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Abstract

In an intelligent working space, social robots
should be capable of detecting and understanding
human communicative cues. An important cue in hu-
man communication is focus of attention expressed
by gaze direction. We have been developing tech-
nologies for gaze tracking and focus of attention mod-
eling. In this paper we present our work on modeling
focus of attention in meeting situations. We employ
neural networks to estimate a persons head pose from
camera images, and a probabilistic model to identify
interesting targets in the scene based on the observed
head pose. We are extending such technologies in
building a gaze-aware human-friendly robot that is
able to monitor a person’s focus of attention.

1 Introduction

Recent development in humanoid robotics poses
new challenges to both robotics and HCI communi-
ties. A major challenge is to develop robots that
can behave like and interact with humans. Much re-
search has been directed to advancing human-robot
interaction [11, 2, 10, 1, 20]. In this research, we are
interested in making a robot track human gaze and
focus of attention.

Gaze plays an important role in human social in-
teraction. During face-to-face communication peo-
ple look at each other, monitor each other’s lip-
movements and facial expressions, and follow each
other’s gaze. In an intelligent working space, where
humans and robots may interact with each other,
gaze information could be used to detect what a per-
son is looking at and paying attention to, to inter-
pret what object or place a person is referring to
when talking with a robot, or to determine whether
a person is talking to the robot or not.

In the past few years, we have developed technolo-
gies for tracking and modeling human focus of at-
tention. We are currently addressing the problem of
tracking the visual focus of attention of participants
in a meeting; i.e., tracking who is looking at whom
during a meeting. Such information can be used to
control interaction with a smart meeting room or to

index and analyze multimedia meeting records [16].

In our system, an omni-directional camera is used
to capture the scene around a meeting table. Par-
ticipants are detected and tracked in the panoramic
image using a real-time face tracker. Furthermore,
neural networks are used to compute head pose of
each person simultaneously from the panoramic im-
age. We then use a Bayesian approach to estimate a
person’s focus of attention from the computed head
pose. We model the a-posteriori probability that
a person is looking at a certain target, given the
observed head pose. Using this approach, we have
achieved 74 % accuracy in detecting the participants’
focus of attention on recorded evaluation meetings.

In the recently started humanoid robot project
sponsored by the German Government, we have
started to work on adapting and extending to build
a gaze-aware human-friendly robot which is able to
monitor a person’s focus of attention. We describe
the system and discuss potential extensions. The
remainder of this paper is organized as follows: In
Section 2 we introduce an approach to estimate a
person’s head pose from facial images using neural
networks. In Section 3 we describe our system to
simultaneously track participants in a meeting and
estimate their head poses. In Section 4 we introduce
a probabilistic approach to determine at which tar-
get a person is looking at based on his head pose and
present experimental results on several meetings. In
Section 5 we discuss how focus of attention tracking
can be used to enhance human-robot communication
and describe a demonstration system we built to il-
lustrate the feasibility of our approach. We’ll also
discuss limitations of the current system and our fu-
ture research directions.

2 Estimating Head Pose Using Neu-
ral Nets

In this section we describe how we have designed
and trained a neural network to estimate a person’s
head pan and tilt from facial images.

The main advantage of using neural networks to
estimate head pose as compared to using a model
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Figure 1: Panoramic view of the scene around the table. Faces are automatically detected and tracked.

based approach is its robustness: With model based
approaches to head pose estimation [8, 15, 9], head
pose is computed by finding correspondences be-
tween facial landmarks points (such as eyes, nostrils,
lip corners) in the image and their respective loca-
tions in a head model. Therefore these approaches
rely on tracking a minimum number of facial land-
mark points in the image correctly, which is a dif-
ficult task and is likely to fail. On the other hand,
the neural network-based approach does not require
tracking detailed facial features. Instead, the whole
facial region is used for estimating the user’s head
pose.

