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Abstract

We present an overview of our laboratories' research on

Multimodal Human-Computer Interfaces. By exploiting

all available channels of human communication we aim

to increase 
exibility, robustness, and naturalness of hu-

man-computer interaction. The information sources we pro-

cess include Speech-, Character-, and Gesture Recognition,

Face- and Eye Tracking, Lipreading, and Sound Source Lo-

calization. Connectionist and hybrid techniques are used

throughout.

Introduction

Recent developments in the computer and communication

industries are rapidly increasing the amount and variety of

information available to a wide and diverse audience. The

multi-media nature of this data explosion, heralded by the

concept of the \Information Superhighway", o�ers images,

sound, text, etc. as the output presented to the informa-

tion consumer. This is in stark contrast to the impover-

ished set of input options which are still largely limited to

the keyboard and mouse. Attempts at the use of alternate

modalities have mostly focused on single alternatives and

are �nding limited acceptance.

In an e�ort to improve this situation, we have begun to

develop ways to process a multiplicity of signals that are

believed to all carry meaning in human communication.

These include: Speech Understanding, Written Character-

and Gesture Recognition, Lipreading, Face-Tracking, Eye-

Tracking, and Sound Source Localization. In combination,

these di�erent sources of information are known to pro-

vide humans with sometimes crucial information for e�ec-

tive face-to-face communication. They allow for greater

robustness by taking advantage of redundant information

and their availability provides 
exibility and freedom to

choose a suitable/convenient communication channel. Such

multimodal interfaces are expected to be useful in human-

to-human communication (e.g., video conferencing, speech

translation), as well as human-computer interaction such as

database access, document production, CAD use, machinery

control, etc.

To create multimodal interfaces, we are developing tech-

nology that improves processing and interpretation of each

modality, while at the same time pursuing the integration

of the information sources in a single framework. Connec-

tionist models are used throughout because of their superior

performance as pattern classi�ers as well as for the ease with

which they can integrate heterogeneous signals and features

(sensor fusion).

Separate Modality Recognition

This section concentrates on the recognition challenges and

solutions speci�c to single modalities.

Speech Recognition

Foremost among human communication modalities, speech

and language arguably carry most of the information in hu-

man communication. Automatic Speech Recognition (ASR)

naturally constitutes an integral part of an advanced human-

computer interface. In our laboratories several approaches

toward robust high performance speech recognition are un-

der way.

We continue to experiment with several connectionist,

stochastic and hybrid approaches for Large Vocabulary Con-

tinuous Speech Recognition and spontaneous speech recog-

nition. These include Multi-Layer Perceptrons (MLP),

Time Delay Neural Networks (TDNN), Learning Vector

Quantization-2 (LVQ-2) and Hidden Markov Model (HMM)

techniques and combinations of these. Detailed descriptions

of these systems and performance measures are reported

elsewhere.
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Our modality integration experiments (see below) have

employed our word-spotting system for continuous sponta-

neous speech.
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Because of their small vocabulary and size,

word spotters o�er a practical and e�cient solution for many

speech recognition problems that depend on the accurate

recognition of a few important keywords. The word spot-

ting system architecture is based upon the TDNN and more

recently the Multi-State TDNN (MS-TDNN).
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The network

consists of a common input layer and hidden layer, con-

nected to a state layer and output layer for each keyword.

In the state layer, each keyword is represented by a sequence

of sub-word states over time. A dynamic time warping algo-

rithm is used to �nd the best state sequence, from which we

can hypothesize the presence or absence of a keyword when

its score reaches a threshold.

Training and testing of the system was performed on two

separate databases, the Roadrally corpus, and the Switch-

board credit card corpus.
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Each of these databases contains

a set of 20 keywords to be spotted (including variants), em-

bedded in extraneous speech. The system's performance is

measured by plotting the keyword detection rate for several

false alarm rates per keyword per hour (fa/(kw*hr)). By

changing the thresholds of the word-output units, the de-

tection rate can be improved at the expense of increasing

the number of false alarms. The Figure of Merit (FOM) for

the system is the averaged keyword detection rate over the

false alarms from 0 to 10 fa/(kw*hr). Our system achieves

an FOM = 72.2% for the Roadrally corpus and 50.9% on the

much more di�cult Switchboard corpus. These �gures com-

pare favorably to those of other keyword spotting systems

in its class evaluated by ARPA.

