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NAIST? 

Kenhanna Science City 

(NAIST, ATR, NICT, 

NTT, NEC…) 

Fukushima  

Nuclear Power Plant 

>700km 
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Daimler Special Purpose Car 

(Total 4M Euro) 43 rescue members and 4 rescue dogs 

Example: Deutsche Bank $2640,000 

and more. 

Deeply thank you ! 



Congratulations, Shinya Yamanaka 

on Nobel Prize in Physiology or Medicine 

 Education 

 He received his M.D. at Kobe University in 1987 and his Ph.D.  
at Osaka City University Graduate School in 1993.  

 

 Professional career 
 Between 1987 and 1989, Yamanaka was a Resident in orthopedic surgery at the National 

Osaka Hospital.  

 During 1993–1995, he was a Postdoctoral Fellow at the Gladstone Institute of 
Cardiovascular Disease, which is affiliated with the University of California, San 
Francisco.  

 During 1995–1996, he was a staff research investigator at the UCSF-affililated Gladstone 
Institute of Cardiovascular Disease.  

 Between 1996 and 1999, he was an assistant professor at Osaka City University Medical 
School.  

 During 1999–2003, he was an associate professor at the Nara Institute of Science and 
Technology. During 2003–2005, he was a professor at the Nara Institute of Science and 
Technology. Between 2004 and 2010, Yamanaka was a professor at the Institute for 
Frontier Medical Sciences.[9]  

 Currently Yamanaka is the director and a professor at the Center for iPS Cell Research 
and Application in Kyoto University, Japan. 

 In 2006, he and his team generated Induced Pluripotent Stem Cells – pluripotent stem 
cells from adult mouse fibroblasts. In 2007, he and his team were able to generate 
Induced Pluripotent Stem Cells from human adult fibroblasts.[1][2][3] 
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About NAIST ? 

 Nara Institute of Science and Technology, Japan established 1991. 

 Japanese national university for basic research and higher education. 

 1st rank research evaluation among Japanese universities in #papers, #grand 

per faculty.   

 Three  graduate schools (No undergraduate school) 

 Information Science 

 Biological Science: Prof. Yamanaka IPS Cell. 

 Material Science 

 Sister school: JAIST, Japan Advanced Institute of Science and Technology 

 

 Graduate School of Information Science 

 20 laboratories 

 10 collaborative laboratories 

(ATR, AIST, NEC, Panasonic, NTT, NICT, Fujitsu, Docomo, OMRON) 
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NAIST Ranking 

 Overall：Ranked 1st   

Highest Evaluated University in Japan 

based on data in Thomson Reuters’“Essential Science Indicators”and 

published in“University Ranking 2010”by the leading Japanese 

newspaper“Asahi Shimbun” 

 in the top 5％ A＋  

Three research areas in the Graduate School of Information Science 

received top scores in a survey conducted by the Ministry of Economy, 

Trade and Industry 

 Ranked 1st in “Research”and“Education”among all national universities 

in Japan published in the weekly magazine “Toyo Keizai”. 

 Number of Grants-in-Aid for scientific research Ranked 1st  per faculty 

member*  

 Grants-in-Aid for scientific research Ranked 1st per faculty member*  
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National Institute of  Information and 

Communications Technology, NICT 
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Communications Technology 

About NICT ?  

2004 
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Locations 
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NICT Keihanna Research Laboratories 

（Open） since 1. April, 2008 

（Location）Kansai Science City  

（Number of  Staffs）about 160 

Kyoto  

Nara 

Oosaka  

Kansai Science City 

A part 

of  ATR 

NICT 

11 
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（Ｉ） Barriers of language 

R&D on the multi-lingual technology 

（ＩＩＩ） Barriers of  information quality 

Information analysis with information credibility criteria 

（ＩＩ） Barriers of  ability 

spoken language and nonverbal interaction technology 

（IV） Barriers between the real and the cyber world 

Natual, real-time connections between the two worlds  

  Overcome the barriers in ICT society 

Ultra-realistic communications to provide the feeling  

of  “being there” via all five senses, etc 

（V） Barries of  distance 
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About ATR? 

 ATR: Advanced Telecommunication Research Institute International 

ATR was founded in March 1986.  
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ATR Laboratories 

 Brain Information Communication Research Labs Group 

 Computational Neuroscience Lab. 

 Cognitive Mechanisms Lab. 

 Neural Information Analysis Lab. 

 Social Media Research Labs. Group 

 Intelligent Robotics and Communication Lab. 

 Hiroshi Ishiguro Lab. 

 Adaptive Communications Research Lab. 

 Wave Engineering Lab. 

 

 Spoken Language Communication Research Labs. 

 Media Information Science Labs 
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History of Speech Translation Research 

10/24/2012 15 

Read  

Speech 

・Syntactically correct 

・Clear utterance 

・Limited domain 

  “Conference Registration” 

Daily  

Conversation 

・Standard expression 

・Unclear utterance 

・Limited domain 

  “Hotel Reservation” 

Wider and  

Real Domain 

・Wider and real domain 

   “International Travel” 

・Realistic expressions 

・Noisy speech 

・J-E, J-C speech translation 

1986 1992 1999 2006 2008 

NICT  

/ATR 
NICT 

MASTAR 

MIC & NICT  

& CSTP PJ 

ATR NICT 

2010 

A-STAR (→ U-STAR) C-STAR 
(ATR,CMU, UKA, CLIPS, IRST, ETRI, 

CAS) 
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Source Coding 

 Contents of the lecture 

 

 Information Theory:  
         Source Coding + Channel Coding + Encryption 

 

 Goal: 
 Understanding of Source Coding by theory and application 

 

 Contents: 
 Amount of information, modeling of information source 

 Zero-memory source, Markov source, hidden Markov source 

 Source coding theorem, compact codes 

 Universal coding, rate distortion theory 

 Source coding of analog signal, vector quantization 

 Modeling and coding of language and speech  
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Text book and references 

 Norman Abramson: “Information Theory and Coding”, McGraw-Hill, 

1963 

 

 A.Gersho, R.M.Gray: “Vector Quantization and Signal Compression”, 

Kluwer Academic Publisher 

 

 T.C.Bell, J.G.Cleary, I.H.Witten： “Text Compression”, Prentice Hall 
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Role of information theory 

 Information Theory:  
Measure for Information Amount, Modeling of Information Source 

 

 Claude Shannon: 
 ``Mathematical Theory of Communication'' (1948),  
   Bell System Technical Journal 
 
 "Shannon entitles his theory a mathematical theory of communication: 

Theory of carriers of information." 

 "Theory about carriers of information-symbols and not with information 
itself.” 

 "The semantic aspects of communication are irrelevant to the engineering 
problems." 
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Transmission model 

Efficient usage of transmission channel 

 Digital channel:   Reduction of transmission codes 

 Analog channel: Reduction of transmission time and frequency bands 

 

Improve reliability 

 Digital channel:    Reduction of transmission errors 

 Analog channel:  Improve Signal to Noise Ratio 

Information 

Source 

Transmitter 

(Coder) 

Transmission 

channel 

Receiver 

(Decoder) 

Decoded 

Information 

Message Code Code Message 

Noise 

Source 



2012/10/24 Prof. Satoshi Nakamura 21 

Separate modeling 

 Separate optimization: 

Source coding + Channel coding 

Information 

Source 

Source 

Coding 

Transmission 

channel 

Chanel 

Decoding 

Decoded 

Information 

Noise 

Source 

Channel 

Coding 

Soruce 

Decoding 

Coding Decoding 
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Amount of information 

 Amount of Information: 
Defined by statistical property of an overall set not by individual events. 

 

 Statistical Structure 
 Statistically definable Sets 

=> Memoryless source, Markov source 

 Non-statistical sets and unknown-structured sets 

  

 Unknown-structured information sets 
 Universal Coding 

 Lempel Zip Coding 

 Arithmetic Coding 
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Hierarchical model of codes 

Information Source Receiver 

signal 

Model 

Structure, 

Symbol 

Concept 

Meaning 
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signal 
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Concept 

Meaning 

Intention 

Transmitter Receiver 

Waveform 

coding 

Parametric 

coding 

Recognition 

-based coding 

Intelligent 

Coding 
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What is information 

 Messages which reduce uncertainty 

 Measurement of body temperature 

Prediction whether he caught cold or not is possible. 

 Weather forecast 

Prediction of tomorrows weather is possible. 

 

 Information theory: 

 Measurement of information 

 Higher efficiency and reliability of transmission 
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Properties of information 

 Non-negativity: 
Information amount is non-negative. If probability of the event equals to 
0 or 1, amount of information becomes 0. 

 Events which does surely happen or doesn’t happen, don’t have any 
additional information. The amount of information of these events is 0. 

 To know the events whose probabilities are 0<p<1 bring certain amount of 
information since it reduces ambiguity. 

 

 Monotonic decreasing: 
The more amount of information the less probability the event has. 

 Amount of information is bigger if the event is unexpected. 
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Amount of information: Additivity 

How much is the amount of information, I(pq), of an joint event with 

probability p and q ?,    

where,  

I(p): amount of information of an event with probability p 

I(q): amount of information of an event with probability q 

 

     I(pq) = I(p) + I(q) 

 

means, 

amount of information is same if given once or one by one. 
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Amount of information 

 Only function form which satisfies the above three properties is, 

   

 

  Now, I(P) is defined as amount of information. 

 

 Units of amount of information 

           [bit] 

                       [nat] 

                       [dit] or [Hartley] 
 

 If p=0.5, I(p) is maximum. -> only valid for the average case! 

 Amount of information by [bit] represents average number of [yes/no] questions to 
know what event has happened. 

 

 

).log()( ppI 

)(log2 p

)(log pe

)(log10 p
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What is coding? 

 Binary coding of the decimal digits. 

 Message Symbols: 

  0,1,…,9 

 Code word: 

      0000,0001,0010,… 

 Backward decoding is straight-

forward in this example. 

 

Decimal 

number 

Binary 

representation 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 
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What is coding ? 

 A binary code. 

 Backward decoding is NOT 

straightforward. 

 111001 can be generated by 

“S4S3” and “S4S1S2” 

Message 

Symbols 

Binary 

representatio

n 

s1 0 

s2 01 

s3 001 

s4 111 
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What is coding ? 

 Another binary code 

 Use “0” as a separator. 

 Backward decoding is unique and 

straightforward. 

 
Message 

Symbols 

Binary 

representation 

s1 0 

s2 10 

s3 110 

s4 1110 
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One problem in coding 

 Weather in San Francisco 

 Code alpha: 

 Two binary digits are used. 

 “Sunny, Foggy, Foggy, Cloudy,” 

comes to “00111101”. 

 Two binary digits are necessary 

to backward decoding. 

