)dx

The following relationship holds as well as in the digital information source.
H(X,Y)<H(X)+H(Y)

With equality if and only if,
p(X, y) = p(x)- p(y)
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Entropy of Gaussian distribution

[1 Probability distribution of Gaussian (Normal) distribution is,

X2

p(x) = = XD —

270 20°

The Entropy is given,

H(X)==| p(x)log p(x)dx
— X iE X’
= —.[_oo —ﬁ eXp (— 2f._z){log W eXp (_ 20_2 )}dx
=logv270% + %

= log27e0°
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Entropy of analog source

[0 Gaussian process:
[Definition] Let probability distribution of variables X,,, X, ..., X, at
time 7,,2,...,¢,be P(X,,X,,...,.X ). If Pis subject to multi-dimensional
Gaussian distribution, we call this process as a Gaussian process. If this
process is subject to stationary Markov process, we call it a stationary
Markov process. If a power spectrum density #(w) of Gaussian process
has a constant value regardless to frequencies, we call it a white Gaussian
noise or process.
If a white Gaussian noise is band limited in frequency range V]

el swW (W< 22w)
”(W)‘{o W (> 22W)

Furthermore if a time period this white Gaussian noise 1s limited in T; this
process is determined by a sample by 7/2W, x,,x,,...,x,~ Let a power at
each sample be |, the Entropy at each point is given by,

H=log V2o’
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Entropy of analog source

[l Therefore a Entropy for all 2TW samples is,

H. .= 2TW log27ec*
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Maximum Entropy

[0 Distribution function with maximum Entropy:
Find a probability distribution function with a maximum Entropy under
specific conditions. Now we have following relationships,

J:¢1(X’ p(x))dx =k,
J: @, (X, p(x))dx =k,

-f." 0. pO)IX =K,

We find p(x) that maximizes an objective function I by the Lagrangean
method.

| = [ F(x, p(x))dx
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Maximum Entropy

O

[Case an average power of x given|
2
Let an average power to be °,

H(X)=-]" p(x)log p(x)dx
ji x’p(x)dx = &2

ji p(x)dx =1

We have p(x) maximizes H(X) by,
1

= L en—

2

The Entropy with the p(x) is,
H(X) = j_°° p(x)log p(x)dx = log /2765

2012/10/24 Prof. Satoshi Nakamura
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Maximum Entropy

[l Maximum Entropy Theorem:
A probability distribution function of an average power g that has
a maximum Entropy is Gaussian distribution.
2
X

2710°° 20°

p(X) =

The Entropy of Gaussian distribution is given by,

H(X) = j‘: 0(x) log p(x)dx = log+/27e 52
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Mutual information

[0 Let joint probability distribution be p(x,y), If we divide a region of x into
AX and a region of yinto Ay . Here P(X)AX, p(Y;)AY, p(X;, Y;)AXAy

are probabilities for x takes a value between x and x + Ax, v takes a value
between y and Y+ AY, x and y jointly take values in the region,
respectively. The mutual information is given by,

P(X;, ¥;)AXAy
PO )AXp(Y; ) Ay
p(X, i)
p(x) p(Y;)

I(Xi;yi) = Iog

224
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Mutual information

[0 An average mutual information is,

1OGY) = fim SSIp(X, v, )AxAy]log P Y)_

AX—>0Ay—0 1] p(xi)p(yi)
POSY) iy

p(x) p(Y)

=H(Y)-H(Y|X)

=H(X)-H(X]Y)

=] p(xy)log

I(X;Y) 1s non negative value,

1(X;Y)>0

with equality if and only if,
(X, y) = p(X)(Y)

2012/10/24 Prof. Satoshi Nakamura
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Rate distortion for analog source

[0 Rate distortion function:
Let an average distortion rate be d(x,y), the average distortion is given by,

d=|_ d(xy)p(x y)dxdy

here, p(x,y) is a joint probability distribution function of a source sample
value x and its decoded result y. We have a Rate-distortion function in the
similar manner as the discrete symbol case.

