ONE MORE PARADIGM SHIFT, AND YOU’LL BE ABLE TO TELL

ACCORDING TO MANY COMPUTER-
industry observers, we’re on the brink of
the voice-recognition revolution. In mid-
1997, Dragon Software released
NaturallySpeaking, the first desktop
program that can recognize continuous
speech rather than just isolated words.
IBM, Philips, and emerging language-
software giant Lernout & Hauspie have
since shipped rival packages. And in March,
a coalition of internet companies released
Voice XML, an open standard for making
websites voice-accessible. “Speech [recog-
nition] is not just the future of Windows,”
says Bill Gates, “but the future of com-
puting itself.” Five years from now, a com-
puter without ears will seem as antiquated
as one without a mouse.

But although today’s speech-recogni-
tion systems perform at levels that would
have seemed dazzling twenty years ago, they
are still inferior to humans in almost every
way. They have trouble deciphering
mumbles, stutters, and accents. They get
flummoxed in noisy environments or when
several people are speaking at once. Humans
solve these problems more or less effortlessly,
but if the last half century of research is any
guide, knowing how it works in the natural
world won’t help the machines. As Reinhard
Karger, a project manager at Germany’s
Verbmobil speech-translation project puts
it, “An airplane does not flap its wings.”

To overcome these performance bar-
riers—to justify the gleam in Bill Gates’s
eye—computer speech recognition needs
a paradigm shift. In fact, it was just such
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a paradigm shift, thirty years ago, that
made today’s systems possible.

THE SUCCESS of modern

speech recognition isn’t due to any one
person, but it just might be due to two:
Jim and Janet Baker. The Bakers met as
graduate students at New York’s
Rockefeller University in 1970. Janet was
a biophysicist studying the nervous system.
Jim was getting his Ph.D. in mathematics.
He became interested in speech because
Janet was working on it.

The dominant model of speech inter-
pretation at that time was template
matching. To get a template, researchers
would record test subjects pronouncing a
word and then do a frequency analysis.
The frequencies might be higher when
pronounced by a child and lower when pro-
nounced by a linebacker, but the overall
shape of both frequency progressions
would be similar. When several such pro-
gressions were combined, the result was
a sausage-shaped zone of the possible fre-
quencies for a given word.

An automatic speech recognizer might
have a vocabulary of several hundred such
word templates. When a user spoke a word
into the computer’s microphone, the com-
puter would do a frequency analysis and
compare it with all the templates in its
memory. After picking the closest-matching
template, the computer would spell out
the corresponding word on the screen.

There were a number of problems with
the template-matching model. First, it was

inflexible with regard to speed of pronun-
ciation. Humans have no trouble recog-
nizing that “goal” is the same word as
“goooooaaaal!” But to the template-
matching computer, they look completely
different; one is ten times longer than the
other. To resolve this problem, scientists
came up with something called dynamic
time warping. This is a set of functions that
the computer can use to shrink or stretch
the utterance until it conforms to one of
the templates it knows. Unfortunately,
dynamic time warping is tricky. For example,
in “goooooaaaal!” the letter g doesn’t
stretch at all. The computer has to know
to warp different sounds in different ways.

Second, while template matching is
well suited to recognizing discrete words,
it’s clumsy with the smaller building blocks
of speech, known as phonemes. Phonemes
are the basic sounds in a language—s, ee,
mm, and so on. English has about fifty of
them. In principle, recognizing phonemes
should be more efficient than recognizing
entire words because the computer only
has to store fifty-odd templates, rather
than thousands. But phonemes are con-
stantly getting pressed up against each
other in speech. The beginnings and ends
of a phoneme get twisted by the phonemes
on either side of it, so that the ¢in “goal”
looks very different from the 0in “yoga.”
It’s also hard for a computer to tell where
one phoneme ends and the next begins.
When you give a computer continuous
speech rather than single words, the
problem is compounded. “Did you”
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becomes “didja”; “get Ted” becomes “ge’
Ted.” All of this leads to the speech-
recognition scientist’s nemesis: ambiguity.