 

Message 

Symbols 

Binary 

representation 

Sunny 1/4 

Cloudy 1/4 

Rainy 1/4 

Foggy 1/4 

Message 

Symbols 

Codes 

Sunny 00 

Cloudy 01 

Rainy 10 

Foggy 11 
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One problem in coding 

 Weather in Los Angels 

 Code beta: 

 Two binary digits are used. 

 Probabilities are non-uniform 

 “Sunny,Smoggy,Smoggy, Cloudy” 
comes to “1000110”. 

 Waiting for 0 is necessary to backward 
decoding. 

 Average code length = 1 7/8  
            < 2 binit. 

Message 

Symbols 

Binary 

representation 

Sunny 1/4 

Cloudy 1/8 

Rainy 1/8 

Smoggy 1/2 

Message 

Symbols 

Codes 

Sunny 10 

Cloudy 110 

Rainy 1110 

Smoggy 0 

messagebinits

SmoggyRainyCloudySunnyL

/
8

7
1

2

1
1

8

1
4

8

1
3

4

1
2

)Pr(1)Pr(4)Pr(3)Pr(2









2012/10/24 Prof. Satoshi Nakamura 33 

Amount of information 

 TV: Black, white, and gray dots, with roughly 500 rows and 600 columns. 

Namely 500x600=300,000 dots may take on any one of 10 distinguishable 

brightness levels. (p= 1/10 300,000) 

 

 

 Radio: 10,000 words vocabulary announcer selects 1,000 words randomly. 

  (p= 1/10,000 1,000) 

 

 

 

 TV picture is worth more 1,000 words. 

bitsEI 61010log000,300)( 

bitsEI 4103.1000,10log000,1)( 
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Average amount of information 

 Amount of information is defined by, 

 

 Average amount of information of the information source A is 

defined by,  

 

 

and, H(A) satisfies,        

 

 

 

Entropy = Average amount of information  

).log()( ppI 

)(log)()()()( 2

11

i

n

i

ii

n

i

i ePePeIePAH 




nAH 2log)(0 

(bit). 
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Entropy 

 Entropy represents ambiguity of the information source.  

When one message ei is received, ambiguity of the information 

H(A) is decreased.  

This amount of decrease is equivalent to the amount of 

information of the message ei. 
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Properties of Entropy 

 Now we have source alphabet {0,1}, and 

 

 

Entropy function is like, 

.1)1(,)0(   PP
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Amount of information for multiple events 

 Amount of information for multiple events can be defined by the decrease of the 
Entropy. 
Now let P(ai) be a prior probability of a message  ai, and P(ai|bi) be a posterior 
probability of ai given a message bi. A prior Entropy of information source A is defined 
by,  
 
 
 

    and, a posterior Entropy of information source A given a message bj is defined by,  
 

 

 

Therefore,   
 Amount of information of multiple events  
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Conditional Entropy 

 Conditional Entropy is expectation of H(A|bj). 

 

 

 

 

 And following inequality holds, 
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Mutual Information 

 Amount of information of multiple events  

      

 

 What is an amount of information if we know information source B not 

a single message of bj of B. 

 

 

 

 

 

I(A;B) is called “Mutual Information”. 
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Joint Entropy 

 Entropy of joint information source A and B is defined by, 
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Mutual Information 

 Mutual Information I(A;B) holds, 
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Mutual Information (example) 

 Initial Entropy of A, H(A) is, 

 

The winning rate after we know he plays a game becomes 0.6. The Entropy H(A|bi) is, 

 

Entropy increases by knowing the information of bi.  

If we know he doesn’t play, the winning rate is 0.93. This time, Entropy decreses. 

 

Now mutual information is, 

 

A    B Play (b1) Not Play(b2) P(ai) 

Win(a1) 0.42(0.6) 0.28(0.93) 0.7 

Lose(a2) 0.28(0.4) 0.02(0.07) 0.3 

P(bi) 0.7 0.3 1.0 

88.03.0log3.07.0log7.0)( AH

97.04.0log4.06.0log6.0)|( 1 bAH

17.007.0log07.093.0log93.0)|( 2 bAH

009.079.088.0)17.03.097.07.0(88.0

)|()();(



 BAHAHBAI
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ROLE OF SOCIAL MEDIA 
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Credibility Increased information Source 
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NHK 

Portal sites 

Social media 

Academia 

Government 

Commercial TV  

News papers 

http://blogs.itmedia.co.jp/.shared/image.html?/photos/uncategorized/2011/04/07/fig2.gif


Credibility Decreased Information Source 
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NHK 

Portal sites 

Social media 

Academia 

Government 

Commercial TV  

News papers 



Trends of Social Media Users 
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#thousands users  

March June Aug. Oct. Dec. Feb. Mar. ‘11 



Weekly Trends of #users 
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Models for information sources 

Information  

source 

Zero-memory 

information  

source 

With memory 

Information 

source 

Stationary  

Information  

source 

Non-stationary 

information  

source 

Non-ergodic 

information  

source 

Ergodic 

information  

source 

Stationary  

Information  

source 

Non-stationary 

information  

source 
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Models for information sources 

 Zero-memory information source: 

Source alphabets in S={s1, s2, s3,…,sq} are mutually independent and 

independent to alphabets in history. Zero-memory information source is 

completely described by the source alphabet S and their probabilities, 

P(s1),P(s2),..,P(sq). 

 

 Markov information source: 

Probability of the source alphabet Si is described by previous m alphabets. 

If m=1, it is called 1st order Markov Model. Probabilities of the alphabet is 

described by, P(si|sj1,sj2,..,sjm) i=1,2,..q; jq=1,2,..,q. 
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Models of information source 

 Stationary information source: 

Probabilities of the specific source alphabets are invariant to time shift. 

 

 Ergodic information source: 

Observed source alphabet sequence becomes same as a representative one 

with probability 1, when we observe the source alphabet sequence for 

long time. 
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Zero-memory information source 

 Zero-memory information source: 
Successive symbols emitted from the source are 
statistically independent, which is described by source 
alphabet S and the probabilities with which the symbols 
occur: 
 

 An amount of information for one symbol si is, 

 

 An average amount of information for information 
source S is, 

 

 Entropy H(S) of zero-information information source is, 

 

 

Source  si, sj, … 
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Examples 

 Source S; 

 

  

 

 If I(si) is measured in r-ary units, we have 
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Some properties of Entropy 

1 xy lies above  xy ln

1ln  xx
with equality if, and 

only if  x=1 
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Some properties of Entropy 

with equality if, and only if, xi=yi for all i. 

This is called Jensen’s inequality. 
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Some properties of Entropy 
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Properties of Entropy 

 Again, we have source alphabet {0,1}, and 

 

 

Entropy function is like, 
.1)1(,)0(   PP
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Extensions of a zero-memory source 

 Extensions to blocks of symbols.   
For instance, suppose two binary source alphabet case, 00, 01, 10, and 11. 
 

 Definition: 
Let S be a zero-memory information source with source alphabet {s1,s2,…,sq} and 
with the probability of si equal to Pi. Then the n-th extension of S, Sn, is a zero-
memory source with qn symbols                      . 
 
Each  corresponds to some sequence of n of the si. P(    ), the probability 
of     , is just the probability of the corresponding sequence of si’s. That is, if       
corresponds to (si1,si2,..,sin), then P(    )=Pi1,Pi2,…,Pin. 
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Extension of zero-memory source 

 Entropy: 
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Markov Information Source 

 A more general type of information source with q symbols than the zero-memory 

source is one in which the occurrence of a source symbol si may depend on a finite 

number m of preceding symbols. Such a source, mth-order Markov source, is 

defined by giving the source alphabet S and the set of conditional probabilities. 

 

 

 State:  the probability of emitting a given symbol is known if we know the m 

preceding symbols. We call the m preceding symbols as a state of the mth-order 

Markov source. 

qjqiforssssP pjjji m
,,2,1;,,2,1),,,(

21
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Markov information source 

Ergodic Markov source Non-ergodic Markov source 
Non-Stationary 
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Entropy for Markov source 

 If we are in the state specified by (sj1,sj2,…,sjm), then the conditional probability of receiving 
symbol si is P(si/sj1,sj2,..,sjm). The information we obtain if si occurs while we are in state 
(sj1,sj2,..,sjm) is, 

 

 

 

  amount of information per symbol while we are in state (sj1,sj2,…, sjm ) is given by, 

 

 
 

 If we average this quantity over the qm possible states, we obtain the average amount of 
information by a product of the above entropy and steady state probability , namely  the 
entropy of the mth-order Markov source S. 
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Entropy of Markov source 

 Entropy of mth-order Markov source is given by, 

 

 

 

 

 

 

 

 

 

 

 If S is zero-memory source, 
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Example 

Probabilities for the Markov source  
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Adjoint source 

 Definition: Let S={s1,s2,…,sq} be the source alphabet of an mth-order 

Markov source, and let P1,P2,…,Pq be the first-order symbol probabilities 

of the source. The adjoint source to    , written     , is the zero-memory 

information source with source alphabet identical with that of S, and with 

symbol probabilities P1,P2,…,Pq, 

here the following relationship holds, 

 

SS

).()( SHSH 
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Adjoint source 

 Let S be a 1st order Markov source, 

 

 

By applying Jensen’s inequation, 
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Extension of a Markov source 

 Definition: Let S be an mth-order Markov information source with source 

alphabet (s1,s2,…,sq) and conditional symbol probabilities P(si/sj1,sj2,…,sjm). 

Then the nth extension of S, Sn, is a      th-order Markov source with qn 

symbols,                   . Each       corresponds to some sequence of n of the 

si, and the conditional symbol probabilities of     are                              .  

      is given by                  , here [ ] is a minimum integer number bigger 

than m/n. Entropy is given by, 
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Extension of a Markov source 

 Example: 
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Adjoint source of extended Markov source 

 Adjoint source of extended Markov source,     . 

Let                                  be the first-order symbol probabilities of the      symbols 

of the nth extension of the first-order Markov source. Since       corresponds to the 

sequence                   , we see that           may also be thought of as the nth-order 

joint probability of the     . 

 

 

 

 

 

If S is a first-order Markov source. 
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Adjoint source of extended Markov source 

m
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This inequality becomes less important as n becomes larger. 

For larger n, the Markov constraints on the symbols from Sn  becomes  

less and less important. The adjoint of  the nth extension of  S is not the  

same as the nth extension of  the adjoint of  S. 

If         is a zero-memory source, S
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Example 

Probabilities for the Markov source  
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Examples 
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Example: English 

 27 symbols: 26 alphabets + space 
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Example: English 

 1st order Markov source: 

 

 

 

 

 

 

 

 2nd order Markov source 
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Example: English 

 Word-based zero-memory source 

 

 

 

 

 

 Word-based 1st order Markov source 

 

 

 



2012/10/24 Prof. Satoshi Nakamura 76 

Estimation of parameters of Markov source  

 Estimation of P(si/sj) from samples emitted from 

the information source. 