In our approach we are using neural networks to
estimate pan and tilt of a person’s head, given auto-
matically extracted and preprocessed facial images
as input to the neural net. This approach is simi-
lar to the approach described by Schiele et. al. [13].
However, Schiele et. al.’s system estimated only head
rotation in pan direction. In this research we use neu-
ral network to estimate head rotation in both pan
and tilt directions. In addition, we have studied two
different image preprocessing approaches. Rae et. al.
[12] describe a user dependent neural network based
system to estimate head pan and tilt of a person.
In their approach, color segmentation, ellipse fitting,
and Gabor-filtering on a segmented face are used for
preprocessing. They reported an average accuracy of
9 degrees for pan and 7 degrees for tilt for one user
with a user dependent system.

We have trained neural networks to estimate a
person’s head rotation from two kinds of camera im-
ages: 1) images from a pan-tilt-zoom camera Canon
VC-C1) and 2) an omnidirectional camera. The main
difference between the two kind of images is the much
poorer resolution of facial images obtained from the
omnidirectional camera. However, while the pan-tilt-
zoom camera is well suited to track the face of one
user and therefore is suitable for human-robot inter-
action tasks, the omnidirectional camera has the ad-
vantage that all participants sitting around a table
can be tracked simultaneously in one camera view
and therefore is well suited for to simultaneous gaze
tracking in meetings.

In the remainder of this section we will describe
details how we trained neural nets to estimate head
pan and tilt from good resolution images. Since pre-
processing, training and network architecture are the
same for pose estimation from the lower resolution
images, we will present the results obtained with
those images in section 3.

2.1 Training Networks with good resolu-
tion images

We collected training data from 14 persons in our
lab. During data collection, users had to wear a head
band with a sensor of a Polhemus pose tracker at-
tached to it. Using the pose tracker, the head pose
with respect to a magnetic transmitter could be col-
lected in real-time. A camera was positioned ap-
proximately 1.5 meters in front of the users head.
The user was asked to randomly look around in the
room and the images together with the pose sensor
readings were recorded. Figure 2 shows two sample
images from that were taken during data collection
with the Canon VC-C1 camera.

Figure 2: Two good resolution images taken with a
pan-tilt-zoom camera during data collection.

2.2 Preprocessing of Images

To locate and extract the faces from the collected
images, we use a statistical skin color model [19].
The largest skin colored region in the input image is
selected as the face.

We have investigated two different image prepro-
cessing methods as input to the neural nets for pose
estimation: 1) Using normalized grayscale images of
the user’s face as input and 2) applying edge detec-
tion to the images before feeding them into the nets.
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In the first preprocessing approach, histogram
normalization is applied to the grayscale face im-
ages as a means towards normalizing against different
lighting conditions. No additional feature extraction
is performed. The normalized grayscale images are
downsampled to a fixed size of 20x30 pixels and are
then used as input to the nets.

In the second approach, a horizontal and a ver-
tical edge operator plus thresholding is applied to
the facial grayscale images. The resulting edge im-
ages are downsampled to 20x30 pixels and are both
used as input to the neural nets. Figure 5 shows the
corresponding preprocessed facial images of a user.
From left to right, the normalized grayscale image,
the horizontal and vertical edge images of a user’s
face are depicted.

normalized

Figure 3:
grayscale, horizontal edge and vertical edge image
(from left to right)

Preprocessed images:

2.3 Neural Net Architecture, Training
and Results

We have trained separate nets to estimate pan and
tilt of the head. We have used a multilayer percep-
tron architecture with one output units, one hidden
layer with 20 to 100 units and an input retina of
20x90 units for the three input images of size 20x30
pixels. Output activations for pan and tilt were nor-
malized to vary between zero and one. Training of
the neural net was done using standard backpropa-
gation.

To train a multi-user neural network, the data set
of 12 users was divided into a training set consisting
of 4.750 images, a cross-evaluation set of 600 images
and a test set with a size of 600 images.

To determine how well the neural net based sys-
tem can generalize to new users, we have also eval-
uated the performance of the neural network on the
two remaining users whose images have not been in
the training set.

