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Abstract

In this paper we evaluate the performance of the ISL's Ger-

Several specialized solutions to VRoIP have already been
investigated, but they rely either on on a tight integration of the
speech recognizer with the transmission protocol [5], or a com-

man Verbmobil spontaneous speech recognizer on the Nespole! plex interface with proprietary systems [11]. The aim of this

database. In this task, people talk to an agent in a tourist office
to plan their holidays via a NetMeeting connection, also shar-

work is to present a speech recognition system for IP connec-
tions, that can be built by combining existing components, does

ing screen contents (web-pages). Stereo recordings were made not rely on detailed knowledge of the transmission protocol and
both before and after speech transmission over an IP connection is compatible with existing infrastructure, which is installed in

using the G.711 codec, so that we are able to directly measure
the loss in LVCSR performance due to NetMeeting’s segmen-
tation and compression. The aim of this work is to quantify this
loss, which is a consequence of using protocols which were not
designed for speech recognition purposes. We report on tech-
niques employed to port our existing clean-speech recognizer
to this new data quality, using about 1.5h of labeled adaptation
data, but avoiding a complete retraining of the system.

1. Introduction

Microsoft's®NetMeeting™(currently in version 3.01) is a
widely available and accessible front-end for voice transmis-
sions over the Internet (VoIP). It is mainly used for human-
to-human meetings, but as it also enables the participants of
a video- or audio-conference to share other data, it lends it-
self to automated data collection or computer-assisted human-
to-human interaction (translation, meeting summarization, etc).
Human-to-computer interaction also seems possible, if one ter-
minal is replaced by a software-only solution. For all these ap-
plications, speech will probably be the main modality.
Automatic speech recognition (ASR) on signals, which

most offices and many homes.

Especially, we do not want to retrain a recognizer from
scratch, but investigate how an existing, state-of-the-art recog-
nizer for spontaneous clean speech can be ported to the new
task.

In the following section, we will outline the data set and
our system setup, continue with a description of the speech rec-
ognizer used in this work, then discuss the different adaptation
approaches pursued in this work and finally evaluate the perfor-
mance of the overall system.

2. The Nespole! task

Nespolet is a joint EL// NSF® project aiming at providing
multi-modal support for human-to-human interaction over IP
networks.

During the initial data collection, an American, French,
German or Italian client would call an agent at the Trento (ltaly)
tourist office and enquire about the holiday opportunities in the
area. The agents were employees of the tourist office speaking
the caller’s native language. The callers were given material to
allow them to choose from 5 scenarios for which material had

have been transmitted using current Internet standards faces been prepared, but were otherwise free to ask what they wanted.

several problems, mainly that the acoustic signal is usually
transmitted in a compressed format and the fact that IP sends
data in short packets instead of a continuous stream, often re-
sulting in deletions.

If this speech is to be used both for re-synthesis (VolP) and
for automatic speech recognition (often called VRolP), one is
faced with the following dilemma:

1. For VoIP to be an effective means of communication be-
tween two humans, the transmission should be “instan-
taneous”. Humans usually recover easily from a few
dropouts (missing frames) during speech transmission;
the efficiency of communication is not affected. How-
ever, people are used to getting answers immediately and
find time delay in the transmission channel disturbing.

2. ASR engines usually do not run synchroneously with
real time, but their performance is affected by bad seg-
mentation and missing signals, even if only for a few
milliseconds; on the other hand, it is easy to freeze the
recognition engine, until new data arrives.

The aim of the Nespole! project is to develop showcases, which
will provide multi-modal support for this process including ges-
tures and machine translation.

For our experiment we used the “client” part of 43 dia-
logues between a client calling from Karlsruhe, Germany, and
an agent. Figure 1 shows the typical setup used for recording
this data. The stereo recordings were produced by combin-
ing local (high-quality) recordings with the remote recordings,
which contain identical utterances, but after transmission over a
real H323 channel.

Both parties in the conversation used standard, consumer-
grade PCs running Microsoft Windows 98 or NT. The record-
ings in Karlsruhe were done in different offices, sometimes
with people talking in the background, and using table-top mi-
crophones that come bundled with “Multimedia” computers.