 

 

 

 

 

 

 

 

 
Regular 1st order Markov source Non-regular 1st order Markov source 
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Estimation of parameters of Markov source 

 The state transition sequence of the Markov source associated the emitted output symbols is 

uniquely determined. We maximize the following probability P, if P is a joint probability of N 

observed samples. 

 

 

 ,where             are initial and final state probabilities, respectively. PA(a)=P(a|a) is conditional 

probability of state transition.  

Now find conditional probabilities which maximize log P under the following  

constraints by the Lagrangean method. 

 

 

The optimal conditional probabilities are given by, 
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Estimation of parameters of Markov source 

 The Lagrangean Method: 

 

Our aim is to maximize the above objective function under  constraints 

of                                          .  For simplicity, we maximize the Q=log P function 

instead. 

 

By taking  derivative for each parameter, now we have, 
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Estimation of parameters of Markov source 

 

 

 These are nothing but a relative frequencies of symbols sequences observed 

through state sequences. Now let NA be a frequency of state A and NA(b) a 

frequency of the symbol b produced at state A. 

p(b|a) can be calculated by, 

 

 

 Let P(A,a) be a joint probability of symbol a produced at the state A, and P(A) be 

a probability of state A. 
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State transition matrix 

 Definition: Matrix representation of conditional probabilities. 

 

 

 Let P(a),P(b) be state transition matrices for symbol a and b,  and let A, W0=[1,0], WF=[1,1] 

be an initial state, an initial state probability and a final state probability. 

  

 

 

 

 Now we can calculate a probability for the observed symbols with arbitrary length.  
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State transition matrix 

 Limit distribution: Let W0 be an initial state probability vector with an initial 

probability        at state i, time n=0, and let P and 

                                  be a state probability vector at state j, time n. 

Limit distribution is given by, 
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Regular Markov source 

 Definition: 

 Pn converges to an unique matrix       as n becomes large. 

 Each column vector converges to an unique state probability vector  

      , where each element is positive. 

 Steady state distribution exists uniquely and is equal to          . 

 Steady state distribution is Z=(z1,z2,…,zk), which satisfies, 

 

 

 

 Example: 

The steady state vector is, 
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Example 
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Example 

 Entropy of the extended Markov source is, 
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Hidden Markov information source 

 Information source with k symbols can be represented by nth Markov source with kn 

states. 

If we merge states which have similar behavior, we can have a non-deterministic 

automata. This is called a hidden Markov source model.  

The hidden Markov source model doesn’t have unique state sequence for the 

observed symbol sequence. 
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Hidden Markov source 

 Definition: Non-deterministic probabilistic automata or Markov source model. 

The unique state sequence cannot be obtained by observed symbol sequences. 

 

 

 

 

 

 If we let an initial state be q1, an final state be q3, the symbol sequence abab can be 

produced by the following state sequences. 
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Hidden Markov source 

P(Q1) can be calculated by 

 

Now we have, 

 

 [Forward calculation]: Now let the observed symbol sequence for the source,  

 

 We try to estimate probability of P(X|M) assuming a hidden Markov information 

source. An initial and final probabilities holds, 
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Probability of observed symbol sequence 

 The probability of the observed symbol sequence x on the model M is given by, 

 

 

 

 

Now we apply 1st order Markov assumption,  
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Hidden Markov source 

 Now let                       be probabilities of the initial state, the probability of 

observed symbol sequence given the model is, 

 

 

 

and, let forward probabilities in the following, 
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Probability of observed symbol sequence 

 If we apply a forward probability     , 

 

 

 

 

 

 and if we apply a backward probability     , 
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Trellis calculation 

 Three paths: 

abc+dec+dfg    (state No. 

time) 

Node No. path 

N1 a 

N2 d 

N3 ab+de 

N4 df 

N5 (ab+de)c+dfg 

=abc+dec+dfg 













(0,1) 

(1,1) 

(1,2) 

(2,2) 

(2,3) 
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Parameter estimation of HMM source  

 State transition sequence cannot be determined uniquely in the HMM while the 
symbol sequence is observed. Once number of transitions between states is 
obtained, state transition probabilities and emission probabilities can be estimated 
easily.  
 

 EM (Expectation and Maximization) algorithm: 
Iterative algorithm for parameter estimation.  

 Expectation Step: 
Find state sequence to observed sequence based on the assumed HMM model 
parameters. 

 Maximization Step: 
Estimate HMM parameters along the state sequences,  which maximize the 
probability to observed symbol sequence. 

 

,here HMM parameters include state transition parameters and emission parameters. 
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EM algorithm 

 Leonard Baum proved the following important inequation. 

 

,where       is an assumed HMM parameter set,        is an estimated HMM parameter set by 

EM algorithm. 

 Let A={ai} be a state sequence estimated by the observed symbol sequence. We 

modify the objective function as follows, 

 

 

by taking logarithm, 
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EM algorithm 

If we substitute (4) with (3), 

 

 

 

 

Now we recall Jensen’s inequality. 

 

 

 

 

Apply Jensen’s inequality to the second term in the right side . 
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EM algorithm 

Now we have, 

 

 

If we set 1st term in right side to be as follows,  
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Equation (5) holds, 
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EM algorithm 

 In summary, 

 

 

 

 

 

 

 

 

 

 

 If equation (7) holds, we obtain parameters which satisfy,  
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Parameter estimation by EM algorithm 

 As in the previous slides, parameter estimation can be achieved by 

maximizing                       . 

 

 

 

 

   , where               can be calculated using parameter     .  

 

 Numerator of               is a joint probability of events of observing X and state 

sequence ak. 

  Denominator of          is a probability of observing X based on the HMM. 
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Parameter estimation by EM algorithm 

 Now, we have               by counting state transitions along the state sequence ak. 

 

 

 

 ,where cij and dij are counts of state transition aij and bij(xt), respectively. 

Then E can be re-written by, 
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Parameter estimation by EM algorithm 

 This is nothing but a probability function of a Markov source. Thus we can obtain 

parameters by maximization of E, with             .  

 

For aij,                         can be thought as a relative counts of the state transition 

from state i to state j. Thereby, we have, 
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Parameter estimation of HMM source 

 First we define backward probability          , which is a probability at state qi, time=t 

emitting xi, xi+1,xt+2,…,xI.. This probability can be efficiently calculated from the 

final symbol.  

 

 Initial setting: 

 

 Iteration of backward path: 

 

 

 

 The following relationship holds. 
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Parameter estimation of HMM source 

 Let               be  an emission probability producing xt during a transition from state 

qi to qj. Now                can be calculated using  

            and             . 

 

 

 

 Here,                represents a probability (relative transition counts) producing xt 

during a transition from state qi to state qj assuming an HMM                         .  
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Parameter estimation of HMM source 

 Now we have the following estimation formulae. 
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Parameter estimation of HMM 

 The calculations above will be iterated until its convergence. Also parameter 

estimation will be applied not to a single observation but to many symbol 

observations like, 

 

 

 

      represents a probability that information source produces a symbol xi during a 

state transitions from state qi to qj, assuming the symbol sequence x is observed 

regardless to the state sequences. 

At least the calculation for        is the same as that of the Markov source model. 
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Entropy for HMM source 

 Let Entropy per one symbol at a state qj is given by, 

 

 

 

 

 

 We obtain Entropy for the HMM taking expectation over all states.  

 

 

 

,where             is steady state probabilities for the HMM states. 
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An example  

 Estimate HMM parameters based on observed symbol sequence “ba”. 

 

 Step 1: 
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An example 

 Step 2: 
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Now we have Entropy for the HMM, 
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An example 

 Step 3: Parameter estimation of the HMM. 
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An example 

 There is another way of estimation using 
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An example 
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An example 

)21(0.0)|(

)20(0.10.19545.00.10455.0)|(

)19(9766.09950.09580.05574.00420.0)|(

)18(0234.00050.09580.04426.00420.0)|(
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
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AaP
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An example 
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Some properties of codes 

 Definition: Let the set of symbols comprising a given alphabet be called 

S={s1,s2,…,sq}. Then we define a code as a mapping of all possible sequences of 

symbols of S into sequences of symbols of some other alphabet X={x1,x2,…,xr}. 

We call S the source alphabet and X the code alphabet. 
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Classification of coding 

Non-block 

 code 

Block 

 code 

Singular 

 code 

Nonsingular 

 code 

Uniquely 

 undecodable 

 code 

Uniquely 

 decodable 

 code 

Noninstantaneous 

 code 

Instantaneous 

 code 
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Block code 

 Definition: A block code is a code which maps each of the symbols 

of the source alphabet S into a fixed sequence of symbols of the 

code alphabet X. These fixed sequences of the code alphabet 

(sequences of xj) are called code words. We denote the code word 

corresponding to the source symbol si by Xi. Note that Xi denotes a 

sequence of xj’s.  

Source symbols code 

S1 0 

S2 11 

S3 00 

S4 01 
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Nonsingular block code 

 Definition: A block code is said to be nonsingular if all the words of 

the code are distinct.  

 

 

 

 

 

 

 

 

 

It is still possible for a given sequence of code symbols to have an 

ambiguous origin. For example, the sequence 0011 might represent 

either s3s2 or s1s1s2. 

 

Source symbols code 

S1 0 

S2 11 

S3 00 

S4 01 
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Extension of block code 

 Definition: The nth extension of a block code which maps the 

symbols si into the code words Xi is the block code which maps the 

sequences of source symbols (si1, si2, …, sin) into the sequences of 

code words (Xi1,Xi2,…,Xin). 

Source symbols code Source symbols code 

S1S1 00 S3S1 000 

S1S2 011 S3S2 0011 

S1S3 000 S3S3 0000 

S1S4 001 S3S4 0001 

S2S1 110 S4S1 010 

S2S2 1111 S4S2 0111 

S2S3 1100 S4S3 0100 

S2S4 1101 S4S4 0101 
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Uniquely decodable code 

 Definition: A block code is said to be uniquely decodable if, and only if, the 
nth extension of the code is nonsigular for every finite n. 

 

 Any two sequences of source symbols of the same length are distinct 
sequences of code symbols, if the code is uniquely decodable.  

 

 Two sequences of the different length should also be distinct, if the code 
is uniquely decodable.   
 

 Suppose we have source symbol sequences S1 and S2 which lead to the 
same sequence of code symbols, Xo, and  S1 and S2 may be sequences of 
source symbols of different lengths.  
Now let us form two new sequence source symbols, S1’ and S2’, where 
S1’=S2S1, S2’=S1S2. Both of S1’ and S2’ are sequence X0 followed by X0 
with the same length. Thus, the code doesn’t satisfy the condition of 
unique decodability.  
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Instantaneous code  

 Code A  :  This code is uniquely decodable, since all codes have the 
same length and distinct. 

 Code B  :  This code is also uniquely decodable, since it is non-
singular. It is called “Comma code”, which separates code by comma, 
0 in this example. 