Table 2 shows the results that we obtained on the
the multi-user test set and on the new users using
the different preprocessing approaches. Each cell of
the table indicates the mean difference between the
true pan (tilt) and the estimated pan (tilt) over the
whole test set. Results are given in degrees.

| preprocessing | multi — user | newusers |

histogram 3.8/30 9.4 /109
edges 46/ 3.6 10.1 /9.9

| histo + edges | 3.5 /2.8 |7.5/8.9|

Table 1: Head pose estimation accuracy from good
resolution images on a multi-user test set and on
two new users. Results for three different prepro-
cessing methods are indicated: 1) using histogram-
normalized images as input, 2) using edge images as
input and 3) using both, histogram-normalized and
edge images as input. The results indicate the mean
error in degrees for pan/tilt.

It can be seen, that the best results were obtained
when using both, the histogram normalized images
and the edge images as input to the neural networks.
On the multi-user test set a mean error of 3.5 degrees
for pan an 2.8 degrees for tilt was obtained. On new
users the mean error was 7.5 degrees for pan and 8.9
degrees for tilt.

3 Simultaneous Tracking of Head
Poses in a Panoramic View

One focus of our research is to develop a multime-
dia meeting browser to automatically transcribe and
summarize meetings [18, 3]. Within this project we
also aim to monitor at whom or what participants
are looking during the meeting. This information is
useful to get a better understanding of the meetings
and can later be used for image retrieval.

To simultaneously capture the participants of a
meeting, we are using an omnidirectional camera
set in the middle of the conference table. Com-
pared to using multiple cameras to capture all par-
ticipants, as described in our previous work [16], this
has the advantage that only one video-stream has
to be recorded, which eliminates the need for cam-
era calibration, synchronization and camera control
such as zooming on different participants.

From the view of the camera, a panoramic view
of the whole scene can be computed, as well as per-
spective views of each user. Figure 1 shows the rec-
tified panoramic image (with faces marked) that is
computed from the camera view; see [17] for more
details. To detect and track faces in the panoramic
image, we use a statistical skin color detector and
some movement information [19]. In addition, some
heuristics are used to distinguish hands from faces;
see [16] for details.

Once a face is found in the panoramic view, a per-
spective view of the person is computed, and the face
is again detected in the perspective view using the
face detector. Perspective views of two participants
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are shown in Figure 4. The automatically detected
faces are marked with boxes. Faces extracted from
such perspective views are later used to estimate each
participant’s head pose with neural nets.

Figure 4: Perspective Views of two participants.

3.1 Neural Networks: Training and Re-
sults

Similar to the approach presented in section ?7,
we have trained networks to estimate pan and tilt
from facial images that were taken with the omnidi-
rectional camera.

Here, again data from 14 users was collected.
During data collection, the user was automatically
tracked in the panoramic view and a perspective view
of the user was generated; see Figure 4. During data
collection users had to wear a head band with a Pol-
hemus pose tracker sensor attached to it to deter-
mine true head pose for training and evaluation of
the networks.

Figure 5: Preprocessed images: normalized grayscale
image, horizontal and vertical edge image (from left
to right)

Neural networks were trained to estimate head
pan and tilt from the preprocessed facial images, as
described in section 2.1. As for the higher resolu-
tion images from the pan-tilt-zoom camera, the best
result was obtained using histogram-normalized and
edge images as input to the neural net. Figure 5
shows the preprocessed images for a face extracted
from the panoramic view.

On a multi-user test set containing images from
twelve users a mean error of 7.9 degrees for pan and
5.6 degrees for tilt was obtained. On a test set con-
taining two new users, a mean error of 9.9 degrees
for pan and 10.3 degrees for tilt was obtained.

In order to obtain additional training data, we
furthermore have artificially mirrored all of the im-
ages in the training set, as well as the labels for head
pan. As a result, the available amount of data could
be doubled without the effort of additional data col-
lection. After training with the additional data, we
achieved an average error of only 9.5 degrees for pan
and 9.8 degrees for tilt on the two new users. This is
only slightly worse than the accuracy on new users
obtained with good resolution images — 7.5 degrees
for pan and 8.9 degrees for tilt — reported in section
2.1.