This is where mathematician Jim Baker
came in. As an undergraduate, Baker had
worked on stochastic modeling, a way of
using probability and statistics to handle
ambiguous information. Baker had a
hunch that stochastic modeling, which
emerged in the late 1960s, would prove
useful in speech recognition, and the 1975
paper in which he set forth the idea has
become a classic. Every speech-recogni-
tion application on the market today uses
stochastic modeling—more specifically, a
set of techniques known as hidden Markov
models, or HMMs.

The equations behind HMMs are
extremely difficult, but the overall concept
is at least comprehensible to the layman.
Let’s say you have a random, or stochastic,
process, such as the weather. Suppose you
know the probability that any given state
in this system will be followed by any other
state. For example, there might be a 40
percent chance that a sunny day will be
followed by another sunny day, a 20 percent
chance that it will be followed by an over-
cast day, and so forth. (This is called a
Markov process—each state is determined
probabilistically by the state immediately
before it.) Let’s say you also know the
probability that each state will be associ-
ated with rainfall. There might be a 20
percent chance thatan overcast day will yield
an inch of rain but only a 1 percent chance
that a sunny day will.

Now, let’s suppose you are given a series
of precipitation reports. You don’t know
whether it was sunny or overcast on these
days; you only know how much rainfall
there was. What sequence of sunny or
overcast days is most likely to have pro-
duced this sequence of precipitation? This
is a hidden Markov model. It’s “hidden”
because you have no direct knowledge of
the underlying Markov process—the
sequence of sunny or overcast days.

By the early 1970s, mathematicians had
developed a number of techniques for han-
dling this sort of problem. Baker’s insight
was to apply them to speech recognition.
He was looking for a hidden sequence of
phonemes instead of a hidden sequence
of sunny or cloudy days, and he was
working with sound frequencies rather
than precipitation reports. But the under-
lying mathematical problem was the same.
A computer could use’ HMM equations
to match the speaker’s frequencies to the
phonemes she was most likely to have been
pronouncing.

The Bakers did more than hypothesize
that HMMs might work; they set out to
prove it. In 1972, the newly married
couple transferred to Carnegie Mellon,
where the government’s Defense
Advanced Research Projects Agency spon-
sored their work. The goal was to design
a system with a thousand-word vocabu-
lary and 90 percent accuracy, and they
achieved it with an HMM-based system
they named DRAGON. By 1976, a version
of DRAGON was outperforming the best
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of the template-matching models. In
1982, after a nuimber of frustrating years
at IBM and at Verbex, an Exxon sub-
sidiary, the Bakers went into business on
their own, founding Dragon Systems,
Inc. Today, Dragon’s NaturallySpeaking
is the No. 1 voice-recognition program
on the U.S. market.

TWENTY-FIVE years after

DRAGON, HMM-based speech recognition
is a billion-dollar industry. Continuous-
speech voice-recognition systems, such as
dictation programs, can achieve accuracy
rates of up to 98 percent when trained to
the voice of a single user. But “speaker-
independent” systems rarely go much
higher than 80 percent. HMMs are sta-
tistical tools, and the more variables that
enter the system—differences in accent, sex,
and age of speakers—the more ambiguous
the results.

The most obvious way of minimizing
this uncertainty is to feed the programs
more and better data. But compiling vast
acoustical databases is incredibly resource-
intensive, and it favors big companies. In
fact, these economies of scale recently
spelled the end of Dragon Systems as an
independent company. In March, it was
acquired by Lernout & Hauspie.

Another way of minimizing ambiguity
is by enlisting the aid of a “language
model,” which describes what sort of words
are likely to follow other words. Language
models tend to be partly grammatical (elim-
inating impossible combinations like “the
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BERGER'S NEURAL NET CAN RECOGNIZE SPOKEN WORDS
THROUGH WALLS OF WHITE NOISE NO HUMAN EAR CAN PENETRATE.

the”) and partly statistical (preferring
common phrases over unlikely ones).

Alex Waibel is famous for havingi

attacked the problem of voice recognition
from yet another angle. In the late 1980s,
the Carnegie Mellon researcher helped
pioneer what then seemed to be the par-
adigm shift everyone was looking for: the
artificial neural network. In an artificial
neural network, or neural net, the
“neurons” are pieces of software able to
perform simple calculations. They are con-
nected to each other, and each connection
is assigned a certain weight. In a speech-
recognition neural net, sound frequencies
go in at one end, and numbers denoting
phonemes come out the other side.