R(D) =min I (X;Y)

d<D

Let R(D) bit/sample be the minimum mutual information I(X;Y) of X
and Y under condition that the average distortion d is smaller than the
threshold D. R(D) provides the lower bound of the average code length
per source symbol when we code it by the binary codes under the
condition that ~ is smaller than D.
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Rate distortion of Gaussian source

L0 We use the mean squire error,

d(x, y) =(x—y)’

The average distortion 1s given an average squire error.

d=[" [ pO)p(y|x)(x-y)*dxdy <D

Under the above condition, we minimize I(X;Y) with P(y|x),
© © X
10x:)= [ pOoI] ply1010g 22 X ayjan

, here

p(y)=| p(x)p(y | x)dx
1(X;Y)=H(X)=H(X]Y)

If the information is Gaussian source, we can use,

H(X) =logv27ec?

We maximize H(X|Y) instead of minimizing I(X;Y).

and
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Rate distortion of Gaussian source

Ll TLet Z be a probabilistic vatiable Z=X-Y,
H (X‘Y) =H(X —Y‘Y) =H (Z‘Y) <H(2)

with equality if and only if Z and Y are independent. d is smaller than D.

d=Z%<D

H(Z) will be maximized when p(y|x) follows a Gaussian distribution of
mean 0 and variation D according to the maximum Entropy theorem.

Then we have,
H(Z) =log+/27eD

Therefore,
1(X:;Y)>log+2meoc”® —log~/27eD
— 1 |Og 0-_2
2 D

Finally, R(D) is given by, 1 o2
R(D)= 5 log Y Bit/sample
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Rate distortion of Gaussian source

[l When the source signal is band-limited to 0-W, we can have 2W

samples per second, the rate-distortion function per second is given

by, o2
R(D)=W log—
D
= Eyll=: R
1 ™, "
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Coding of analog signal

L1 Scalar quantization:
Scalar quantization is a discretization of value of a source sample.
We call this sample as a quantized sample. If we use B bit binary
representation, a quantized sample is represented by 2B bits.
Therefore, the necessary information for transmission or storage is,

| =B-F,  Bit/second

This coding is called PCM (Pulse Code mudulation).

Important thing 1s to reduce necessary bit rates. Therefore, we
utilize a probability distribution of the amplitude distribution. The
quantization that minimize mean square errors with fixed
quantization level N is called a optimal quantization property.
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Coding of analog source

[0 Signal to Noise ratio:

_EDEM]_Z, €)o7
E’(n)]  Z,e'(n) o

Let peak-to-peak ratio of the target signal be 2Xmax, the quantization

level of B bit quantization 1s,
2X o
A= 55
If we assume that the noise amphtude distribution is uniform, we get,
Nx;
E[e*(n)]=—| "’ x’dx = o
[e*(m] = '[2 12 3.2% ,
. 2
SNR will be, SNR = 3. 228( o j
X max
Representation in dB will be,
SNR[dB]=6B +4.77-20 |Og10( %)

)\
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Coding of analog source

[0 Transform coding:
If we have consecutive two sample x1,x2 that have a uniform probability
distribution depicted in figure, where p(x1,x2) is,

1 xeC
X, %,) = p(x)=|
P(X, %) = p(x) (o —c
range of x1, and x2 values is, a+b a+b

SR G gu——
o2 TR

a+b
Quantization level will be, L=L,= Tor

(a+b® : :
We need Bo=logllogl, =log="5= " bits to quantize x=(x1,x2) bits.
If we rotate 45 degree to have new basis (ul,u2). Ul and u2 are
independent, necessary quantization levels are L1 for ul, and L2 for u2.

a b
:—,L —E
L A A
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Coding of analog source

b : :
[0 Namely we need B, =loglloglL, = |09% bits to quantize u=(ul,u2).
For example if a=2b, B, —B, =1.17

o
ks

.
E.-'-r

5l
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Vector quantization

[0 A method quantizes not a single sample but a set of n samples.

[0 Suppose we have source samples that are independent each other and
have a uniform distribution. This quantization is equivalent to assigning
this sample to a center point of he square area that is made by splitting
x0,x1 2dimensional area by squares. The size of the area is A? , and
quantization error 1s A*/6 , average mean square error per one sample 1s
A’ 112 , this is a same as scalar quantization.