Table 2 summarizes the results.

| | multi-user | user-independent |

basic data 78 /54 9.9 /10.3
+ artificial data | 3.1 /2.5 9.5/938

Table 2: Head pose estimation accuracy from fa-
cial images taken with an omnidirectional camera.
Results on a multi-user test set and on two new
users for three different preprocessing methods are
indicated: 1) using histogram-normalized images as
input, 2) using edge images as input and 3) using
both, histogram-normalized and edge images as in-
put. The results indicate the mean error in degrees
for pan/tilt.

4 Modeling Focus of Attention

Gaze is a good indicator of a person’s attention
on external objects. When humans pay attention
to an external object, they usually orient themselves
towards the object of interest so as to have it in the
center of their visual field. Hence, the first step in
determining a person’s focus of attention is to track
his/her gaze.

To map the person’s gaze onto the focussed object
in the scene, a model of the scene and the interesting
objects in it are needed. In the case of a meeting sce-
nario, clearly the participants around the table are
likely targets of interest. Therefore, our approach
to tracking at whom a participant is looking is the
following: 1) detect all participants in the scene, 2)
estimate each participant’s gaze and 3) map each es-
timated gaze to its likely targets using a probabilistic
framework.

4.1 A Probabilistic Model of Focus
Based on Head Rotation

Using a priori knowledge about the size of the ta-
ble and assuming that participants are located close
to the table, it is possible to compute the approxi-
mate 2D location of each participant from the posi-
tions of the faces found in the panoramic image.
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Person 2

Person 1

Person 3 Person 4

Figure 6: Head pan distributions of four persons in a meeting.

A first, straightforward solution to find out at
whom a person S is looking could be, to use the mea-
sured head pose of S and look which target person
T; sits nearest the position to which S is looking.

Gaze is not only determined by head pose, how-
ever, but also by the direction of eye gaze. People do
not always completely turn their heads toward the
person at which they are looking. Instead, they also
use their eye gaze direction. In our meeting record-
ings we observed that some people turned their heads
more than others, who relied more on eye movements
instead and less head turning when looking at other
people. Figure 6 shows the head pan distributions
of four participants in one of our recorded meetings.
The head rotation of the user was estimated with
the neural nets. It can be seen, for example, for Per-
son 1, the three class-conditionals are well separated,
whereas for Person 3 or Person 4, the peaks of some
distributions are much closer to each other, and and
a higher overlap of the distributions can be observed.

Motivated by these observations, we have devel-
oped a
Bayesian approach to estimate at which target a per-
son is looking, based on his observed head rotation.
More precisely, we wish to find P(Focuss = T'|zs),
the probability that a person S is looking towards a
certain target person 7', given the person’s observed
horizontal head rotation zg. Using Bayes formula,
this can of be decomposed to

p(zsg|Foc.s = T)P(Foc.s =1T)

P(Foc.s =T|zs) = o(zs)

Y

1)
where x5 denotes the head pan of person S in degrees
and T is one of the other persons around the table.
Using this framework, given a pan observation for
a person S, it is then possible to compute the poste-
rior probabilities P(Focusg|T;) for all targets T; and
choose the one with highest posterior probability as
the focus of attention target in the current frame.
In order to compute P(Focusg = T|zg), however,
it is necessary to estimate the class-conditional prob-
ability density function p(zg|Focuss = T'), the class

prior P(Focuss = T) and p(zs) for each person.
Finding P(zg) is trivial and can be done by just
building a histogram of the observed head rotations
of a person over time.

One possibility to find the class-conditional pdf
and the prior would be to adjust them on a train-
ing set of similar meetings. This, however, would
require training data for any possible number of par-
ticipants at the table and for any possible combina-
tion of the participants’ locations around the table.
Furthermore, adapting on different meetings and dif-
ferent persons would probably not model a certain
person’s head turning style very well, nor would the
priors necessarily be the same in different meetings.

