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ABSTRACT

In our previous work, we reported a surface electromyographic (EMG)
continuous speech recognition system with a novel EMG feature ex-
traction method, E4, which is more robust to EMG noise than tra-
ditional spectral features. In this paper, we show that articulatory
feature (AF) classifiers can also benefit from the E4 feature, which
improve the F-score of the AF classifiers from 0.492 to 0.686. We
also show that the E4 feature is less correlated across EMG channels
and thus channel combination gains larger improvement in F-score.
With a stream architecture, the AF classifiers are then integrated into
the decoding framework and improve the word error rate by 11.8%
relative from 33.9% to 29.9%.

Index Terms— speech recognition, electromyography, articula-
tory muscles, articulatory features, feature extraction

1. INTRODUCTION

As the research of automatic speech recognition (ASR) advances,
computers are required to provide people a more convenient way to
communicate. However, robustness and privacy have always been
issues in speech based applications. To overcome this, efforts have
been made to utilize whispered or non-audible silent speech for ASR
with special recording devices. For example, “non-audible mur-
mur” recognition using a stethoscopic microphone has been pre-
sented by Nakajima et al. [1], and we reported whispered speech
recognition using a throat microphone [2]. Another approach is to
make use of electromyographic (EMG) sensors to monitor the articu-
latory muscles in order to recognize non-audible silent speech. Chan
et al. showed that such an approach can be used for small vocabu-
lary isolated word recognition [3]. Other related work also showed
different aspects of success on non-audible silent speech recognition
[4, 5, 6].

However, these pioneering studies are limited to small vocabu-
lary due to the classification unit that is restrained to a whole utter-
ance, instead of phones, which is a standard practice of LVCSR. In
our previous work, we demonstrated a first phone-based system and
analyzed it by studying the relationship of surface electromyogra-
phy and articulatory features (AFs) on audible speech [7]. Later,
we have extended that work to an EMG phone-based continuous
speech recognition system, which makes use of phone-based acous-
tic models and feature extraction methods designed for continuous
EMG speech [8]. In this paper, we explore further by showing that
our novel feature extraction method also performs well for EMG AF
classification. Moreover, we show that the EMG AF classifiers can

The authors wish to thank Matthias Walliczek and Florian Kraft for their
valuable contributions to this study.

be integrated into the EMG acoustic model in a stream architecture
for decoding to further improve the EMG ASR system.

2. EXPERIMENTAL SETUP

2.1. Data Acquisition

As shown in [6], EMG signals vary a lot across speakers, and even
across recording sessions of the very same speaker. As a result,
the performances across speakers and sessions may be unstable. To
avoid this problem and to keep this research in a more controlled
configuration, in this paper we report results of data collected from
one male speaker in one recording session, i.e., the EMG electrode
positions were stable and consistent during this whole session. In
a quiet room, the subject read English sentences in normal audible
speech, which was recorded simultaneously by an EMG recorder
and a USB sound card with a standard close-talking microphone.
When the speaker pressed the push-to-record button, the recording
software started to record both EMG and speech channels and gen-
erated a marker signal fed into both the EMG recorder and the USB
soundcard. The marker signal was then used for synchronizing the
EMG and the speech signals. The speaker read 10 turns of a set of
38 phonetically-balanced sentences and 12 sentences from news ar-
ticles. The 380 phonetically-balanced utterances were used for train-
ing and the 120 news article utterances were used for testing. The
total duration of the training and test set are 45.9 and 10.6 minutes,
respectively. We also recorded ten special silence utterances, each
of which is about five seconds long on average. The format of the
speech recordings is 16 kHz sampling rate, two bytes per sample,
and linear PCM, while it is 600 Hz sampling rate, two bytes per
sample, and linear PCM for the EMG signals.

The EMG signals were recorded with six pairs of Ag/Ag-Cl sur-
face electrodes attached to the skin1, as shown in Fig. 1. Addition-
ally, a common ground reference for the EMG signals is connected
via a self-adhesive button electrode placed on the left wrist. The six
electrode pairs are positioned in order to pick up the signals of cor-
responding articulatory muscles: the levator angulis oris (EMG2,3),
the zygomaticus major (EMG2,3), the platysma (EMG4), the orbic-
ularis oris (EMG5), the anterior belly of the digastric (EMG1), and
the tongue (EMG1,6) [3, 6]. Two of these six channels (EMG2,6)
are positioned with a classical bipolar configuration, where a 2cm
center-to-center inter-electrode spacing is applied. For the other four
channels, one of the electrodes is placed directly on the articulatory
muscles while the other electrode is used as a reference attached to
either the nose (EMG1) or to both ears (EMG 3,4,5). Note that the

1Strictly speaking, this method should be called surface EMG. However,
we can simply use the term EMG without confusion in this paper.