L1 If we change the shape of the region to a hexagon, the size of the area is
3./352/2 and average quantization error is 5V362/8  with the same
number of the representative points.

[0 If we set the area size to be the same of the square and the hexagon, the
average power of the hexagon becomes 5./3/9 =0.962
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Vector quantization

- X
[ ]
—+

1 A XRI

. . o {b) Representative points of a hexagon
(a}  Representative points of a square

Vector quantization
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Vector quantization

[J Vector quantization is a quantization method that codes a source
sample (x,,x,...,x, ) composed of n consecutive samples to a
closest representative code chosen from representative codes 1n 7

dimensional sample space (X, X,,...,X, ).

L1 If we apply vector quantization to a source sample so as to
minimize an average distortion and apply distortion-less source
coding, we can have a code, of which average length per sample
approaches to the lower bound R(D) according to the size of 7.
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Vector quantization

= Representative points are called code words or code vectors. A set of code
wortds is called a codebook.

[0 Codebook design algorithm:
There is no optimal algorithm for the codebook design. Here we
introduce a semi-optimal iterative codebook design algorithm.
Now we have k training samples x,,x,,...,x, and centroids defined in the

following.

k
R=C (X, Xy, %) =argmin > _d(x, x)
X i=1

,here argmin, T(n) means an operation to find n minimizes /).
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Vector quantization

[l LBG(Linde,Buzo,Gray) Algorithm

B Initialization(Stepl)

Let training sample set be xj, j=0,...,n-1,

N: Codebook size, m=0, 5 dlstortlon and D,

Set an initial codebook AN = yo e yN_lrandomly.
B Partitioning(Step2)

Cluster xj into N partial sets Si: i=0,...,N by AV

, here the average distortion is given by,

HZ N Z{d(x,, y."™)| x; €S}
i=1 J_
m If (D,,—-D,)/D, <¢ then stop, else set A" be a codebook.
B Calculate AU = y(gml) DY : Y™ =C({S}) mem+1 go to step 2.
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Vector quantization

] Splitting algorithm:

(Step1)Initialization:
A : Arbitrary vector with small norm.

M=1, Ao,l =C (X, Xg0, X 1)

(Step2)Split Ay = (Yo, Y- Yu 1) into neighboring two vectors, Y, +A,Y; —A

Let {Yo=AYo+A Y =AY, +A ... Yy1—A Yy +A} be,
Ao,2|\/| :{YO’Y1’---’Y2M—1}

(Step3)Letting A, ,,, be initial values, find sub-optimal codebook
Aom =1Yii1=01...,Y,»} byaLBG algorithm. If M=N then stop, else
set M=2N and go to step 2.

Splitting and LBG algorithm generate a codebook of size 2%,

2012/10/24
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D(R) function

[0 Distortion rate function:
Let x be N consecutive samples of x(n), vector quantization that codes x
into y with a codebook size of L 1s given by,

DR} =minE[d(x.y)]

, where %H (Y)<R

D(R) = lim D, (R)

D(R) represents a minimul average distortion with given range of the rate
R. On the other hand, R(D) represents a maximum rate or minimum
average code length with given range of the distortion D.
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Vector quantization

[0 Tree search VQ:
Make tree structure codebook. Each node in the tree represents a code
obtained in the splitting algorithm. The computation of the tree search
VQ is Klog,NN to compared to K*N with a parameter dimension of K. The

memory size increases about to twice.
Input vector 7

b

Code vectors

i

Code output
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Multi-step VQ

[ Combine multiple vector quantizers to reduce calculation. Codes of each

quantizers are sent to the channel. Number of multiplication can be
reduced from K*N*M to K¥(N+M).

Input vector -

X

codebook

N

o el
I

b

i
H
¢
]
1
1

—_—r

Y

_ Vector

quantizer

,

codebook
ith

——
W
L

4 mum -

Vector
quantizer
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Gain/Shape vector quantization

[0 Gain/Shape vector quantization:
Codebook is composed of multiplication of N, scalar values, g;, £5,--.4y,
and N, unit vectots, #,,,,.. iy,

gi Xuj; i :11 2""1 Ng! j :1’ 2""’ NS

, here we call U;,05,...0yg a gain codebook, and U;,U,,...Uys a shape
codebook. Coding algorithm is shown in the following.