1An acronym for
guage in E-commerce”,
http://nespole.itc.it

2European Union

3The United States’ National Science Foundation

“NEgotiation through SPOken Lan-
further information can be found at:
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Figure 1: Typical setup for Nespole! recordings.

Harddisk (TotalRecorder sw)

Recordings were done in 48kHz at the client's side and in
22.05kHz at the agent’s side after transmission through the Net-
Meeting connection, which had been set to “CCIT u-law, 8kHz,
8bit” (G.711). For recognition, the signal files were re-sampled
to 16kHz. To collect realistic data, recordings were scheduled
at normal office hours, so that air-conditioning was on and traf-
fic on the Internet was normal. Sound recording was done with
the TotalRecordérsoftware, which has the capability to cap-
ture sound 1/O directly from the PC’s sound card and write it to
a file. This file can then immediately be read in by the speech
recognizer.

[ Set | Dialogues| Words | Turns | Duration |
Adaptation 34 13,213| 359 1:21h
Evaluation 9 2,901 | 1,879 0:25h

Table 1: Nespole! German adaptation and test set.

The recorded data was divided into several subsets, the
characteristics of the two sets (adaptation and development test
set) we used in this work are summarized in table 1. Adaptation
and test set consist of 19 and 6 speakers respectively.

3. ThelSL’'sVerbmobil-I1 recognizer

We conducted our experiments with the Interactive Systems
Laboratories’ recognizer for spontaneous German speech which
we used in the Verbmobil-1l system [9], described in detail in
[8]. This recognizer uses our JANUS-III ASR toolkit and was
trained on 62h of speethThe software is written in C with an
Tcl/Tk interface for scripting and currently runs on OSF/1 (Al-
pha), Linux (ix86), SunOS (Sparc), and Windows NT (ix86).
The Verbmobil-Il recognizer employs 3,500 context-
dependant models with 48 diagonal Gaussians each over a 32-
dimensional LDA feature, computed from MFCCs and their
deltas and delta-deltas. We also use semi-tied covariance matri-
ces. During maximum likelihood training along pre-computed
frame-state alignments, we used Cepstral Mean Subtraction
(CMS), Vocal Tract Length Normalization (VTLN) and, for the

last two iterations, speaker-dependant feature spaces. The com-

putation of these feature spaces is based on a normalized likeli-
hood function [3].

During the decoding stage, we employ these methods in an
incremental, delayed way, starting from default values to adapt
rapidly to new channels and speakers. To speed up the decod-

4htt p: // www. hi ghcriteria.con productfr.htm
5The Verbmobil database consists of dialogues from the travel-
planning and meeting arrangement domain.

ing process, we perform Gaussian selection using the BBI algo-
rithm [2] and a context-independent phone Look-Ahead.

The language model is a tri-gram language model trained
on 640k words from the Verbmobil corpus as well as transcrip-
tions (approximately 17,000 words) from the Nespole! adapta-
tion data. So far, we have not conducted experiments with in-
terpolation and weighting of the different text corpora. The per-
plexity on the test-set was 98.5. The dictionary was expanded
by 200 words to cover the new domain. The new pronuncia-
tions were generated by a rule-based approach. The new dictio-
nary contains 11,800 different entries for a vocabulary of 11,200
words, resulting in an OOV-rate on the test-set of 1.6%.

Our system reached a word accuracy of 74.8%the fi-
nal Verbmobil evaluation [4] and of 67.7% on the new task,
the word accuracies for single dialogues range from 49.2% to
80.6%. We attribute this loss of performance to the new domain,
which contains several foreign names, which several “clients”
were not sure how to pronounce, as well as the different record-
ing setup: the agent could send web-pages to the client’s screen,
and the clients usually reacted quite spontaneously when receiv-
ing new pages.

4. Adaptation experiments

Transmission of G.711 encoded speech over the Internet dis-
torts the speech significantly and we tested several compen-
sation techniques, namely Acoustic Mapping, Maximum A-
Posteriori estimation and Maximum Likelihood Linear Regres-
sion (MLLR), to improve speech recognition. We also inves-
tigated the influence of lost packets occurring in real transmis-
sions on speech recognition performance and discuss the role of
segmentation.

Our standard training and decoding scheme includes
dialogue-specific feature space adaptation (FSA) and VTLN.
We first validated that these techniques work correctly also on
the H323 data. The results are summarized in table 2.