More extensive word-spotting as well as topic-spotting is

under development. We are making use of our continuous

speech recognition and translation system JANUS.
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Gesture Recognition

We have been investigating pen-based gestures drawn using

a stylus on a digitizing tablet. This kind of gesture is sim-

pler to handle than hand gestures captured with a camera

but still allows for rich and powerful expressions. The ini-

tial multimodal editor we developed currently uses 8 editing

gestures. Some of these were inspired by standard mark-

up symbols used by human editors. Others, such as the

\delete" symbols, are what most people would automati-

cally use when correcting written text on paper.

Using a temporal representation, a gesture is captured as

a sequence of coordinates tracking the stylus as it moves

over the tablet's surface. This dynamic representation was

motivated by its successful use in handwritten character



recognition
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and is preferred to a static, bitmapped repre-

sentation of gesture's shape. The coordinates are normalized

and resampled at regular intervals to eliminate di�erences

in size and drawing speed; from these resampled coordinates

we extract local geometric information at each point, such

as the direction of pen movement and the curvature of the

trajectory.

Each coordinate is represented in the classifying TDNN by

eight such low{level features. Their temporal sequence con-

stitutes the input layer. Ten units in the �rst hidden layer

extract patterns from the input, eight units in the second

hidden layer spot patterns typical of a given gesture. Out-

put units (one per gesture) integrate over time the evidence

from the corresponding unit in the second hidden layer. The

output unit with the highest activation level determines the

classi�cation. The network is trained on a set of manually

classi�ed gestures using a modi�ed backpropagation algo-

rithm. With training data of 80 samples/gesture, we have

achieved \gesturer"-dependent recognition rate of 98.8% on

an independent test set.

Our gesture recognizer also incorporates a method for ac-

quiring new gestures \on the 
y", i.e., while the system is

in use. When a recognition error occurs, the system queries

the user for the correct output and creates new template-

matching hidden units that project onto the output units. If

a subsequent input pattern is similar to the template used

to create an extra unit, it is turned on and can in
uence

the corresponding output unit. This technique is called an

Incremental TDNN.
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Handwriting Recognition

The recognition of continuous handwriting, on a touch

screen or digitizing tablet, has not only scienti�c but also

considerable practical value, such as for notepad comput-

ers or for providing redundant or alternative input options

in a multimodal system. The main advantage of on-line

handwriting recognition is the availability of temporal infor-

mation much as in gesture recognition as presented above.

Handwritten words can be represented as a time-ordered se-

quence of coordinates with varying speed and pressure in

each coordinate. As in speech recognition the main problem

of recognizing continuous words is that character or stroke

boundaries are not known (in particular if no pen lifts or

white space indicate these boundaries) and an optimal time

alignment has to be found.

The MS-TDNN has been applied successfully to over-

come the problem of recognizing continuous (cursive)

handwriting.
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This problem is much more di�cult than the

single character problem because of the need for automatic

segmentation; however, it is possible to resolve the type of

con
icts presented above using context. The MS-TDNN

integrates the recognition and segmentation processes by

combining the high accuracy character recognition capabili-

ties of a TDNN with a non-linear time alignment procedure

(Dynamic Time Warping) for �nding an optimal alignment

between strokes and characters in handwritten continuous

words (see Figure 1). In the most recent experiments, we

achieved 98.7%/82.0% writer-dependent/independent word

recognition rates on a database of 400 handwritten words.

Recognition experiments on a 20,000-word vocabulary task

are in progress.

Lip-reading

It is well known that hearing-impaired listeners and those

listening in adverse acoustic environments (noise, reverber-

ation, multiple speakers) rely heavily on the visual input

to disambiguate among acoustically confusable speech ele-

ments. The usefulness of lip movement information stems in

Figure 1. MS-TDNN architecture as used for handwriting

recognition.

large part from its rough complementariness to the acous-

tic signal: the former is most reliable for distinguishing the

place of articulation, the latter conveys most robustly man-

ner and voicing information. ASR systems' performance is,

if anything, even more sensitive to degradation of the acous-

tic input. Therefore, it is only natural to try to supplement

the acoustic data with lip movement information.

The visual evidence is obtained by \frame-grabbing" the

output of a conventional camcorder camera at 30 frames/sec,

with 8-bit gray level resolution. Currently, speakers are

asked to position themselves such that their lips appear

within an 144x80 pixel frame that is simultaneously shown

on the screen of a workstation. However, no special markers,

restraints or position indicators are used. The image within

the frame is normalized for lighting variations and a data

vector to be used by the recognition algorithm is extracted

from it. Best results have been achieved with Linear Dis-

criminant Analysis coe�cients of downsampled (to 24x16)

frame image.

Details of the recognition algorithm are given below in

the section on combined lip-reading and speech recognition.

The lip-reader alone gives 40{50% letter accuracy scores on

a spelling task, performance perhaps not useful by itself but

helpful in combination with ASR.