Neural nets are programmed by a trial-
and-error training process. When a net
gets an answer wrong, it changes the
weights of the connections between its
neurons and tries again. When it gets an
answer right, it reinforces the weights it
has. In 1986, Waibel trained a neural net
to recognize the phonemes 4, 4, and 4. It
achieved 98.5 percent accuracy—better
than contemporary HMM systems.

But neural nets as conceived in the 1980s
have a problem: They aren’t very good at
handling time. They get confused if the
phoneme comes in a little bit earlier or later
than usual, and they need to have their data
nicely segmented for them in advance. As
a result, they aren’t practical for contin-
uous-speech recognition. Many systems
today use them, but only as part of a hybrid
approach, where neural nets function as
front ends or back ends for specific tasks.

Last October, however, neural nets were
back in the speech-recognition news.
University of Southern California neuro-
biologist Theodore Berger announced that
he and a colleague had developed a neural
net that broke one of the field’s most sig-

nificant barriers. Under noisy conditions,
where most systems perform badly, Berger’s
net could actually outperform people. It
could recognize spoken words through
walls of white noise so thick that no human
could understand what had been said.

Berger didn’t set out to build a speech-
recognition system. He set out to build a
neural net that more closely modeled the
behavior of neurons in the brain. In real
neurons, Berger explains, what matters is
how fast and how often neurons fire, not
simply whether they fire or not. Thus Berger
built a neural net that transferred infor-
mation by pulsing at varying frequencies.
Then he looked for problems to turn it
loose on. “We finally decided to try speech
recognition because it’s such a hard
problem,” says Berger. “We figured, if it
could do speech, it could do anything.”

Although Berger’s achievement sounds
remarkable, the response in the speech-
recognition community has been muted
to skeptical. Part of the reason is its limited
scale; Berger’s system has a vocabulary of
just a dozen or so words. It operates at
the level of words rather than phonemes,
so it is unable to make anything of a word
it hasn’t seen before. Nor can it parse con-
tinuous speech.

And then there’s the problem of flap-
ping airplane wings. Speech researchers
have learned to distrust “humanlike”
approaches. As Hans Uszkoreit of
Germany’s DFKI research institute puts
it, “It would be very surprising if this were
a real breakthrough. These things don’t
happen that often in engineering fields.”

NEVERTH ELESS, Uszkoreit s
among those who think the field is due
for another breakthrough. “Current tech-
nology, with hidden-Markov-model-based
speech recognition, is just not improving

that fast,” he says. “So we’re all expecting
new progress to come from some other
kind of development.”

Uszkoreit himself holds out hope for a
technique called feature-based recognition.
If today’s HMM-based systems search for
the sequence of phonemes “hidden” beneath
sound waves, then tomorrow’s feature-based
systems will try to penetrate to an even
deeper layer—to the features from which
phonemes are composed. “For example, p
and &have one feature in common—they’re
bilabials, you use both lips to produce them,”
Uszkoreit explains. “But they differ in
another feature—one is voiced, the other
unvoiced.” Uszkoreit hopes that computers
might be able to zero in on the differences
in acoustic profile that separate, say, voiced
phonemes from unvoiced ones. This, he
hypothesizes, must be how humans do it.
“It may even be that we have a special part
of our own neural net which is trained to
certain features,” he says.

But wait a minute. It sounds suspi-
ciously as if Uszkoreit wants his machines
to imitate humans....

“Did you know that babies can distin-
guish phonemes which occur only in
foreign languages?” Uszkoreit asks. “In the
beginning, you’re open to all feature dif-
ferences. Then when you adapt your speech
perception to your own language’s sound
system, you lose this ability.”

There is indeed a great temptation to
find approaches that seem closer to how
humans do it. And sometimes even the
most hardened speech-recognition scien-
tistis tempted to think like a human being
rather than a machine.

Matthew Steinglass is a freelance writer
living in Amsterdam. His article “Intern-
ational Man of Mystery” appeared in the
April 1998 issue of Lingua Franca.
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