Results without Clean | H323
supervised adaptatiof]

Baseline 67.7% | 30.8%
VTLN only 65.0% | 27.2%
FSA only 65.5% | 28.4%
Plain models 60.9% | 24.5%

Table 2: Baseline performance of the Verbmobil-Il system on
the Nespole! data.

We also computed an FSA matrix on the adaptation data
and loaded this matrix during decoding at the beginning of
each dialogue instead of the standard matrix for either men or
women, estimated on clean speech. The performance then im-
proved from 30.8% to 31.5% word accuracy. This proves the
good convergence of the ML adaptation scheme. In some cases,
however, the noise contained in the H323 recordings prevented
convergence of the ML criterion for the warping factor needed
for VTLN, so that we had to follow a more conservative up-
date strategy to obtain reliable estimates. We used this system
to write initial labels for our supervised adaptation experiments

6This system also used a context-independant phone Look-Ahead to
reduce the number of score computations and increase decoding speed,
which we did not use for the experiments described in this work.
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using the Flexible Transcription Alignment technique described
in [1].

We will now present the results achieved with the different
adaptation methods.

4.1. MAP and Acoustic Mapping

Bandwidth is limited on most Internet connections, so that com-
pression is generally used on these tasks. We tried to compen-
sate for the effects of compression by transforming both the
features and our acoustic models through MAP, MLLR and an
Acoustic Mapping procedure similar to RATZ [6].

In our first experiments, we tried to mix the sufficient statis-
tics from 62h of Verbmobil training data with the new data
(1:20h). The results for different normalized weighting factors
during MAP adaptation for the two sets of data are summarized
in table 3.

| Weighting factor]] NoMAP [ 04 | 06 | 08 |
[ Word Accuracy || 30.8% [ 47.0%] 49.0%] 48.2%]

Table 3: Results for MAP adaptation.

Using much simpler acoustic mapping as proposed in [6],
we were able to reach a word accuracy of 42.6% by employing
this technique in log-MEL space. We also observed a “normal-
ization” effect, in that bad speakers improved more than good
speakers. Acoustic Mapping works by calculating a soft par-
titioning of the two feature spaces using corresponding proto-

types. In our case, we used codebooks containing one Gaussian
for each context-independent speech state. We therefore know

the transformation for each prototype; for an arbitrary vector,

the transformation is calculated as the linear combination of the
prototype’s transformations where the weights are determined
by the soft clustering using, in our case, 139 Gaussians with
diagonal covariance matrices.

4.2. MLLR

MLLR proved to be the most effective single technique to adapt
the recognizer. We use a hierarchical clustering scheme to avoid
adapting codebooks on insufficient training data.

The best system used 48 32x32 adaptation matrices, which
is determined by a min-count for updates of 8000, requiring that

every adaptation matrix be trained on at least 80 seconds of data.

[ No. of Matrices] Baseline] 89 | 48 [ 35 |
(WA [ 30.8% | 52.3% | 53.1%] 52.0% |

Table 4: Word accuracy results for MLLR adaptation.

As we had also tried for MAP, we applied MLLR itera-
tively, by collecting new statistics with an adapted system and
re-calculating the adaptation. However, these experiments did
not lead to further improvement in recognition performance, nor
did performing these experiments in a dialogue-dependant fea-
ture space. Again, we attribute these effects to the fact that our
system has a rather high number of parameters, which are dif-
ficult to estimate with the amount of adaptation data we had,
especially as a significant amount of the distortion we wish to
compensate for is of non-stationary nature.

4.3. Missing frames

Standard H323 transmission does not recover lost packets, as
it does not improve human-to-human speech transmission to
resynthesize these packets at a later time. To compensate for
this loss of information we implemented a simple detection al-
gorithm for these missing frames and reconstructed the spectral
features by using linear interpolation.

In our setup, the channel delivers no information on which
packets are missing, so that a separate detection algorithm for
bad frames is needed. After manual analysis of the audio
data we suspected that the most detrimental effects are caused
by regions that are characterized by a low zero-crossing rate,
compared to the average zero-crossing rate for this signal file
(ADC). There is no indication however, whether the artefact is
solely an insertion of silence or indeed missing information. We
therefore cut out silence frames and interpolate the partially af-
fected frames at the border of the cut-out regions.