 Code C  : This code is also uniquely decodable. However, we are 
not able to decode the sequence, word by word, as it is received. 
We can decode only after receiving 0 of the next code word. 

Source symbol Code  A  Code B Code  C 

S1 00 0 0 

S2 01 10 01 

S3 10 110 011 

S4 11 1110 0111 
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Instantaneous code 

 Definition: A uniquely decodable code is said to be instantaneous if it 
is possible to decode each word in a sequence without reference to 
succeeding code symbols. 

 

 Code A and code B are instantaneous. However, code C is not 
instantaneous. A more general method to know whether 
instantaneous or not would be helpful. 

 

 Definition: Let Xi=xi1xi2…xim be a word of some code. The 
sequence of code symbols (xi1xi2…xij), where            , is called a 
prefix of the code word Xi.   

 

 Ex. 0,01,011,0111 are prefixes of 0111. 

 

 

mj 
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Instantaneous code 

 A necessary and sufficient condition for a code to be instantaneous 

is that no complete word of the code be a prefix of some other 

code word,. 

 Sufficient part:  

 If no word is the prefix of some other word, we may decode any 

received sequence of code symbols comprised of code words in a 

direct manner. 

 We scan the received sequence of code symbols until we come to a 

subsequence which comprises a complete code word.  

 The subsequence must be this code word since by assumption it is 

not the prefix of any other code word. 
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Instantaneous code 

 Necessary part:  

 We assume that there exists some word of our code, say Xi, which is 

also a prefix of some other word Xj. 

 Now, if we scan a received sequence of code symbols and come upon 

the subsequence Xi, this subsequence may be a complete word, or it 

may be just the first part of word Xj.  

 We cannot possibly tell which of these alternatives is true, however, 

until we examine more code symbols of the main sequence-thus the 

code is not instantaneous. 

Non-block 

 code 

Block 

 code 

Singular 

 code 

Nonsingular 

 code 

Uniquely  

 undecodable code 

Uniquely 

decodable code 

Noninstantaneous 

 code 

Instantaneous 

 code 
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Construction of an Instantaneous code 

 Example code synthesis: 

 Assign 0 to symbol s1: 

 If we assign 1 to symbols s2, this would  

leave us with no symbols. we might have,  

 This, in turn, would require us to start  

remaining code words with 11. If , 

 then the only three-binit prefix still unused is 111. 

 And we might set, 

and 

 Other alternatives: 

 If we synthesize another binary instantaneous code. 

 Then we may set. 

  We still have two prefixes of length 2 unused. 

01 s

102 s

1103 s

11104 s

11114 s

001 s

012 s

103 s

1104 s

1115 s
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Kraft inequality 

 Constraints on the size of words of an instantaneous code. 

Consider an instantaneous code with source alphabet, 

 

 and code alphabet X={x1,x2,…,xr}. Let the code words be 

X1,X2,…,Xq and define the length (number of code symbols) of 

word Xi as li. It is often desirable that the lengths of the code words 

of our code be as small as possible. Necessary and sufficient 

conditions for the existence of an instantaneous code with word 

lengths l1,l2,…,lq are provided by the Kraft inequality. 

 Kraft inequality: A necessary and sufficient condition for the 

existence of an instantaneous code with word lenghts l1,l2,…,lq is 

that 

 

 where r is the number of different symbols in the code alphabet. 
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Kraft inequality 

12
1





q

i

li

 For the binary case, the Kraft inequality tell us that the li 

must satisfy the equation. 

 

Source symbols Code A Code B Code C Code D Code E 

S1 00 0 0 0 0 

S2 01 100 10 100 10 

S3 10 110 110 110 110 

S4 11 111 111 11 11 
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Kraft inequality 

 Code A: 

 Kraft inequality does not tell that code A is an instantaneous code. 
The inequality is merely a condition on the word lengths of the 
code and not on the words themselves. 

 Code B: 

 

 Code C: 

 

 Code D: 

   Code D is not an instantaneous code. 

 

 Code E: 
Code E is not an instantaneous code. 
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One more example 

 Suppose we wish to encode the outputs of a decimal source, 
S={0,1,2,…,9}, into a binary instantaneous code.  
Suppose there is some reason for encoding the 0 and 1 symbols of the decimal 
source into relatively short binary code words.  
If we were to encode 0s and 1s from the source as, 
 
 
 

 If we require all these eight code words to be of the same length, say l, the Kraft 
inequality will provide us with a direct answer to the equation. 
 
 

 
By assumption we have l0=1,l1=2, and l2=l3=…=l9=l. Then, 
 

 or 
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The Kraft inequality - Proof 

 First we prove that the inequality is sufficient for the existence of 

an instantaneous code by actually constructing an instantaneous 

code, satisfying 

 

 (1) can be written as, 

 on multiplying by rL, 

 

 rearranging terms, 

 

 

 dividing by r, 

iterate the operation, 
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The Kraft inequality - Proof 

 Steps:  

 We assign n1 word of length 1. 

 There are r possible such words that we may form, using an r-symbol 

code alphabet. 

 We can select these n1 code symbols arbitrarily, 

 We are then left with r-n1 permissible prefixes of length 1. 

 By adding one symbol to the end of each of these permissible 

prefixes, we may form as many as, 

words of length 2.  

 As before, we choose our n2 words arbitrarily 

among our r2-n1r choices, we are left with, 

 unused prefixes of length 2, from which we may form 

permissible prefixes of length 3. 
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McMillan’s inequality 

 Proof for the necessity conditions for uniquely decodable codes ? 

 Consider the quantity, 
we have qn terms, each terms of 
 

If we let L be the maximum of the word length li.  

 We define Nk as the number of terms 
 of the form r-k, then, 

 Nk is also the number of strings of n code words that can be formed 
so that each string has a length of exactly k code symbols.  

 If the code is uniquely decodable,  
Nk must be no greater than rk, the  
number of distinct r-ary sequences 
 of length k. Thus, we have 

 Bernulli’s inequality:  
For x>1, n is arbitrarily large,                 holds. 
Considering this inequality and equation (*), 
we can prove, 
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Example 

 Assume we wish to encode a source with 10 source symbols into a trinary 

instantaneous code with word length 1,2,2,2,2,2,3,3,3,3. 

Applying the test of the Kraft inequality, we have,  

 

 

 

This doesn’t satisfy the inequality. 

 Assume we with to encode symbols from a source with nine symbols into 

a trinary instantaneous code with lengths 1,2,2,2,2,2,3,3,3. Applyint the 

test of the Kraft inequality, we have, 

We show the example. 

1
27

28

27

1
4

9

1
5

3

1
3

10

1

























i

li

1

27

1
3

9

1
5

3

1
3

9

1

























i

li

222,221,220

,21,20,12

,11,10,0

987

654

321







sss

sss

sss



2012/10/24 Prof. Satoshi Nakamura 133 

Coding information sources 

 For a given source alphabet and a given code alphabet, however, 

we can construct many instantaneous codes forces us to find a 

criterion by which we may choose among the codes. 

Perhaps the natural criterion for this selection, although by no 

means the only possibility, is length. 

 

 Definition: Let a block code transform the source symbols 

s1,s2,…,sq into the code words X1,X2,..,Xq. Let the probabilities of 

the source symbols be P1,P2,…,Pq, and let the lengths of the code 

words be l1,l2,…,lq. Then we define L, the average length of the 

code, by the equation 
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Coding information source 

 Average length and Entropy: 

Definition: Consider an instantaneously decodable code which 

maps the symbols from a source S, s1,s2,…,sq with probabilities 

P1,P2,…,Pq  into code word composed of symbols from an r-ary 

code alphabet.  We have the following relationships. 

 

 

 Compact code: 

Definition: Consider a uniquely decodable code which maps the 

symbols from a source S into code word composed of symbols 

from an r-ary code alphabet. This code will be called compact  

(for the source S) if its average length is less than or equal to the 

average length of all other uniquely decodable codes for the same 

source and the same code alphabet. 
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Compact code 

 Proof of the relationship: 

 Consider a zero-memory source S, with symbols s1,s2,…,sq and symbol 

probabilities P1,P2,…,Pq, respectively. Let a block code encode these 

symbols into a code alphabet of r symbols, and let the length of the 

word corresponding to si be li. Then the entropy of this zero-memory 

source is, 

 

 Let Q1,Q2, …,Qq be any q numbers such that           for all if and 

 By the Jensen’s inequality, we know that 

 

 

with equality if and only if Pi=Qi for all i. Hence, 
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Compact code 

 Equation is valid for any set of nonnegative numbers Qi which sum 

to 1. We may choose, 

 

 

 

 We obtain, 
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Compact code 

 A method of encoding for special source. 

Considering eqns. (1)(2), a condition for equality in the last 

inequality is, 

 

 

 Then we see that a necessary and sufficient condition for equlality is, 
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Compact code 

 We may say that, for an instantaneous code and a zero-memory 

source, L must be greater than or equal to Hr(S). Furthermore, L 

can achieve this lower bound if and only if we can choose the word 

lengths li equal to logr (1/Pi) for all i. For the equality, therefore,  

log r (1/Pi) must be an integer for each i. 

 

 In other words, for the equality the symbol probabilities Pi must all 

be of the form (1/r)ai, where ai is an integer.  

Note that if these conditions are met, we have derived the word 

lengths of a compact code. We simply choose li equal to ai. 
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Compact code 

Source symbol Symbol prob. code 

S1 1/2 0 

S2 1/4 10 

S3 1/8 110 

S4 1/8 111 
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Example: Compact code 

Source symbol Symbol prob. code 

S1 1/4 00 

S2 1/4 01 

S3 1/4 10 

S4 1/4 11 

Source symbol Symbol prob. code 

S1 1/2 0 

S2 1/4 10 

S3 1/8 110 

S4 1/8 111 
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Example: Compact code 

Source symbol Symbol prob. code 

S1 1/3 0 

S2 1/3 1 

S3 1/9 20 

S4 1/9 21 

S5 1/27 220 

S6 1/27 221 

S7 1/27 222 
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Shannon’s first theorem 

 We now turn to zero-memory source with arbitrary symbol probabilities. 

 Equation (4-9b) tells us that if logr (1/Pi) is an integer, we should choose 

the word length li equal to this integer. If log r (1/Pi) is not an integer, it 

might seem reasonable that a compact code could be found by selecting 

 li as the first integer greater than this value. This tempting conjecture is, in 

fact , not valid, but we shall find that selecting li in this manner can lead to 

some important results. 

 

 

 First, we check to see that the word lengths satisfy the Kraft inequality. 

 

 

 Summing (4-11) over all i, we obtain, 
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Shannon’s first theorem 

 If we multiply (4-10) by Pi and sum over all i, 

 

 In this way, if we construct the code in the way of  (4-10),  we can have 

the lower and upper bounds of L. This is valid for any zero-memory 

source, we may apply it to the nth extension of our original source S. 

