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ABSTRACT model. The idea is to employ a Dirichlet-Tree prior [5, 6] otiee

. ) topic proportions instead of using a single Dirichlet prieach node
We propose a Latent Dirichlet-Tree Allocation (LDTA) mode& i the tree is represented by a Dirichlet distribution overliranches
correlated latent semantic model - for unsupervised lagguaodel jis child nodes. Each latent topic is attached to the leaerof
adaptation. The LDTA model extends the Latent Dirichleo8- ¢ ree as illustrated in Figure 1. Apart from using differprior,
tion (LDA) model by replacing a Dirichlet prior with a Diriéét-  he | DTA and LDA models are essentially the same in termseif th
Tree prior over the topic proportions. Latent topics undiersame  ganerative nature. To sample a vector of topic proportions the
subtree are expected to be more correlated than topics UiftéF  pjrichiet-Tree prior, we first sample the branching prolitis from
ent subtrees. The LDTA model falls back to the LDA model using 4 pjrichlet distribution in each node independently. We pate the
depth-one Dirichlet-Tree, and the model fits to the varf@l®ayes  ,ic proportion as the product of branching probabilitieslized as
inference framework employed in the LDA model. Empirical re \yaiking through a path from the root node to the leaf node thic
sults show that the LDTA model has a faster training converge corresponds to a topic index. Correlation among topic prigres

than the LDA model with the same initial flat model. Experit@n .- he modeled. Topics under a common subtree are moreatettel
results show that LDTA-adapted LM performed better than EDA 5, topics under different subtrees.

adapted LM on the Mandarin RT04-eval set when the models were Related work includes the Correlated Topic Model (CTM) [7]

trained using a small text corpus, while both models had énees ;4 e pachinko Allocation Model (PAM) [8]. Essentiallyeth
recognition performance whenothe models were tralneq esibig CTM model is also an extension of the LDA model by replacing
text corpus. We observed .0'4/0 absolute CER reduction afeer L the Dirichlet prior with a logistic-normal prior. Correlah among
adaptation using LSA marginals. topic proportions are modeled by first sampling a vector fram

Index Terms— correlated topics, Dirichlet-Tree, LSA, unsuper- multivariate Gaussian distribution. Then the vector is psapto
vised LM adaptation a vector of topic proportions through the logistic normadtdbu-
tion. Topic correlations are thus modeled through the ¢anae ma-
trix of the Gaussian distribution. Despite its flexibility modeling
pairwise topic correlation, the non-conjugate logistirmal prior
poses complication on model training and inference. On thero
hand, an advantage of the proposed LDTA model is that it ertjoy
simplicity and similarity in training and inference as a LD#odel.

We can view the LDA model as a special case of the LDTA model
with a depth-one Dirichlet-Tree. PAM [8] uses a direct-dicygraph
(DAG) to model the correlation among topics. Each node iDth€&

is represented by a Dirichlet distribution over the chittk which
can be viewed as a Dirichlet-DAG prior. PAM can be viewed as a
generalization of the LDTA model, and Gibbs sampling teghgi
was employed for training and inference in their work. Irstpa-
per, we present a variational Bayes inference frameworgffaient
LDTA training and inference.

The paper is organized as follows: In Section 2, we deschibe t
|_DTA model training and inference, and review a LM adaptatp-
proach to integrate latent semantic analysis (LSA) intockteound
N-gram LM. In Section 3, we analyze and compare the LDTA and
LDA models with recognition experiments, followed by camibns
and future work in Section 4.

1. INTRODUCTION

Latent Dirichlet Allocation (LDA) [1] has been proposed todel
the latent topics of a text corpus. The LDA model has beendoun
useful in unsupervised LM adaptation on large-vocabulatgraatic
speech recognition systems [2, 3, 4]. The LDA model can beede
as a Bayesian extension of the unigram mixture model by nuutti
a Dirichlet prior over the topic mixture weights (or topicopor-
tions). One assumption made in the Dirichlet prior is tharafsom
the constraint that the topic proportions sum to unity, theybasi-
cally independent. That means that knowing the proportioone
topic does not provide any information about the proportbman-
other topic. In reality, the assumption may not be true stopécs
may be correlated. For instance, news articles in a newspagie
site are usually organized into main-topic and sub-top&dichy.
From a human point of view, it would be advantageous to mode
the correlation among topics. We are interested in usinghinac
learning technique to discover them in an unsuperviseddashn
this paper, we propose an extension of the LDA model - theritate
Dirichlet-Tree Allocation (LDTA) - as a correlated latergrsantic
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Fig. 1. Dirichlet-Tree prior of depth two: Each internal node ip+e

resented by a Dirichlet distribution over the branches.