Fig. 1. EMG electrode positioning

electrode positioning method follows [6], except that we do not use
EMG5 in our final experiments because its signal is unstable in the
recording session. In addition, we remove one electrode channel re-
dundant to EMG6 (EMG7 in [6]).

In order to reduce the impedance at the electrode-skin junctions,
a small amount of electrode gel was applied to each electrode. All
the electrode pairs were connected to the EMG recorder [9], in which
each of the detection electrode pairs picks up the EMG signal and
the ground electrode provides a common reference. EMG responses
were differentially amplified, filtered by a 300 Hz low-pass and a
1Hz high-pass filter and sampled at 600 Hz. In order to avoid loss
of relevant information contained in the signals, we did not apply
a 50 Hz notch filter which is usually used for the removal of line
interference [6].

2.2. Audible Speech Recognizer

In order to forced-align the audible speech acoustic waveforms, we
used a Broadcast News (BN) speech recognizer trained with the
Janus Recognition Toolkit (JRTk) [10]. In this system, Mel-frequency
cepstral coefficients (MFCC) with vocal tract length normalization
(VTLN) and cepstral mean normalization (CMN) is used to get the
frame-based feature. On top of that, linear discriminant analysis
(LDA) is applied to a 15-frame (-7 to +7 frames) segment to gener-
ate the final feature for recognition. The recognizer is HMM-based,
and makes use of quintphones with 6000 distributions sharing 2000
codebooks. The baseline performance of this system is 10.2% WER
on the official BN test set (Hub4e98 set 1), F0 condition.

2.3. EMG Speech Recognizer

We used the following approach to bootstrap the EMG continuous
speech recognizer. First of all, the forced-aligned labels of the audi-
ble speech data is generated with the aforementioned BN speech rec-
ognizer. Since we have parallel recorded audible and EMG speech
data, the forced-aligned labels of the audible speech were used to
bootstrap the EMG speech recognizer. Since the training set is very
small, we only trained context-independent acoustic models. Con-
text dependency is beyond the scope of this paper. The trained
acoustic model was used together with a trigram BN language model
for decoding. Because the problem of large vocabulary continuous
speech recognition is still very difficult for the state-of-the-art EMG
speech processing, in this study, we restricted the decoding vocabu-
lary to the words appearing in the test set (108 words). This approach
allows us to better demonstrate the performance differences intro-
duced by different feature extraction methods. Note that the training

vocabulary contains 415 words, 35 of which also exist in the decod-
ing vocabulary. The test sentences do not exist in the language model
training data. Also note that the EMG speech recognizer is trained
solely on the signals captured by the EMG electrodes, i.e., trained
without speech acoustics.

2.4. Articulatory Feature Classifier

Compared to widely-used cepstral features, articulatory features are
expected to be more robust because they represent articulatory move-
ments, which are less affected by speech signal variation or noise.
Instead of measuring the AFs directly, we derive them from phones
as described in [11]. More precisely, we use the IPA phonological
features for AF derivation. In this work, we use AFs that have binary
values. For example, each of dorsum position FRONT, CENTRAL and
BACK is an AF that has a value either present or absent. Moreover,
these AFs do not form an orthogonal set because we want the AFs
to benefit from redundant information. To classify the AF as present
or absent, the likelihood scores of the corresponding present model
and absent model are compared. Also, the models take into account
a prior value based on the frequency of features in the training data
[11].

The training of AF classifiers is done on middle frames of the
phones only, because they are more stable than the beginning or
ending frames. Identical to the training of EMG speech recognizer,
the AF classifiers are also trained solely on the EMG signals with-
out speech acoustics. There are 29 AF classifiers, each of which is
a GMM containing 60 Gaussians. To test the performance, the AF
classifiers are applied and generate frame-based hypotheses. F-score
(α = 0.5) is reported in our experiments as the performance metric2.

2.5. The Stream Architecture

The idea behind the stream architecture with AF classifiers is that
the AF streams are expected to provide additional robust phonolog-
ical information to the phone-based HMM speech recognizer. The
stream architecture employs a list of parallel feature streams, each
of which contains one of the acoustic or articulatory features. Infor-
mation from all streams are combined with a weighting scheme to
generate the EMG acoustic model scores for decoding [11].

3. EMG FEATURE EXTRACTION

Since the EMG signal is very different from the speech acoustic sig-
nal, it is necessary to explore feature extraction methods that are
suitable for EMG speech recognition. Here we describe the signal
preprocessing steps and feature extraction methods we used in the
experiments.

Besides the EMG signals vary across different sessions, the DC
offsets of the EMG signals vary, too. In the attempt to make the
DC offset zero, we estimate the DC offset from the special silence
utterances on a per session basis, then all the EMG signals are pre-
processed to remove this session-based DC offset. Although we only
discuss a single session of a single speaker in this paper, we expect
this DC offset preprocessing step makes the EMG signals more sta-
ble.