We have therefore developed an unsupervised
learning approach to find the head pan distributions
of each participant when looking at the others.

4.2 Unsupervised adaptation of model
parameters

In our approach, we assume that the class-
conditional head pan distributions, such as depicted
in Figure 6, can be modeled as Gaussian distribu-
tions. Then, the distribution of all head pan obser-
vations from a person p(x) will result in a mixture of
Gaussians,

M

p(x) ~ Y plalf) P(i), (2)

Jj=1

where the individual component densities p(z|j) are
given by Gaussian distributions Nj(u;,0%).

In our approach, the number of Gaussians M is
set to the number of other participants at the table,
because we assume that these are the most likely tar-
gets that the person has looked at during the meet-
ing, and because we want to find the individual Gaus-
sian components that correspond to looking at these
target persons.

The model parameters of the mixture model can
then be adapted so as to maximize the likelihood
of the pan observations given the mixture model.
This is done using the expectation-maximization al-
gorithm by iteratively updating the parameter values
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using the following update equations [4]:

new  __ Zn Pold(j|xn)$n
SN VW S D @
e IZnPold('|mn)||xn_ ;zew”?
(07)° = d Zi Pold(j|xn)u (4)
PO = 5 3P, o)

To initialize the means p; of the mixture model,
k-means clustering was performed on the pan obser-
vations.

After adapting the mixture model to the data, the
individual Gaussian components can be used as an
approximation of the classconditonals p(x|Focus =
T), and the priors of the mixture model P(j) can be
used to approximate the focus priors P(Focus = T))
of our model, described in equation (1). Further-
more, the individual Gaussian components can be
assigned to corresponding target persons based on
their relative position around the table.

Figure 7 shows an example of the adaptation on
pan observations from one user. In Figure 7a) the
distribution of all head pan observations of the user
is depicted together with the Gaussian mixture that
was adapted as described above. Figure 7b) depicts
the real class-conditional head pan distributions of
that person, together with the Gaussian components
taken from the Gaussian mixture model depicted in
Figure 7a). As can be seen, the Gaussian compo-
nents provide a good approximation of the real class-
conditional distributions of the person. Note that the
real class-conditional distributions are just depicted
for comparison and are of course not necessary for
the adaptation of the Gaussian components. Figure
7c) depicts the posterior probability distribution re-
sulting from the adapted class-conditionals and class
priors.

4.3 Experimental Results

We have evaluated this approach on three meet-
ings that we recorded in our lab. In each of the
meetings four participants were sitting around a ta-
ble and were discussing a freely chosen topic. Video
was captured with the panoramic camera. To be
able to evaluate our approach, we manually labeled
for each of the participants at whom he was looking
in each frame.

In each meeting, the faces of the participants were
automatically tracked, and head pan was estimated
using the neural network-based approach. For each
of the four participants in each meeting, the class-
conditional head pan distribution p(z|Focus), the
class-priors P(Focus) and the observation distribu-
tions p(z) were automatically adapted to compute

the posterior probabilities p(Focus = T;|z) for each
person. In each frame the target with the highest
posterior probability was choosen as the focus of at-
tention target of the person. For the twelve users in
the three meetings, the correct focus target could be
detect on average in 73.9% of the frames. Table 3
show the average results on the three meetings.

| | P(Focus|Gaze) |

Meeting A (4 participants) 68.8 %
Meeting B (4 participants) 73.4 %
Meeting C (4 participants) 79.5 %

| Average | 73.9 % |

Table 3: Percentage of correct assigned focus targets
based on computing P(Focus|head pan).

5 Application to Human-Robot Com-
munication

Many tasks require that a robot can track human’s
focus of attention when it interacts socially with hu-
mans. For example, a robot needs to identify mes-
sage targets of a person in an intelligent space; i.e., a
robot has to identify to whom a human is talking. We
have applied focus of attention tracking technology
to human-robot interaction. We have built a proto-
type system to demonstrate gaze-aware interaction
with a household robot and other smart appliances
such as a speech-controlled VCR in a room. The
robot can differentiate if a human is talking to it or
other devices by tracking the human’s focus of at-
tention. The system consists of the following main
components:

Robot Visualization For the demonstration we
have simulated a robot using a 3D visualization
toolkit and projected the robot onto one of the
walls of our lab.