The detection algorithm works by comparing the zero-
crossing rate of the ADC in a 10ms window to the average zero-
crossing rate of the current utterance. If the ratio falls below an
empirically determined threshold, the affected frames will be
cut and interpolated. Using this approach, we improved the per-
formance of our previously best system (WA 53.1%) to a word
accuracy of 53.6%.

Other researchers have also used linear interpolation in con-
junction with similarly encoded data, reporting successful re-
construction of missing frames [5]. However, in their work the
position of the missing packets was known, so that no detection
was necessary. Also, packets could be reconstructed before the
audio file used for speech recognition was generated.
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Figure 2: Influence of missing frames on recognition perfor-
mance after reconstruction (1 second has 100 frames).

Figure 2 shows the effect of missing frames on the recog-
nition performance of our recognizer. We see that the number
of frames interpolated by our simple detection algorithm is re-
lated to recognition performance, although there is insufficient
data to confirm whether a certain amount of missed frames can
be tolerated without loss of performance. Dialogue-specific im-
provements in word-accuracy are more pronounced for “bad”
dialogues, but we did not find a clear pattern in them and frame
reconstruction also slightly increased the number of errors on
two dialogues.
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4.4, Reversetransformation

When testing the best adapted models on the original clean
speech, the performance dropped to 59.8%, but by applying
acoustic mapping as discussed in the previous section, a word
accuracy of 64.4% could be reached, which compfaesrably

to the clean model’s original performance of 67.7%. Acoustic
Mapping therefore proves to be an effective technique despite
the use of ML-FSA in our standard decoding setup. In this
case, as MLLR does not adapt to non-stationary noise when we
adapted our models to the H323 domain, the reverse mapping
can be successfully done with simple acoustic mapping. Itis
therefore possible to use one recognizer to decode both clean
and distorted speech without loading new acoustic models.

4.5. Segmentation

Contrary to our expectations, segmentation did not prove to be a
major source of errors in the overall system. We expected one-
word turns to be swallowed completely or at least be severely
affected by NetMeeting’s automatic segmentation. However,
separate alignments of one-word-turns (like “mhm” or “ja”) and
first and last words in the reference and recognizer output did
not show negative effects, when compared to the manual seg-
mentation of the clean speech.

WA Baseline | one word turns| first and last words
H323 53.1% 65.9% 55.1%
Clean|| 67.7% 80.2% 68.0%

Table 5: Influence of segmentation on ASR performance.

5. Discussion

We have shown how the performance of a clean-speech recog-
nizer on an H323 task can be improved from 30.8% to 53.6%
using several adaptation techniques. 50% of the loss in word
accuracy compared to the recognizer's performance on clean
speech has therefore been recovered.

Some of the turns were hard to understand even for humans;
during one dialogue, 7 of 77 (9%) turns were repeated by the
subjects, because the other party could not understand what had
been said. The performance of our recognizer improved from
45.3% to 50.2% on this dialogue, if one does not count errors
that had been irrecoverable even for humans.

Experiments conducted on a subset of the English Nespole!
corpus, for which not only stereo recordings, but also separate
human-produced transcriptions for these parallel recordings are
available, have shown that there is a 3.0% difference in the tran-
scriptions of these utterances. These 3% cover completely miss-
ing segments or genuine transcription errors, as no noises have
been transcribed. The German data was transcribed to the same
standards and, as we align the output of the speech recognition
on the H323 data against the transcriptions of the clean speech,

our numbers represent the overall performance of the system, [10]

including segmentation.

6. Conclusion

Our experiments have shown that existing speech recognizers
can be made to work on real-world VRoIP problems, while

being compatible with standard consumer hard- and software,
given about one hour of labeled adaptation data. Several estab-

[11]

lished adaptation techniques have been applied and compared
and we showed how they can be employed to significantly im-
prove the speech recognition performance on a 10k task, so that
NetMeeting conferences could soon be integrated seamlessly
into Meeting Recognition Systems, as described in [10] for ex-
ample. A thorough analysis of distortion patterns of real speech
after transmission over IP networks will certainly lead to further
significant improvements. The prototype described in this work
allows such a data collection to be implemented easily by using
standard components on the user end.
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