B Shape quantization:
Make inner product between an input vector x and u in the shape codebook
Uty ... iy, and find a unit vector #, gives maximum inner product.

B Gain quantization:
Find a closest scalar value from a gain codebook g,,0,,.. &N, tO the maximum
inner product of (x, #). Here g, *u,is a quantization vector out of N, "N,
quantization samples. Therefore number of calculation is reduced from

K*N,*N, to K*N, and memoty size from N, *N, to K¥(IN +N ).
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Gain/shape vector quantization

# (Code vector
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Speech Coding

12.0 ¢cm M M {“ M
CD < B
ADPCM

74 Min. /\ o0m | 64 [kbit/sec]
O 1 0 0 1 0
1/5 :} 0100110[: 1/20
6.4 C :
MD 0 0 1 1 PSI-CELP

3.45 [kbit/sec]

i i
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Wavetorm Coding

[0 PCM (Pulse Code Modulation) used in CD, DAT

X} X -l

1
AN

V%

= -
Concept of PCM - 1 .
If signal is band-limited to 0-W[Hz] T'= 5%
. = qm{.:,i.{f—aﬂ}
T: Sampling Interval [s] rit) = |—;m 2(:T) R(t—iT)
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Waveform coding (PCM)

[0 Quantization
Let quantization step to be A , quantization bit to be B,
range of signal amplitude to be L.

A2F > L
L
B = ]"-"'-.':-'.:'_J{E}
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Waveform coding

[0 Speech waveform

output

: goutput

e

B

it

input

Non-uniform

1 —law
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Waveform coding (u-law)

] 1 — layy is used for ISDN.

¥max

¥

1

0.8

0.6

0.4

0.2

2012/10/24

L —tr="TH5
L] PCEZ

/

L

/

/
] 0.2 0.4 0.6 0.8 1
X [ ¥xmax
p—law (u=255)
, log(1 + p——)
elr) = Tnax ]{}gu_F;:';"'—“?ﬂl[J‘}
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Waveform coding (DPCM)

0 DPCM (Differential PCM)

Xn €n €, Cyy
'Q » quantize & >| encode p—»
me=| X mmmm e e g
1
9 @ |
- !

! 1
! 1
! 1
1 N
1 - 1
! 1
! 1
1

I 1

local decoder
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Waveform coding (DPCM)

[0 If quantization step A is 1, quantization bit B is 5.

T 3.0 | 40 | 6.5 8.0 5.3
T 1 0 3 4 7 3
. 3.0 1.0 | 2.5 1.0 | -2.7
En 3 1 3 1 -3
T 3 4 7 8 5
cn | 10011 | 10001 | 10011 | 10001 | 00011
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Waveftorm coding (APCM)

[0 APCM (Adaptive PCM)

Xn . '1-."." {‘."."
quantize encode ——»

I;ﬁ;; LI.-‘—,'r
‘:’W{|L;;-f‘:} q—{ D |. Cn
Cn — [n

A=A, * M(|Ln-1])
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Waveftorm coding (APCM)

[0 APCM (Adaptive PCM)

Quant. Bits M(|L,—4|)
2 0.6, 2.2
3 0.85,1,1,15
A 0.8, 0.8, 0.8, 0.8

1.2, 1.6, 2.0, 2.4
0.85, 0.85, 0.85, 0.85
0.85, 0.85, 0.85, 0.85

1.2, 14,16, 1.8

2.0,2.2, 24, 2.6
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Waveform coding (ADPCM)

[0 ADPCM (Adaptive Differential PCM)

{’,I.
' encode

quantize

.E-.'I |I' .|Ir
‘ An Ln-i
. 6 3 lll ( {‘.'I |I
1'1':]{{. | L d |I_.|Ir | ]

a— [) |

O i [ 11

A, = A,y ® M(|Ln-1|)
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Waveform coding (ADPCM)