Face Tracking

The task of the face tracking system, described in detail

elsewhere,
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is to supply other recognition/understanding

systems with the coordinates and a stable image of the

speaker's face. While tracking a face, the position of the

camera and the zoom lens are automatically adjusted to

maintain a centered position of the face at a desired size

within the camera image.

A conventional camcorder, mounted on a pan/tilt unit

(PTU), supplies roughly 10 images per second. Color infor-

mation is extracted by the Face Color Classi�er (FCC). The

FCC maps each pixel into a two-dimensional brightness{

normalized color space and divides it into colors belonging

to faces and all others. As few as �ve sample images of faces

with various skin colors have been found su�cient to estab-

lish this color distribution. Movement is computed from

successive frames and merged with the color information.

The resulting candidate face objects are fed into a neural



network. The network considers shape of the objects in pro-

ducing the coordinates of the virtual camera, indicating the

region actually containing the face. Appropriate commands

to the PTU and zoom lens are issued if the face moves out of

a pre-de�ned area in the center of the physical camera. Fig-

ure 2 shows an example of an image and the area classi�ed

as a face by the tracking system.

Figure 2. Camera image and extracted largest skin{colored

object.

Two neural networks are used for centering and size es-

timation respectively. They were trained by backpropaga-

tion on 5000 arti�cially scaled and shifted example images

generated with a database containing 72 images of 24 faces

of di�erent sex, age, hair style, skin color, etc. Performance

was evaluated on test sequences of over 2000 images of 7 per-

sons (with di�erent skin types) performing arbitrary move-

ments in front of di�erent backgrounds. Depending on the

sequence, the face was located in 96% to 100% of all images

in the sequence. The average di�erence of the actual posi-

tion of the face and the output of the system were less than

10% of the size of the head.

Eye Tracking

The goal of gaze tracking is to determine where a person

is looking from the appearance of his eye. Two potential

uses of a gaze tracker are as an alternative to the mouse

as an input modality and as an analysis tool for human-

computer interaction studies. The direction of eye �xation

can also be used to determine the user's focus of attention in

a multimodal interface; for instance, knowing whether the

user is looking at the screen or somewhere else while talking

may be important in deciding whether automated speech

recognition should be activated.

At Carnegie Mellon we have developed a neural-network-

based non-intrusive gaze tracker based on camera input

only.
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Unlike in most advanced gaze tracking, the user is

required neither to wear any special equipment, nor to keep

his head still. Input to the system comes from a camera

mounted on top of the computer monitor. An infrared light

source creates a specular re
ection on the eye. The gaze

direction can be computed from the relative positions of

the re
ection and the pupil's center. The system extracts

a 15x30 window surrounding the re
ection. The gray-scale

values of the window's pixels become the input to a neural

network comprising 4 hidden units and 50 output units for

each of the coordinates (X and Y). Training is performed by

backpropagation.

The current system works at 10 Hz. The best accuracy we

have achieved is 1.5 degrees with the freedom of head move-

ment up to 30 cm. Although we have not yet matched the

best gaze tracking systems, which have achieved approxi-

mately 0.75 degree accuracy, our system is non-intrusive,

and does not require the expensive hardware or head sen-

sors typical of other approaches.

Acoustic Localization and Beamforming

For applications such as video conferencing it is desirable

to allow several partipiciants of either party to move freely

in a room while a system of sensors keeps track of the per-

son of interest and enhances speech and other information

modalities of this individual. This person should not be

encumbered by having to carry sensors such as a close-

talking microphone, etc. On the other hand, the commu-

nication/recognition systems should not be distracted by

background noises or other speakers. Beamforming with a

multi-microphone array is one approach to providing clean

acoustic input from a single sound source.

We have constructed a one-dimensional microphone array

consisting of 8 sensors spanning the half plane in front of the

array. In order to steer the array towards a given spot the

di�erences of sound arrival time between the microphones

are compensated for waves originating exactly from this lo-

cation. By summing these aligned (in phase) signals, one

achieves an enhancement of the desired signal. Competing

sounds, uncorrelated with the signal and coming from other

locations are added out of phase and attenuated. This pro-

cedure is well known as delay and sum beamforming. The

characteristic delays for a point are determined mathemat-

ically, assuming a spherical form of speech radiation.

We conducted experiments with the JANUS
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ASR sys-

tem in a noisy environment to assess the e�ectiveness of the

array. With a close-talking microphone, word accuracy of

85.6% was obtained, while a single microphone placed away

from the speaker resulted in only 15.5%. By using the mi-

crophone array we improved this score to 79.1%.