 

 Ln represents the average length of the code words corresponding to 

symbols from the nth extension of the source S. If      is the length of the 

code word corresponding to symbol      and,           is the probability 

of       , then 

 

 Ln/n is the average number of code symbols used per single symbol from 

S.  
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Shannon’s first theorem 

 It is possible to make Ln/n as close to Hr(S) as we wish by coding 

the nth extension of S rather than S: 

 

 

 

 Equation (4-15a) is known as Shannon’s first theorem or the 

noiseless coding theorem. The price we pay for decreasing Ln/n is 

the increased coding complexity caused by the large number (qn) of 

source symbols. 
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Shannon’s first theorem for Markov source 

 We define the first-order Markov source S, with source symbols 

s1,s2,…,sq and conditional symbols probabilities P(si/sj). We also 

define Sn, the nth extension of S, with symbols                    , 

and conditional symbols probabilities P(        ). We refer to the first-

order (unconditional) symbol probabilities of S and Sn as Pi and 

P(       ), respectively.  

 

 The process of encoding the symbols s1,s2,…,sq into an 

instantaneous block code is identical for he source S and its adjoint 

source     . If the length of the code word corresponding to si is li, 

the average length of the code is, 
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Shannon’s first theorem for Markov source 

 The average length is identical for S and     since Pi, the first-order 
symbol probability of si, is the same for both these sources.  
      is a zero-memory source, and we have, 
 

 This inequality may be augmented to read, 
 

 and, 

 If we now select the li according to  (4-10), we may bound L above 
and below (4-12), 
 

 for the extended source, 

 using (2-41) and dividing by n, 
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Coding without extensions 

 Shannon’s theorem shows the bound above and below considering 

its extension. The theorem doesn’t tell us what value of L (or Ln/n) 

we shall obtain. It doesn’t guarantee that choosing the word lengths 

according to (4-10) will give us the smallest possible value of L ( or 

Ln/n) it is possible to obtain for that fixed n. 

Source symbol Pi Log 1/Pi li Code A Code B 

S1 2/3 0.58 1 0 0 

S2 2/9 2.17 3 100 10 

S3 1/9 3.17 4 1010 11 
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Binary Compact Codes – Huffman Codes 

 A compact code for a source S is a code which has the smallest average 
length possible if we encode the symbols from S one at a time. We 
develop a method of constructing compact codes for the case of a binary 
code alphabet. 

 

 Consider the source S with symbols s1,s2,…,sq and symbol probabilities 
P1,P2,…,Pq.  Let the symbols be ordered so that                     . By 
regarding the last two symbols of S as combined into one symbol, we 
obtain a new source from S containing only q-1 symbols.  
We refer to this new source as a reduction of S.  

 

 The symbols of this reduction of S may be reordered, and again we may 
combine the two last least probable symbols to form a reduction of this 
reduction of S. By proceeding in this manner, we construct a sequence of 
sources, each containing one fewer symbol than the previous one, until we 
arrive at a source with only two symbols. 

qPPP  21



2012/10/24 Prof. Satoshi Nakamura 149 

Huffman codes 

0.04 s6 

0.1 0.06 s5 

0.1 0.1 0.1 s4 

0.3 0.2 0.1 0.1 s3 

0.4 0.3 0.3 0.3 0.3 s2 

0.6 0.4 0.4 0.4 0.4 s1 

S4 S3 S2 S1 Prob. Symbols 

Original Source                                                                                                                      Reduced Source 

 Construction of a sequence of reduced sources is the first step in the 
construction of a compact instantaneous code for the original source S. 

 The second step is merely the recognition that a binary compact 
instantaneous code for the last reduced source ( a source with only two 
symbols) is the trivial code with the two words 0 and 1. 

 The final step is to construct a compact instantaneous code for the source 
immediately preceding the reduced source in the sequence of reduced 
sources. 
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Huffman codes 

1
5

1




i

i

ilPL

8113.0
1

log
5

1


 ii

i
P

PH

Huffman codes for two symbols 
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Huffman codes 

 We assign to each symbol of Sj-1 (sa0 and sa1) the code word used by the 

corresponding symbol of Sj. The code words used by sa0 and sa1 are 

formed by adding a 0 and 1, respectively, to the code word used for sa. 

 

 There are another possibilities to decompose a reduced source in code S3 

and S1. 

 

Synthesis of a compact code 

0.1 

0.2 

0.3 
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00 
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Code 
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00 

1 

Code 

0.04 

0.06 
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Prob. 

s6 
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s4 

s3 
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s1 

symbols 

011 

01 0.3 010 

1 0.4 00 0.3 00 

0 0.6 1 0.4 1 

Code 4 Code S3 Code 
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Huffman codes 

 There are three choices in S1. If we choose the fist one, we obtain a code 

with word lengths , 

   1, 2, 4, 4, 4, 4. 

If we choose the second or third, we obtain, 

   1, 2, 3, 4, 5, 5. 

Synthesis of compact codes 
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Huffman codes 

 Two codes have the same average code lengths. These are shortest 

average length codes that can construct. 

symbolbinitsL

symbolbinitsL
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Proof of Huffman codes 

 Assume that we have found a compact code Cj for some reduction, say Sj, of 

an original source S. Let the average length of this code be Lj.  

 One of the symbols of Sj, say sa, is formed from the two least probable 

symbols of the preceding reduction Sj-1. Let these two symbols be sa0 and sa1, 

and let their probabilities be Pa0 and Pa1, respectively.  

 The probability of sa is then Pa=Pa0+Pa1. Let the code for Sj-1 formed 

according to rule (4-24) be called Cj-1, and let its average length be Lj-1. 

 Lj-1 is easily related to Lj since the words of Cj and Cj-1 are identical except 

that the (two) words for sa0 and sa1 are one binit longer than the (one) word 

for sa. Thus we know that 

 

 

 What we want to show is if Cj is compact, then Cj-1 must also be compact. In 

other words, if Lj is the smallest possible average length of an instantaneous 

code for Sj, then Lj-1 is the smallest possible average length for Sj-1. 
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Proof of Huffman codes 
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Proof of Huffman codes 

 A proof by demonstrating that assuming the contrary leads to a contradiction. 

 Assume that we have found a compact code for Sj-1 with average length              . 

Let the words of the code be                      with lengths                  respectively.  

We assume that the subscripts are ordered in order of decreasing symbol 

probabilities so that, 

 

 

 One of the words of this code (call it       ) must be identical with       except in its 

last digit. If this were not true, we could drop the last digit from       and decrease 

the average length of the code without destroying its instantaneous property.  

 Finally, we form      , a code for Sj, by combining      and       and dropping their 

last binit while leaving all other words unchanged. This gives us an instantaneous 

code for Sj with average length    , related     by 
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Proof of Huffman codes 

 If we compare the last equation to (4-25), we see that our assumption          

 

 implies that we may construct a code with average length  

 

 This is the contradiction we seek since the code with average length Lj is compact. 

 

 Two properties of Huffman codes. 

 If the probabilities of the symbols of a source are ordered so that  

 

 , the lengths of the words assigned to these symbols will be ordered so that, 

 

 The lengths of the last two words ( in order of decreasing probability) of a compact 

code are identical: 

 

 If there are several symbols with probability Pq, we may assign their subscripts so that 

the words assigned to the last two symbols differ only in their last digit. 
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r-ary compact codes 

 We would like the last source in the sequence to have exactly r symbols. The last 
source will have r symbols if and only if the original source has r+a(r-1) symbols, 
where a is an integer. Therefore, if the original source doesn’t have r+a(r-1) 
symbols, we add “dummy symbols” with probability 0 to the source until this 
number is reached. 

s7 

Synthesis of compact codes 

102 0.00 (s12 )  

02 0.10 03 0.08 03 0.08 s6 

01 0.10 02 0.10 02 0.10 s5 

3 0.15 00 0.12 01 0.10 01 0.10 s4 

2 0.22 3 0.15 00 0.12 00 0.12 s3 

1 0.23 2 0.22 3 0.15 3 0.15 s2 

0 0.40 1 0.23 2 0.22 2 0.22 s1 
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Code efficiency and redundancy 

 Shannon’s first theorem shows that there exists a common measure for any 

information source. The value of a symbol from an information source S may be 

measured in terms of an equivalent number of binary digits needed to represent 

one symbol from that source. 

Let the average length of a uniquely decodable r-ary code for the source S be L. L 

cannot be less than Hr(s). Accordingly, we define    the efficiency of the code, by 

 

 

 

 It is also possible to define the redundancy of a code.  
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Example – nth extension 

The average length of this code is 1 binit, so the efficiency is, 

 

To improve the efficiency, we might code S2, the second extension of S: 

 

 

 

 

 

 

 

 

 Extending to higher order, 

Huffman codes for two symbols 

Symbols Prob. Code 

S1 3/4 0 

S2 1/4 1 

bitSH 811.0
3

4
log

4

3
4log

4

1
)( 

.811.0

Huffman codes for two symbols 

Symbols Prob. Code 

S1 9/16 0 

S2 3/16 10 

S3 3/16 110 

S4 1/16 111 

985.02 

991.0,985.0 43  
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Example – nth extension 
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Compact codes: Elias codes 

 011  is a point of region [0.375,0.50] .  An initial symbol is A. 

 0110 is a point of region [0.375,0.4375].  The source symbols are AAB. 

 

 Elias code: 

Elias codes is non-block compact codes in contrast to the Huffman codes, which 

are the block codes. This is also called arithmetic codes. 

 

 Elias code assign a sequence of source symbols to a fractional number, which is 

obtained by dividing a number line according to the symbol probabilities. 

2-ary coding 
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Elias code 

 

 

 In Huffman codes it is necessary to consider extension of codes in order to 

improve code efficiency. If the block size is large, it becomes difficult.  

Also in Huffman codes code length should be  an integer number. 

 

 Elias code assigns a sequence of source symbols to one code. It is not necessary to 

calculate all of probabilities of nth extension of symbols and we can decode the 

codes iteratively. 
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Elias code 

 Procedure: 

 Suppose we have binary codes s0 and s1 with probabilities P0 and P1. 

 Divide a region of number line [0,1) according to P0:P1 and make a 

region A0 and A1. A0 corresponds [0,P0), A1 corresponds [P0,1). 

 If a first source symbol, S0 is s0 then choose a region A0, else choose a 

region A1. 

 If S0=s0 and a region A0 is selected, divide a region A0 according to 

P0:P1 and obtain a region A00 and A01.  

Then a next code  S1=s0, then choose a region A00, else A01. 

 Iterate this procedure until the end of the source symbol sequence 

and represent a chosen region with a fractional number, which is 

lower value of the region. 
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Elias code 

 Average code length: The size of the region for symbol sequence SN 

becomes, 

 

where letting number of s0, s1 be N0, N1, respectively.  