[0 ADPCM (Adaptive Differential PCM)

Quant. Bits ﬂrﬂ IL n—1 I}
2 0.8, 1.6
3 09, 0.9, 1.25, 1.75
A 0.9, 0.9, 0.9, 0.9

1.2, 1.6, 2.0, 24

0.9, 0.9, 0.9, 0.9
0.95, 0.95, 0.95, 0.95
1.2, 1.5, 1.8, 2.1
2.4, 2.7, 3.0, 3.3
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Parametric speech coding

Speech waveform

Vocal Tract:

Excitation: Pitch frequencey Phonetic Content

Excitation signal

5 Resonance filter J
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Parametric speech coding

A

Framing
Linear
ShOtt term Prediction Coeff.
predict. "

¥

pperdipnse.

Excitation Signal

Speech waveform

Linear

Prediction Coeff. » Code
Codebook

=

Approximation

Resonance filter

E:} Code

Pitch Interval

Pitch
- ! Codebook
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Parametric speech coding

[0 Points of the parametric speech model

B Approximation of excitation signal by the Impulse sequence.

B Bit rates can decrease.

B However, speech quality degrades seriously.
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Parametric speech coding (CELP)

0  CELP (Code-excited Linear Prediction): Cellular phones

Speech waveform

Framing Linear
. Prediction
Short term Coeff.
predict. i

|
Dppasdppnns

|
Long term

Resonance filter

Excitation Signal

predict.

|

.V WYYV, V. P V-V,

2012/10/24

- L

Pitch Interval

Residual Signal

-
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Linear Prediction
Coeff. Codebook Code

=

Pitch
Codebook |:> COde

Gain
Codebook b COde
Res. Signal
Codebook p COde
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Parametric speech coding (C!

SLP)

0  CELP (Code-excited Linear Prediction): Cellular phones

sk}

Speech waveform

ﬁ

Long
Res. Signal
Codebook term
predict.
Code Gain
Gain
Code

Short
term
predict.

Perceptual
Weighting
Filter

efn)

MSE

I

Yefn)
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Speech coding
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Music coding

O Usage of auditory characteristics for coding not of source model.

F
Audible

Minimum audible

sl

limit in quiet

environments

[dB]

J0F

¥ Audible

Non-audible

E"_ Non-audible
| 1 |

|
| () |k [k

Frequency | Hz |

Sound pressure
level

-
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Music coding

[0  Frequency masking

Audible
masker

il

Audible
maskee

Masking effect

[dB]

-+
—

critical band

( No-audible

Sound pressure
level

) 400 |k 2k 4k
Frequency [Hz]
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Music coding

[0 Temporal Masking

masker

all Temporal Masking Curve

[dB]

Backward
Masking

maskee

A0

Forward Masking
maskee

Sound pressure
level

() sl
Frequency |ms]
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Music coding

[MPEG1 Audio (Moving Picture Experts Group)]

Masking threshold I bit allocation .
Estimation I 1
i Subband 32 band, 12 5‘:-'-"””-""-: Quanti- Quantization samples hit
]'||:_ r'|._] Flt . e I #CU'..‘I':
e zation stream
Selection of
scale factor r
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Music cod

ing

[ ATRAC (Adaptive TRansform Acoustic Coding)]

11.025-22.05 [kHz e
) MDCT — f—
55125-11.025 [kHz]
OMF adaptive
PN Alter e DT — hit e - (1]
MF _
I ) allocation
filter
el DT i
(- 5.5125 [kHe] l
masking &
loudness |
Permissible error
estimation
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MP3: MPEG-1/13, MPEG-2

No. 11172.3 13818.3
IS year 1992 1994

Low Sampling Fq. | Multi-lingual,
Multi-channnel

Sampling FQ. 32,44.148 16,22.05,24 32,44.1,48

Layer I II 11 I II 11 I II 111
Bit rate min 32 32 32 32 8 8 32 32 32
max 448 | 384 | 320 256 1160 | 160

channel 1/0, 2/0 1/0,2/0 1/0,2/0,3/0,2/1.2
/2.3/1,3/2
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