Our target is to relax the independence assumption by ermgloy
a Dirichlet-Tree prior in which the topic correlations ar®adeled
through the tree structure. Each internal node in the treeesents
a Dirichlet distribution over the branches to its child nedd-ig-
ure 1 illustrates a depth-two Dirichlet-Tree. We can seedtieee of
depth one is simply a single Dirichlet distribution corresgding to

Similar to LDA training, we apply variational Bayes apprbaloy
optimizing the lower bound of the marginalized likelihoodaodoc-
umentw?':
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whereq(z1,b7;T) = [T q(z:) - H}.] q(b;) is a factorizable varia-
tional posterior distribution over the latent variablesgraeterized
by I which are determined in the E-step.is the actual model pa-
rameters for a Dirichlet-Trego; } and the topic-dependent unigram
LM {B,1}.

Notice that the Dirichlet-Tree has a conjugate counteiata
Dirichlet distribution. That means that the posterior Etitet-Tree
has the same form as the Dirichlet-Tree prior given the tegic

the LDA model. The LDTA model is a generative model and enjoysquencez}:

the simplicity and similarity as a LDA model. Given a DirieitiTree

T of a fixed structure parameterized by a set of Dirichlet pesters
{a;} (i.e. the “pseudo-counts” of the branches), we generatea do
umentw? as follows:

1. Sample a vector of branch probabilities ~ Dir(«;) for
each node j=1...J.

2. Compute the topic multinomial (proportions) as:

H bji‘c(’v)
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where §;.(k) is an indicator function which sets to unity

when the c-th branch of the j-th node leads to the leaf node

of topic k and zero otherwise. The k-th topic proportihnis

computed as the product of branch probabilities from thé roo

node to the leaf node of topic k.

3. Generate a document using the topic multinomial for each whereE[log 0]
word w;:
zi ~  Mult(0)
wy ~ Mult(B.2,)

whereg.., denotes the topic-dependent unigram LM indexed

The latent variables in the LDTA model are the topic sequerice
and a set of branch probabiliti¢s; } in the Dirichlet-Tree. The joint
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The conjugateness suggests an E-step similar to the LDA Irfildde
E-Steps:
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Equation 2-3 are executed iteratively until convergenaeashed.
Intuitively, Equation 2 can be implemented as the propagatif
fractional topic posterior counts from the leaf nodes toititernal
nodes in a bottom-up fashion.

M-Step:

distribution® of the latent variables and an observed document is as

follows:
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1We assume that is not a latent variable for computational convenience.
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whered (w;, v) is a Kronecker Delta function. Similar to LDA train-
ing, the alpha parameters can be estimated with iteratiibodse
such as Newton-Raphson or simple gradient ascent procedure

2.1. LM adaptation approach

We followed our previous work [3] on LM adaptation by minimiz
ing the Kullback-Leibler divergence between the adapted drid
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the background LM. The approach has two steps. Firstly, we es

. . . . . h “topic-61" education, student, school, teacher, learning
timated the |n-doma|_rPr(w)_ U_S'ng the LSA marginals. With the “topic-62” university, expert, high-level, education, training
LDTA model, we applied variational Bayes inference (Equag—3) “topic-63” employment, expert, labor, work, career
to obtain the branch posterior counts. We computed the relative “topic-64" research, china, science, technology, scientist

H i : R “topic-65" gene, human, clone, research, biology
fr_equenmes of -the counts and computed the topic posteraduagil “opic-66" research. discover. cell, gene, freatment
ities as follows: “topic-67" transplant, surgery, patient, liver, hospital
K “topic-68" information, network, service, web, client
~ “topic-69” system, computer, technology, computer, chip, software
Prigie(w) = Zﬁwk O (4)
k=1 Table 1. Sample contiguous fragment of latent topics extractea fro
R ) Sjc(k) the LDTA model.
where 0 o [] <L) (k=1.K) (5
- Zc’ ’ch’
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Secondly, we integrated the in-domain LSA marginals ineottack- ﬁﬁw
ground LM using the following equation [9]: 115408 |- jw 1
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3. EXPERIMENTAL SETUP N

We evaluated the LM adaptation approach on the ISL-RT04 Man-  **® 15 2 w0 4 s e 7 s s 100

darin Broadcast News evaluation system [10] using the JANUS # of raining ferations -
A —- LA (400 topieg) -+~ |

speech recognition toolkit. The system employed contepieddent
Initial-Final acoustic model. We trained the acoustic nisdesing
27 hours of the Mandarin HUB4 1997 training set and 69 hours o
the TDT4 Mandarin data. We used the 42-dimensional feaaftes
Linear Discriminant Analysis projected from a window of MEC
and energy features for the front-end processing. Themysta-  in the LDA model assumes topic independence which may explai
ployed a two-pass decoding strategy using speaker-indepeand  the slow convergence. In particular, LDA training was tregn the
speaker-adaptive acoustic models for the first-pass anseitmnd-  likelihood plateau in the early training stage and the mauiéigl-
pass decoding respectively. In the second-pass decodingpplied  ization sounds an important issue in LDA training, and itirese-
the state-of-the-art acoustic adaptations [10]: Vocakftaength  vere when the number of latent topics increases. On the btiret,
Normalization (VTLN), Feature Space Adaptation (FSA), &fak- model initialization appears not an issue for LDTA trainieqpir-
imum Likelihood Linear Regression (MLLR). The vocabulaiges  ically, even when the number of topics increases. We beliese
is 108K words. Performance metrics are the word perplexity a the tree structure helps constrain the model parametee spao-
the character error rates (CER) evaluated on the RTO4-evabs-  pared to a flat Dirichlet prior and thus helps speed up theitrgi
taining three shows: CCTV, RFA and NTDTV. We trained the convergence.