 The necessary resolution to represent a point in this region with binary 

fraction number is, 

 

 

 If we take longer source symbol length N,  

 

 

 

 in this way the average code length approaches to the Entropy according 

to the length N. 
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Elias code 

Source symbol 

This figure depicts the process where  

the source symbol sequence 010011.. 

is encoded by the Elias code.  

First a region [0,1) is divided into A0  

A1 according to P0:P1.  

A0 is chosen since a first symbol is 0. 

In this way the subregion is divided 

 and chosen. 
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L-R arithmetic codes 

 Problems of Elias code: 

 Multiplication by a probability per coding one source symbol is necessary. 

Required precision for calculation increases according to N. 

 Coding cannot be started until receiving the last symbol. 

 

 L-R arithmetic code: One approach to solve the problem for binary code. 

 Approximate an inferior symbol probability by 2-Q. 

 Assign a value U of the region [U,V) to the symbol sequence.  

Prevent bit-reverse propagation by carry  introducing bit-stuffing. 

 

 Average code length: 

An average code length of L-R code is given by, 

 

 

 Coding efficiency becomes 1 if an inferior symbol probability is 2-Q. 
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L-R arithmetic code 

 Coding algoritm: 

 Initialization: 

Prepare a register C and a register A with V bits. 

 

 

 

C is an initial code and A is an initial value of the region. 

 

 Coding of source symbol Xi. 

 Divide the register A into A0 and A1 according P0:P1 of the superior symbol 

“0” and the inferior symbol “1”. 

 

 

            (Q: integer, called SKEW) (1) is calculated by right shift and (2) can be 

calculated by A-A1=A0 

 

0...000C

1...111A

)1(11 PAA 

)2(00 PAA 

QP  21
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L-R arithmetic code 

 Code is, 

 

 

 

 

 update the region, 

 

 

 

 

 ,where C represents the lower bound of the chosen region. 

0iX

1iX 0ACC 

If   

If   

C is same as it was. 

0iX 0AA

1iX
1AA

If   

If   
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L-R arithmetic code 

 Decoding algorithm: 

 Initialization: 

  C         copied from the received codes. 

                  A        the initial value set by the coding algorithm 

 

 Decoding: 

 Every time we receive a code, divide the region A. 

 

 

 

 For registers, 

 If C-A0 is negative, keep C as it was and choose source symbol 0. 

          If C-A0 is non-negative, set C       C-A0, and choose source symbol 1. 

Next update A, 

 

 




00 PAA 

11 PAA 



0iX 0AA
1iX

1AA
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Another advantage of L-R arithmetic code 

 We can change a inferior probability, SKEW, according to change 

of a symbol probability. If we use the same SKEW in decoding, we 

can decode in the same way. 
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Coding example by L-R code 

Sym. A A0 A1 Code Output C 

0    1111 1100 0011 0000 

1    1100 1001 0011 1001 

ren. 0011 Shift 2 bit 10     01 

0    1100 1001 0011 10 0100 

0    1001 0111 0010 10 0100 

ren. 0111 Shift 1 bit 100 100 

1  1110 1011 0011 101 0011 

ren. 0011 Shift 2 bit 10100 11 

1     1100 1001 0011 10101 0101 

ren. 0011 Shift 2 bit 1010101 01 

0     1100 1001 0011 1010101 0100 

0     1001 0111 0010 1010101 0100 

ren. 0111 Shift 1 bit 10101010 100 

0   1110 1011 0011 10101010 1000 

1   1011 1001 0010 10101011 0001 

Code string = 101010110001 
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Decoding example of L-R code 

A A0 A1 C Code String Sym. 

   1111 1100 0011 1010 10110001 0 

   1100 1001 0011 0001 10110001 1 

0011 Shift 2 bit 0110 110001 ren. 

   1100 1001 0011 0110 110001 0 

   1001 0111 0010 0110 110001 0 

0111 Shift 1 bit 1101 10001 ren. 

 1110 1011 0011 0010 10001 1 

0011 Shift 2 bit 1010 001 ren. 

    1100 1001 0011 0001 001 1 

0011 Shift 2 bit 0100 1 ren. 

    1100 1001 0011 0100 1 0 

    1001 0111 0010 0100 1 0 

0111 Shift 1 bit 1001 ren. 

  1110 1011 0011 1001 0 

  1011 1001 0010 0000 1 

Decoded symbol string=0100110001 
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Bit-stuffing- L-R code 

(a) Without bit-stuffing 

Code output Register C 

Bit reverse by carry  

already output 

Code output Register C 

Register A0 already output 
Register A0 

Register C 

Register C Register P 

Register P Code output 

Code output 

Bit “0” 

insertion 

(a) With bit-stuffing 

No influence by the bit reverse 



2012/10/24 Prof. Satoshi Nakamura 175 

Coding efficiency of L-R code 

Probability of  an inferior symbol 
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Universal code 

 What is universal code? 

 Coding which can compress source symbols belong to a fixed class, 

optimally or very efficiently. 

 Coding algorithm independent of a prior probabilities of source 

symbols. Or coding algorithm for source symbols which have varying 

probabilities. 

 Three coding algorithms: 

 Adaptive Huffman code 

 Context Modeling 

 Dictionary code 
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Adaptive Huffman code 

 Adaptive Huffman code (1) 

 Algorithm: 

Every time when we receive N source symbols (one block),  update a 

probability table of source symbols and re-synthesis Huffman codes. Then 

send them to the decoder. 

 

 Problems: 

According to the size of a block the size of the probability table seems 

relatively small, however, we cannot send a code until N source symbols. 

It is very inefficient to re-synthesis Huffman code every N symbols. 
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Adaptive Huffman code 

 Adaptive Huffman code (2) 
 Algorithm: 

 Code a source symbols and send the code based on the Huffman codes 
designed by a prior symbol probabilities.  

 Let probabilities of source symbols a0,a1,…,aM-1 at time N-1 be, 
 
 

 If we let a source symbol at time N be a, the code for the symbol is 
synthesized by Huffman codes based on the symbol probability, 
 
 
 

 

 This algorithm doesn’t need to send a probability table of source symbols 
since a decoder can update the probability table simultaneously. 

 Problems: 
In worst case an update of Huffman codes will be necessary for each symbol. 
Higher resolution is necessary according to the size N. 
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Adaptive Huffman code 

 Adaptive Huffman code (3) 

 Algorithm: 

 Update the probability table only when the tree of  Huffman codes changed. The timing 

of the table update is calculated based not on the true symbol probabilities but on the 

following approximated probabilities. 

 

 

 

Normalization in this equation will not be applied in reality. 

 Initialization: 

Synthesize Huffman codes and their tree according to the a prior source symbol 

probabilities. 

 Assign wi to the symbol according to the a prior probability. 

 When we increment one count to wi when receiving the source symbol. 

 If there is a change in the Huffman code tree,  re-synthesize the Huffman code tree 

until it satisfies a Huffman code property. 

 Huffman code property: 

This means that the structure of Huffman codes takes a form of ordered list by 

probabilities. This property is also called “Sibling Property”. 
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Adaptive Huffman code 

 Increment wi when we receive Si={s1,s2,s3,s4} . If the sibling property 

doesn’t hold, re-synthesize a partial Huffman code tree. 

Pi 

s1 
0.5 0.5 0.5 0 

s2 
0.3 0.3 10 0.5 1 

s3 
0.1 110 0.2 11 

s4 
0.1 111 

Wi 

s1 
50 50 50 0 

s2 
30 30 10 50 1 

s3 
10 110 20 11 

s4 
10 111 
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Adaptive Huffman codes 

Symbol S1 S2 S3 S4 

Frequency 10 7 5 3 

If  we receive 10 times S4, how does Huffman tree change? 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 1 10 1 16 0 

S2 7 01 9 00 10 1 

S3 5 000 7 01 

S4 4 001 

#S4 +1 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 1 10 1 17 0 

S2 7 01 10 00 10 1 

S3 5 000 7 01 

S4 5 001 

#S4 +2 
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Adaptive Huffman codes 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 00 11 1 17 0 

S2 7 01 10 00 11 1 

S4 6 10 7 01 

S3 5 11 

#S4 +3 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 00 12 1 17 0 

S2 7 01 10 00 10 1 

S4 7 10 7 01 

S3 5 11 

#S4 +4 
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Adaptive Huffman codes 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 00 12 1 18 0 

S4 8 01 10 00 12 1 

S2 7 10 8 01 

S3 5 11 

#S4 +5 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 00 12 1 19 0 

S4 9 01 10 00 12 1 

S2 7 10 9 01 

S3 5 11 

#S4 +6 
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Adaptive Huffman codes 

Symbol Freq. Code Freq. Code Freq. Code 

S1 10 00 12 1 20 0 

S4 10 01 10 00 12 1 

S2 7 10 10 01 

S3 5 11 

#S4 +7 

Symbol Freq. Code Freq. Code Freq. Code 

S4 11 00 12 1 21 0 

S1 10 01 11 00 12 1 

S2 7 10 10 01 

S3 5 11 

#S4 +8 
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Adaptive Huffman codes 

Symbol Freq. Code Freq. Code Freq. Code 

S4 12 1 12 1 22 0 

S1 10 01 12 00 12 1 

S2 7 000 10 01 

S3 5 001 

#S4 +9 

symbol S4 S4 S4 S4 S4 S4 S4 S4 S4 S4 

Code 001 001 001 001 10 10 01 01 00 1 
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Dictionary code 

 Lempel-Ziv coding: 

Coding algorithm using a dictionary (code table) including source symbol 

sequences had been appeared. 

 Do not require a prior probability distributions of source symbols. 

 Non-block codes as well as the arithmetic code. 

  Compact codes as well as the arithmetic code. 

 

 In this method, coding from a source symbol sequence to a code sequence 

is obtained in the following procedure. 

 1. Retrieval: Look for a source symbol sequence in the dictionary. 

 2. Coding:  Code a source symbol sequence into a code sequence considering 

an order in the dictionary. 

 3. Update: Update the dictionary in the decoding side. 
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LZ77 algorithm 

 Set empty sequence (     ) into the reference buffer. 

 Set a source symbol sequence into coding buffer. 

 Find a max symbol sub-sequence of the source symbol sequence in the 

reference buffer . Here let sub-sequence starting from left most side in the 

coding buffer be U and let sub-sequence with the same symbol sequence in 

the reference buffer be U’.  Let u be a  next symbol of U, and let P be a 

starting address pointer of U’.  Let l be a length of U. 

Now we encode a source symbol sequence into (P,l,u). 

 Shift left by l+1 bit until there will be no source symbol. 

reference coding 


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LZ77 algorithm 

 source symbol sequence “abcabcdef” 

 

source symbol    code   

   a  a 

   b  b 

   c  c 

   a  (-3,3,d) 

   b   

   c 

   d   

   e  e 

   f  f 
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LZ77 algorithm 

 Properties of LZ77 algorithm: 

 LZ77 approaches to the compact code if the buffer length L and Ls become 

large. 