Combination of Modalities

Beyond better recognizing and understanding each human

communication event individually, we are mostly interested

in combining multiple modalities to improve robustness and


exibility by o�ering complementary information. Several

experiments aimed at such multimodal synergies have been

undertaken.

Automatic Speech Recognition and Lip-reading

Our audio-visual speech recognizer has been developed for

the German spelling task mainly in the speaker-dependent

mode. Letter sequences of arbitrary length and content are

spelled without pauses. The task is thus equivalent to con-

tinuous recognition with small but highly confusable vocab-

ulary.

In the basic set-up, we record, in parallel, the acoustic

speech and the corresponding series of mouth images of the

speaker. Conventional pre-processing of the acoustic input

gives 16 Melscale Fourier coe�cients at a 10 ms frame rate.

Data extraction from the visual input was described above.

A modular MS-TDNN, drawing on a pure acoustic

spelling recognizer,
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performs the recognition. Figure 3 is

a schematic of the architecture. Through the �rst three

layers (input-hidden-phoneme/viseme) the acoustic and vi-

sual inputs are processed separately. The third layer pro-

duces activations for 62 phoneme or 42 viseme (the rough

visual correlate of a phoneme) states for acoustic and visual

data, respectively. Weighted sums of the phoneme and cor-

responding viseme activations are entered in the combined

layer and a one stage DTW algorithm �nds the optimal

path through the combined states that decodes the recog-

nized letter sequence. The weights in the parallel networks

are trained by backpropagation. There are 15 hidden units

in both sub-nets. The combination weights are computed

dynamically during recognition to re
ect the estimated reli-

ability of each modality. We have also investigated alterna-

tive methods of combining the audio and visual information

at the input and hidden layer levels of the network. Initial

results suggesting an advantage of hidden layer combination

as well as a more complete description of the system can be

found elsewhere.
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Figure 3. Basic recognition network architecture (integration

at the phoneme/viseme level).

We have tested the recognizer on data sets of 200 let-

ter sequences from single speakers. On the average, LDA-

preprocessed visual input produces best results, reducing the

audio-alone error rate by 33.7 %.

Speech and Gesture Recognition

We have developed a speech- and gesture-based text edi-

tor as another step towards modality integration. The word

spotter (see above) was trained to spot 11 keywords rep-

resenting editing commands such as move, delete,... and

textual units such as character, word,... The e�ect is to

let the user speak naturally without having to worry about

grammar and vocabulary, as long as the utterance contains

the relevant keywords. For example, an utterance such as

\Please delete this word for me" is equivalent to \Delete

word".

We based the interpretation of multimodal inputs on

frames consisting of slots representing parts of an interpre-

tation. The speech and gesture recognizers produce partial

hypotheses in the form of partially �lled frames. The out-

put of the interpreter is obtained by unifying the information

contained in the partial frames. For example, a user draws

a circle and says \Please delete this word". The gesture-

processing subsystem recognizes the circle and �lls in the

command scope (what to operate on) speci�ed by the circle

in the gesture frame. The word spotter produces \delete

word", from which the parser �lls in the action and textual

unit slot in the speech frame. The frame merger then out-

puts a uni�ed frame indicating that the operation delete is

to be carried out on the word speci�ed by the scope of the

circle.

One important advantage of this frame-based approach is

its 
exibility, which will facilitate the integration of more

than two modalities. All we have to do is de�ne a general

frame for interpretation and specify the ways in which slots

can be �lled by each input modality. In a general implemen-

tation, it is possible that the slots may be �lled in di�erent

ways, and performing a search to �nd the best merge would

be superior.

Face Tracking and Beamforming

The beamformer described earlier picks its target as the

loudest source in its vicinity. It, therefore, encounters prob-

lems while attempting to track a moving talker in realis-

tic communication situations including competing speakers.

Considering visual aspects to locate the speaker's position

overcomes these limitations. Speci�cally, the face-tracker

supplies the coordinates of a moving speaker to the micro-

phone array which then forms a beam to that location. Our

experiments have con�rmed this synergy, demonstrating im-

proved signal-to-noise ratio even for speakers moving in an

environment with another loud sound source.

A natural further application of face-tracking and beam-

forming is to enhance the lip-reading/speech recognition sys-

tem. The face-tracker allows for a non-invasive acquisition

of the visual data, while the beamformer improves the qual-

ity of the received audio input. Work on such a complete

system is already in progress.

Conclusion

We have described the many-faceted applications of neural

networks to recognition of various human communication

modalities. We are continuing to improve the individual

systems while pursuing the goal of their integration in a

single, 
exible, and robust human-computer interface.
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