background 4-gram LM using the modified Kneser-Ney smogthin ~ Next, we explore how the LDTA latent topics look like. By in-
scheme using the SRI LM toolkit. We trained the LDA and the Specting the top-N words of the topic-dependent unigram i,
LDTA models with 200 topics. We first performed first-passatec ~ observed contiguous fragments of correlated topics showalile 1
ing on the test audios to obtain the automatic transcrifboreach ~ With the topic indices assigned in the left-to-right fashio the tree
show. Treating the automatic transcription of a show as glesin illustrated in Figure 1. For instance, topics 61-63 areadioeelated
“document”, we applied variational Bayes inference toreate the  t0 a general topic “education” and topics 6869 are closgbted to
LSA marginals for each show. We adapted the background d-gra @ general topic “information technology”. The results &gneth our
LM using the LM adaptation technique described in Sectidredd  intuition that the tree structure enforces proximity coaistt over the
used the LSA-adapted LM for second-pass decoding. topics. From Table 1, we conjecture that the LDTA model i2dbl
extract fine-grained correlated topics and potentiallypsufs more
topics.

]Fig. 2. Log-likelihood comparison of the LDA and LDTA models
on the Xinhua News 2002 training corpus.

3.1. Analysis of the LDTA model

We first investigated the likelihood convergence be_havit_ntm . 3.2. LSAtraining using small corpora

LDTA and LDA models when the number of training iterations in

creases. Both models shared the same initial flat model{dith } We compared the LDA and LDTA models on unsupervised LM
initialized with uniform distributions, while the Diricbt and the adaptation using LSA marginals explored in our previouskw8t.
Dirichlet-Tree priors were initialized randomly. We emybal a bal-  We trained the LDA and LDTA models using the Xinhua News
anced binary tree of depthg. (K) with K = 200. Figure 2 shows 2002 corpus containing 13M words and 64k documents. We per-
that LDTA training converges faster than LDA training. Thestf formed first-pass decoding to obtain the word hypothesesr Fo
convergence is attributed to the Dirichlet-Tree prior, ethinodels  each test show, we concatenated the decoded hypothesesnto fo
topic correlations. In other words, an observed topic wadthe-  a single “document”, and then estimated the in-domain LOAVA

how trigger its correlated topics. On the contrary, the dilét prior  marginals. The marginals were used to adapt the backgrognam



[ LM (800M) [ CCTV [ RFA [ NTDTV |

[ LM (13M) [ CCTV | RFA [ NTDTV ] BG LM 359 778 368
BG LM 748 3655 1718 +LDA (50 iter) 332 703 834
+LDA 695 3451 1669 +LDTA (20 iter) 313 665 791
+LDTA 629 3015 1547

Table 4. Perplexity (PPL) on the RTO4 test set with LM trained on a
Table 2. Perplexity (PPL) on the RT04 test set with LM trained on abig corpus compared to the unadapted background LM (BG).
small corpus compared to the unadapted background LM (BG).

[ LM(800M) [ CCTV | RFA | NTDTV | Overall |

[LM (13M) | CCTV | RFA | NTDTV | Overall |

: BG LM 83% | 263 | 144 15.9
BGLM | 158% | 40.1 | 220 25.3 +LDA (50iter) | 81 | 256 | 14.0 155
+LDA 151 | 396 | 216 24.8 +LDTA (20iter) | 83 | 253 | 14.2 155
+LDTA | 148 | 390| 215 245

Table 5. Character Error Rates (%) on the RT04 test set using the

Table 3. Character Error Rates (%) on the RT04 test set after thespmuy-InterACT Mandarin transcription system for the GALEGB)
2nd-pass decoding with LM trained on a small corpus. evaluation.

LM separately. We used the adapted LM for_second-pass degodi {he same recognition performance on a large-scale LM atilapta
Table 2 and Table 3 shows the word perplexity and the charaste  r¢re work includes the investigation of extracting maverelated
ror rates (CER) res_ults. Results showed that the LDTA mows topics using the proposed technique on a big text corpus aitd a
lower word perplexity and CER than the LDA model. In partal ¢ determination of the optimal number of topics.

the LDTA model reduces the absolute overall CER by 0.3% com-

pared to the LDA model. The LDTA model achieved 10%-17.5%
relative word perplexity reduction and 0.8% absolute CERiction
compared to the unadapted 4-gram LM.
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