Speech Recognition A  speaker independent
large-vocabulary continuous speech recog-
nizer was used for understanding the users’
commands [14].

Parser A parser based on the system described in
[7] was used to analyze the hypothesis received
from the speech recognition module and to gen-
erate action commands that were sent to the
robot visualization module.

Dialog Manager This module enabled the virtual
robot to lead simple clarification dialogues, if
necessary information is missing.

Speech Synthesis A Speech synthesis system [5] is
used to provide spoken feedback to the user.
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"Person1_postLeft dist’ —
“Personl_postRight dist” ----
"Person1_postStraight dist"

Figure 7: a) The distribution P(z) of all head pan observations for a person. Also the adapted mixture of three
Gaussians is plotted. b) True and estimated class-conditional distributions of head pan z for the same person,
when looking to three different targets. The adapted Gaussians, are taken from the adapted Gaussian mixture
model depicted in a). ¢) The posterior probability distributions P(Focus|z) for resulting from the found mixture

of Gaussians

Focus of Attention Tracker To observe the
user’s focus of attention, a pan-tilt-zoom cam-
era, was placed next to the simulated robot.
The face of the user was tracked in the camera
image and the user’s head pose was estimated
with a neural net as described in section 2.1.

Communication of all the components - recording,
speech recognizer, parser, dialogue manager, visual-
ization and focus-of-attention-tracker - was done us-
ing a client-server architecture that we adapted from
[6].

For the demonstration three focus-targets were
chosen: a) the robot, b) the VCR and c¢) none of
them. Whenever the user was looking towards where
the VCR was placed, the focus of attention mod-
ule identified the VCR as target and the output
of the speech recognizer was sent to the the VCR.
Whenever the user was looking towards the simu-
lated robot, the robot was chosen as the focus tar-
get, and therefore recognized speech was directed to
the robot; i.e., the robot’s parser, dialogue and vi-
sualization module, to generate appropriate actions
of the robot simulation. Whenever the user was nei-
ther looking at the VCR nor to the robot, the user’s
speech was not recorded at all and neither the robot
nor the VCR were responding.

Discussion

While this demonstration showed how gaze-
awareness can enhance human-robot communica-
tion, there are obviously many limitations with our
current approach. First, within the current system
no 3D information of the scene is used. The sys-
tem only works for a user standing within a certain
region in front of an immobile robot and probabilis-
tically maps the users head rotation to some fixed
focus targets.

A less restrictive system should allow both a user
and a robot to move freely in a room. In such a
case, the position of the robot and the user has to
be determined in the scene and a 3D model of the
scene and the objects in it would be necessary to map
the user’s gaze direction onto one of the interesting
objects.

In the presented demonstration, a user’s gaze is
only used to determine the current addressee of the
user’s speech. However, gaze could also be used dur-
ing multimodal communication to determine to what
object or place a person is referring to (“Put that
there!”). We will address these issues in our future
research.

6 Conclusion

In this paper we have described our work on esti-
mating a person’s focus of attention. We have pre-
sented a system to estimate visual focus of attention
of participants in a meeting. The participants are si-
multaneously tracked in a panoramic view and their
head poses are estimated using neural networks. For
each participant, probability distributions of look-
ing towards other participants are estimated from
head poses using an unsupervised learning approach.
These distributions are then used to predict focus of
attention given a head pose. The focus of attention
tracking technology can be used for a social robot.
In an intelligent working space, a robot has to moni-
tor shared attention of collaborators. We have devel-
oped a prototype system to demonstrate the concept
of a gaze-aware robot. In a new humanoid robot
project sponsored by the German Government, we
are adapting and extending focus of attention track-
ing technology to allow a robot to monitor a person’s
focus of attention in an unconstrained environment.
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