 Sending u as a first mismatched symbol is inefficient. 

If l is very short, the code length is longer than the original source symbol 

length. In this case we just send the original source symbol sequence. 

 Use a fixed length of U.  

Also use the relative address from the left most side of coding buffer or use 

“Recency-Rank” meaning a number of different types of source symbols 

instead of the relative address. 
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LZ78 algorithm 

 LZ78 algorithm: 

Universal coding based on “Incremental parsing”.  

Let the source symbol sequence be, 

 

 Incremental parsing 

  

 is decomposition into a partial code sequence 

 

 The partial code sequence satisfies, 

   

                 are different each other except         . 

 If we take a last symbol       ,                    equals to                           .  

Tuuuu ,...,, 21

110 ,...,,  tUUUu

)10(  tmUm

0U

1tUtUUU ..., 10

)1( tmUm  )10(  msUsmu
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Example 

 Each Um satisfies three properties and Um=Usum. 

We can code the source symbol sequence into           using                      

and um.     

...

101100011010

]11001100001000110011001[

6543210 UUUUUUU



msm uUU 

),( mus )10(  mss
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Example 

Time In Out(s,um) 
Add to 

Table 
Index 

0 0 (-, 0) 0 0 

1 1 (-, 1) 1 1 

2 10 (1, 0) 10 2 

3 01 (0, 1) 01 3 

4 100 (2, 0) 100 4 

5 101 (2, 1) 101 5 

6 1000 (4, 0) 1000 6 

7 010 (3, 0) 010 7 

8 011 (3, 1) 011 8 

Time In Out Add to Table Index 

0 0 0 0 0 

1 1 1 1 1 

2 (1, 0) 10 10 2 

3 (0, 1) 01 01 3 

4 (2, 0) 100 100 4 

5 (2, 1) 101 101 5 

6 (4, 0) 1000 1000 6 

7 (3, 0) 010 010 7 

8 (3, 1) 011 011 8 

Encoder 
Decoder 

]11001100001000110011001[
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Example 

Time In Out(s) 
Add to 

Table 
Index 

0 01 0 01 2 

1 11 1 11 3 

2 10 1 10 4 

3 00 0 00 5 

4 011 2 011 6 

5 100 4 100 7 

6 010 2 010 8 

7 011 2 011 9 

Encoder 

Time In Out 
Add to  

Table 
Index 

0 0 0(?      1 ) ?      01  2 

1 1 1 (?      1 ) ?      11 3 

2 1 1 (?      0) ?      10 4 

3 0 0(?      0) ?      00 5 

4 2 01(?      1 ) ?     011 6 

5 4 10(?      0) ?     100 7 

6 2 01(?      0) ?     010 8 

7 2 01(?      ) ? 9 

Decoder 

Input String Index 

0 0 

1 1 

Initial code table 

Move pointer to the position of  next decomposed code -1. 
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Example 

Time Send New Entry Index 

0 1 (for 0) (a, 0) 3 

1 0 (for 0) (0, 0) 4 

2 4 (for 00) (0,0,b) 5 

3 2 (for b) (b,0) 6 

4 3 (for (a,0)) (a,0,a) 7 

Ternary Encoder 

In Out Reconstructed Sequence Add to Table 

1 a (a)a,? 

0 0 (a)a,0 (0)0,? (a, 0) (as 3) 

4 ? (a)a,0 (0)0,? ? 

Ternary Decoder 

Input String Index 

0 0 

a 1 

b 2 

Initial code table 
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LZ78  

 Problems of LZ78 

 Coding by (s,um) is inefficient since we have to send um as it is. 

The solution is to send only (s). This method is used in “compress 

command” of Unix. 

 Incremental parsing stores all symbol sub-sequence in the dictionary 

and assign addresses.  

 This algorithm may cause memory overflow of the dictionary. In such 

a case we delete LRU (Least Recent Used) entry from the dictionary 

by “Self-organizing list”.  
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Other code 

 Run-length code: 

 abbbbbbbab:  a(b,7)ab 
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Rate Distortion 

 Coding with distortion: 

An average code length per one source symbol can be reduced if we allow 

coding distortion. Here, the distortion includes redundancy and errors 

which prevent uniquely decodability. 

 

 Distortion measure: 

Let x be an source information symbol of L.  

Let y be a decoded output of the code. 

The distance between x and y is d(x,y), and called distortion measure. We 

evaluate the source coding efficiency by average distortion measure. 

 

 

 where, p(x,y) are a joint probability distribution of a source symbol 

variable X and a coded symbol variable Y. 

),(),( yxpyxdd
yx


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Rate distortion 

 Mutual information: 

For a channel without any distortion we can easily know the source 

symbol x by knowing the decoded output y. The average amount of 

information is H(X). If there is distortion, the average amount of 

information is, 

 

 Therefore the lower bound of the average code length is the mutual 

information I(X;Y).  

Distortion will be different while the mutual information is the same.  

For this case we try to find codes whose distortion      satisfies 

 

 Under this condition we try to find codes which minimizes the I(X;Y) 

 

 

 This R(D) is called “Rate-Distortion Function” of the information source.. 

)()();( YXHXHYXI 

.Dd 

d

);(min)( YXIDR
Dd


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Rate distortion 

 Definition: 

Under the condition that  the average distortion is less than D, 

there exist  codes whose average code length per one source 

symbol  satisfy, 

 

 for an integer    . 

But there is no codes that has smaller average code length than 

R(D). 

 )()( DRLDR


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Rate distortion 

 Derivation of RD function: 
The mutual information I(X;Y) is written in the following given Px(x) and 
conditional probabilities P(y|x), 

 

 
 
We also know P(y) and the conditional probabilities P(y|x), 
 
 

 Next,           is written by, 
 

 And probability constraints requests, 
 
 

 What we need is to minimize I(X;Y) under the above three constraints by 
the Lagrangean method. 
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Rate distortion 

 Source coding with distortion: 

Suppose we choose a symbol sequence                                                    

of length n from an information source S with k symbols. Now we 

choose m codes that gives minimum average distortion. 

 

 

,here the average distortion is given by, 

 

      

          is         minimizing                                            , that is, 
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Rate distortion 

 Then apply distortion-less source coding. This method provides 

average distortion          per each source symbol. 

 

 Decoding: 

Decoding can be obtained by finding       that minimizes the 

distortion to code word        . 

 

 Maximum likelihood decoding: 

Find          that satisfies, 

 

 for all m’ except m.     
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Rate distortion 

 Maximum a posteriori probability decoding: 

Find       , which maximizes, 

 

 

 

 However, a prior probability            needs to be given. This method 

is equivalent to a method maximizes the mutual information. 
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Binary source 

 Suppose we have a binary information source of {0,1} with probabilities 

of p, 1-p and let a bit error rate be distortion measure. 

 

 

 

 This source coding can be thought as a test transmission channel problem 

where the following mutual information is minimized under distortion    ,  
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Rate distortion 

 Y can be thought as a symbol of which an error symbol added to a source 

symbol x is with probability     .  Here,  since the addition is “XOR”,  

                is equivalent to                   , then, 

 

 

 Furthermore, let          be  a zero memory binary source,  

 

 

 If the error source is zero-memory source,                        holds, and even 

if the error source has a memory,                    holds. 

 

 

 Therefore, 
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Rate distortion 

If                  , the Entropy function says, 

 

 

 then,  

 

 

 Finally, we have a RD function in the following. 
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Rate distortion 

 RD function for a binary information source 
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Source coding of analog information 

 Analog source coding: 

Here we treat analog source information that can take continuous 

value not a symbol. (ex. Speech, Image, Sensory input) 

Analog signal Sampling 

Quantization  
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Sampling 

 If the frequency band is limited to 0-W[Hz], the function f(t) can be 

written by, 
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Sampling 

 Let spectrum of f(t) be a F(w), it can be written, 

 

 

 If F(w) is band limited in                           ,  it can be transformed by 

Fourier expansion. 

 

 

 , here  
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Sampling 

Now we set             , 

 

 

 

 comparing (3) and (5), 

 

 

 

 Therefore, we get 
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Entropy of analog source 

 The Entropy for digital source is defined, 

 

 

 How can we define Entropy for stochastic variable x that takes 

continuous value?  

Now we divide a region into small region      of x.  The probability of 

which x takes a value between xi and            can be approximated by, 

 

 

 The smaller the        is, the better approximation we have. Then,  
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Entropy of analog source 

 The second term goes to infinity. We only use this Entropy to compare 

various analog sources. We define Entropy of analog source only by the 

first term. 

 

 

 Unit Entropy: 

The analog source has n stochastic variables x1,x2,…,xn, we define 

Entropy by, 

 

 The Entropy per one variable is, 

 

 

 This is called an unit Entropy. And,  Entropy normalized by T is called an 

Entropy per second, H’.  By                 , the following relationship holds. 
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Conditional Entropy 

 Definition: 

 

 

 

 

 ,here P(x),P(y) are marginal probability distributions. 

 

 

 

 The following relationship holds as well as in the digital information source. 

 

 

 With equality if and only if, 
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Entropy of Gaussian distribution 

 Probability distribution of Gaussian (Normal) distribution is, 

 

 

 

      The Entropy is given, 
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Entropy of analog source 

 Gaussian process: 

[Definition] Let probability distribution of variables Xt1, Xt2, …, Xtn at 

time t1,t2,…,tn be P(Xt1,Xt2,…,Xtn). If P is subject to multi-dimensional 

Gaussian distribution, we call this process as a Gaussian process. If this 

process is subject to stationary Markov process, we call it a stationary 

Markov process. If a power spectrum density  n(w)  of Gaussian process 

has a constant value regardless to frequencies, we call it a white Gaussian 

noise or process. 

If a white Gaussian noise is band limited in frequency range W, 

 

 

 

 Furthermore if a time period this white Gaussian noise is limited in T, this 

process is determined by a sample by 1/2W, x1,x2,…,x2TW.  Let a power at 

each sample be      , the Entropy at each point is given by, 
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Entropy of analog source 

 Therefore a Entropy for all 2TW samples is, 

22log2 eTWHtotal 
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Maximum Entropy 

 Distribution function with maximum Entropy: 

Find a probability distribution function with a maximum Entropy under 

specific conditions. Now we have following relationships, 

 

 

 

 

 

We find  p(x) that maximizes an objective function I by the Lagrangean 

method. 
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Maximum Entropy 

 [Case an average power of x given] 

Let an average power to be     , 

 

 

 

 

 

 

 We have p(x) maximizes H(X) by, 

 

 

 

 The Entropy with the p(x) is, 
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Maximum Entropy 

 Maximum Entropy Theorem: 

A probability distribution function of an average power       that has 

a maximum Entropy is Gaussian distribution. 

 

 

 

 

 The Entropy of Gaussian distribution is given by, 
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Mutual information 

 Let joint probability distribution be p(x,y), If we divide a region of x into  

        and a region of y into          . Here  

are  probabilities for x takes a value between x and            , y takes a value 

between y and              , x and y jointly take  values in the region, 

respectively.  The mutual information is given by, 
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Mutual information 

 An average mutual information is, 

 

 

 

 

 

 

 

 I(X;Y) is non negative value, 

 

 

 with equality if and only if, 
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Rate distortion for analog source 

 Rate distortion function: 

Let an average distortion rate be d(x,y), the average distortion is given by, 

 

 

 here, p(x,y) is a joint probability distribution function of a source sample 

value x and its decoded result y. We have a Rate-distortion function in the 

similar manner as the discrete symbol case. 

 

 

 Let R(D) bit/sample be the minimum mutual information I(X;Y) of X 

and Y under condition that  the average distortion      is smaller than the 

threshold D. R(D) provides the lower bound of the average code length 

per source symbol when we code it by the binary codes under the 

condition that      is smaller than D. 
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Rate distortion of Gaussian source 

 We use the mean squire error, 
 

 The average distortion is given an average squire error. 
 
 

 Under the above condition, we minimize I(X;Y) with P(y|x), 
 
 
 

 , here 

 and  
 

 If the information is Gaussian source, we can use, 
 
 

 We maximize H(X|Y) instead of minimizing I(X;Y). 
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Rate distortion of Gaussian source 

 Let Z be a probabilistic variable Z=X-Y, 
 
 

 with equality if and only if Z and Y are independent.       is smaller than D.  
 
 

 H(Z) will be maximized when p(y|x) follows a Gaussian distribution of 
mean 0 and variation D according to the maximum Entropy theorem. 
Then we have, 
 

 Therefore,  
 
 
 

 Finally, R(D) is given by, 
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Rate distortion of Gaussian source 

 When the source signal is band-limited to 0-W, we can have 2W 

samples per second, the rate-distortion function per second is given 

by, 
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Coding of analog signal 

 Scalar quantization: 

Scalar quantization is a discretization of value of a source sample. 

We call this sample as a quantized sample. If we use B bit binary 

representation, a quantized sample is represented by 2B bits. 

Therefore, the necessary information for transmission or storage is, 

 

 

 This coding is called PCM (Pulse Code mudulation). 

Important thing is to reduce necessary bit rates. Therefore, we 

utilize a probability distribution of the amplitude distribution.  The 

quantization that minimize mean square errors with fixed 

quantization level N is called a optimal quantization property. 

sFBI  Bit/second 
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Coding of analog source 

 Signal to Noise ratio: 

 

 

 

 Let peak-to-peak ratio of the target signal be 2Xmax, the quantization 

level of B bit quantization is, 

 

 

 If we assume that the noise amplitude distribution is uniform, we get, 

 

 

 SNR will be, 

 

 Representation in dB will be, 
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Coding of analog source 

 Transform coding: 

If we have consecutive two sample x1,x2 that have a uniform probability 

distribution depicted in figure, where p(x1,x2) is, 

 

 

 

 range of x1, and x2 values is, 

 

 

 Quantization level will be, 

 

 We need                                          bits to quantize x=(x1,x2) bits. 

If we rotate 45 degree to have new basis (u1,u2). U1 and u2 are 

independent, necessary quantization levels are L1 for u1, and L2 for u2. 
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Coding of analog source 

 Namely we need                                      bits to quantize u=(u1,u2).  

For example if a=2b, 
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Vector quantization 

 A method quantizes not a single sample but a set of n samples. 

 Suppose we have source samples that are independent each other and 

have a uniform distribution. This quantization is equivalent to assigning 

this sample to a center point of he square area that is made by splitting 

x0,x1 2dimensional area by squares. The size of the area is       , and 

quantization error is           , average mean square error per one sample is  

           , this is a same as scalar quantization.  

 

 If we change the shape of the region to a hexagon, the size of the area is  

                 and average quantization error is                     with the same 

number of the representative points. 

 

 If we set the area size to be the same of the square and the hexagon, the 

average power of the hexagon becomes  

2

6/2

12/2

2/33 2 8/35 2

962.09/35 
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Vector quantization 

 

Representative points of  a square 
Representative points of  a hexagon 

Vector quantization 
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Vector quantization 

 Vector quantization is a quantization method that codes a source 

sample (x0,x1,…,xn-1) composed of n consecutive samples to a 

closest representative code chosen from representative codes in n 

dimensional sample space (X0,X1,…,Xn-1). 

 If we apply vector quantization to a source sample so as to 

minimize an average distortion and apply distortion-less source 

coding, we can have a code, of which average length per sample 

approaches to the lower bound R(D) according to the size of n. 
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Vector quantization 

 Representative points are called code words or code vectors. A set of code 

words is called a codebook. 

 

 Codebook design algorithm: 

There is no optimal algorithm for the codebook design. Here we 

introduce a semi-optimal iterative codebook design algorithm. 

Now we have k training samples x1,x2,…,xk and centroids defined in the 

following. 

 

 

 , here                       means an operation to find n minimizes f(n). 
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Vector quantization 

 LBG(Linde,Buzo,Gray) Algorithm 

 Initialization(Step1) 

Let training sample set be xj, j=0,…,n-1, 

 N: Codebook size, m=0,     : distortion, and             .   

Set an initial codebook                                 randomly. 

 

 Partitioning(Step2) 

Cluster xj into N partial sets Si: i=0,…,N by          .  

  

 

 , here the average distortion is given by, 

 

 

 

 If                                , then stop, else set           be a codebook . 

 Calculate                                       ,                                               go to step 2.   
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Vector quantization 

 Splitting algorithm: 

 (Step1)Initialization: 

    : Arbitrary vector with small norm. 

M=1,  

 

 (Step2)Split                                  into neighboring two vectors, 

Let                                                                                     be, 

 

 

 

 (Step3)Letting A0,2M be initial values, find sub-optimal codebook  

                                             by a LBG algorithm.  If M=N then stop, else 

set M=2N and go to step 2.  

 

 Splitting and LBG algorithm generate a codebook of size 2N. 


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D(R) function 

 Distortion rate function: 

Let x be N consecutive samples of x(n), vector quantization that codes x 

into y with a codebook size of L is given by, 

 

 

 , where  

 

 

 

 

 D(R) represents a minimul average distortion with given range of the rate 

R. On the other hand, R(D) represents a maximum rate or minimum 

average code length with given range of the distortion D. 
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Vector quantization 

 Tree search VQ: 

Make tree structure codebook. Each node in the tree represents a code 

obtained in the splitting algorithm. The computation of the tree search 

VQ is Klog2N to compared to K*N with a parameter dimension of K. The 

memory size increases about to twice. 
Input vector 

Code vectors 

Code output 
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Multi-step VQ 

 Combine multiple vector quantizers to reduce calculation. Codes of each 

quantizers are sent to the channel.  Number of multiplication can be 

reduced from K*N*M to K*(N+M). 

codebook codebook 

Vector 

quantizer 

Vector 

quantizer 

Input vector 
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Gain/Shape vector quantization 

 Gain/Shape vector quantization: 

Codebook is composed of multiplication of Ng scalar values, g1, g2,..,gNg 

and Ng unit vectors, u1,u2,…,uNg.  

 

 

 , here we call                       a gain codebook, and                      a shape 

codebook. Coding algorithm is shown in the following. 

 Shape quantization: 

Make inner product between an input vector x and u in the shape codebook 

u1,u2, …,uNs and find a unit vector ul gives maximum inner product. 

 Gain quantization: 

Find a closest scalar value from a gain codebook g1,g2,…,gNg  to the maximum 

inner product of (x, ul). Here gk*ul is a quantization vector out of Ng*Ns 

quantization samples. Therefore number of calculation is reduced from 

K*Ng*Ns to K*Ns and memory size from Ng*Ns to K*(Ns+Ng). 
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Gain/shape vector quantization 

Code vector 
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Speech Coding 

/sec] 

t/sec] 

Min. 

Min. 
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Waveform Coding 

 PCM (Pulse Code Modulation) used in CD, DAT 

If  signal is band-limited to 0-W[Hz] 

 

T: Sampling Interval [s] 

Concept of  PCM 
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Waveform coding (PCM) 

 Quantization 

Let quantization step to be     , quantization bit to be B, 

range of signal amplitude to be L. 

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Waveform coding  

 Speech waveform 

Non-uniform 

law
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Waveform coding (u-law) 

law               is used for ISDN. 

law (u=255) 
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Waveform coding (DPCM) 

 DPCM (Differential PCM) 
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Waveform coding (DPCM) 

 If quantization step       is 1, quantization bit B is 5. 
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Waveform coding (APCM) 

 APCM (Adaptive PCM) 
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Waveform coding (APCM) 

 APCM (Adaptive PCM) 

Quant. Bits 
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Waveform coding (ADPCM) 

 ADPCM (Adaptive Differential PCM) 
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Waveform coding (ADPCM) 

 ADPCM (Adaptive Differential PCM) 

Quant. Bits 
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Parametric speech coding 

--------------- 

Speech waveform 

Excitation: Pitch frequencey    

Excitation signal 

Vocal Tract:  

Phonetic Content 

Resonance filter 
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Parametric speech coding 

Speech waveform 

Framing 

Short term 

predict. 

Excitation Signal 

Linear  

Prediction Coeff. 

Resonance filter 

Linear  

Prediction Coeff. 

Codebook 

Code 

Code 
Pitch 

Codebook 

Pitch Interval 

Approximation 
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Parametric speech coding 

 Points of  the parametric speech model 

 Approximation of  excitation signal by the Impulse sequence. 

 Bit rates can decrease. 

 However, speech quality degrades seriously. 
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Parametric speech coding (CELP) 

 CELP (Code-excited Linear Prediction): Cellular phones 

Speech waveform 
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Parametric speech coding (CELP) 

 CELP (Code-excited Linear Prediction): Cellular phones 

Speech waveform 
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Speech coding 

Waveform coding 

    Hybrid coding       

Parametric 

 coding       
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Music coding 

 Usage of auditory characteristics for coding not of source model. 
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Music coding 

 Frequency masking 
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Music coding 

 Temporal Masking 
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Music coding 

Subband 

Filter 

Selection of   

scale factor 

Quantization samples Quanti- 

zation 

Masking threshold 

Estimation 
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Music coding 

Permissible error  
estimation 



MP3: MPEG-1/L3, MPEG-2 
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MPEG1/Audio MPEG2/Audio 

No. 11172.3 13818.3 

IS year 1992 1994 

Low Sampling Fq. Multi-lingual, 

Multi-channnel 

Sampling FQ. 32,44.148 16,22.05,24 32,44.1,48 

Layer I II III I II III I II III 

Bit rate min 32 32 32 32 8 8 32 32 32 

max 448 384 320 256 160 160 

channel 1/0, 2/0 1/0, 2/0 1/0,2/0,3/0,2/1,2

/2,3/1,3/2 