In our previous work, we showed the anticipatory effects of
the EMG signals when compared to speech signals [7]. We also

2With α = 0.5, F-score = 2PR/(P + R), where precision P =
Ctp/(Ctp + Cfp), recall R = Ctp/(Ctp + Cfn), Ctp = true positive
count, Cfp = false positive count, Cfn = false negative count.



Fig. 2. F-scores of the EMG-ST, EMG-E4 and speech articulatory features vs. the amount of training data
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demonstrated modeling this anticipatory effect improves the F-score
of articulatory feature classification. In this paper, we model the an-
ticipatory effect by adding frame-based delays to the EMG signals
when the EMG signals is forced-aligned to the audible speech la-
bels. Only channel-independent delay is introduced in this paper,
i.e., every EMG channel is delayed by the same amount of time.

3.1. The E4 Feature

We have shown in our previous work that the traditional spectral plus
time-domain mean feature (ST) is very noisy. Therefore we designed
the E4 feature that are normalized and smoothed in order to extract
features from EMG signals in a more robust manner [8]. The E4
feature is defined as:

E4 = S(f2, 5), where f2 = [w̄,Pw,Pr, z, r̄]

where S(f , n) is the stacking of adjacent frames of feature f in the
size of 2n+1 (−n to n) frames, w is the nine-point double-averaged
signal, w̄ is the frame-based time-domain mean of w, Pw is the
power of w, Pr is the power of the rectified signal, z is the zero-
crossing rate of the high frequency signal, and r̄ is the time-domain
mean of the rectified signal.

4. EXPERIMENTS AND ANALYSES

In the following experiments, the final EMG features are generated
by stacking single-channel E4 features of channels 1, 2, 3, 4, and 6.
Then LDA is applied and the final LDA dimensions are reduced to
32 for all experiments, in which the frame size is 27 ms and frame
shift is 10 ms.

4.1. AF Classification with the E4 Feature

First of all, we forced-aligned the speech data using the aforemen-
tioned Broadcast News English speech recognizer. In the baseline
system, this time-alignment was used for both the speech and the
EMG signals. Because we have a marker channel in each signal, the
marker signal is used to offset the two signals to get accurate time-
synchronization. Then the aforementioned AF training and testing
procedures were applied both on the speech and the five-channel
concatenated EMG signals, with the ST and E4 features. The aver-
aged F-scores of all 29 AFs are 0.492 for EMG-ST, 0.686 for EMG-
E4, and 0.814 for the speech signal. Fig. 2 shows individual AF per-

Fig. 3. F-scores of concatenated five-channel EMG-ST and EMG-
E4 articulatory features with various LDA frame sizes on time delays
for modeling anticipatory effect
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formances for the speech and EMG signals along with the amount
of training data in frames. We can see that E4 significantly outper-
forms ST in that the EMG-E4 feature performance is much closer to
the speech feature performance.

We also conducted the time-delay experiments as done in our
previous work to investigate the EMG vs. speech anticipatory effect.
Fig. 3 shows the F-scores of E4 with various LDA frame sizes and
delays. We observe similar anticipatory effect of E4-LDA and ST
with time delay around 0.02 to 0.10 second. Compared to the 90-
dimension ST feature, E4-LDA1 has a dimensionality of 25 while
having a much higher F-score. The figure also shows that a wider
LDA context width provides a higher F-score and is more robust for
modeling the anticipatory effect, because LDA is able to pick up
useful information from the wider context.

4.2. EMG Channel Pairs

In order to analyze E4 for individual EMG channels, we trained the
AF classifiers on single channels and channel pairs. The F-scores are
shown in Fig. 4. It shows E4 outperforms ST in all configurations.
Moreover, E4 on single-channel EMG 1, 2, 3, 6 are already bet-
ter than the all-channel ST’s best F-score 0.492. For ST, the paired



Fig. 4. F-scores of the EMG-ST and EMG-E4 articulatory features
on single EMG channel and paired EMG channels
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channel combination only provides marginal improvements; in con-
trast, for E4, the figure shows significant improvements of paired
channels compared to single channels. We believe this significant
improvements come from a better decorrelated feature space pro-
vided by E4.

4.3. Decoding in the Stream Architecture

We then conducted a full decoding experiment with the stream ar-
chitecture. The test set was divided into two equally-sized sub-
sets, on which the following procedure was done in two-fold cross-
validation. On the development subset, we incrementally added the
AF classifiers one by one into the decoder in a greedy approach, i.e.,
the AF that helps to achieve the best WER was kept in the streams
for later experiments. After the WER improvement was saturated,
we fixed the AF sequence and applied them on the test subset. Fig. 5
shows the WER and its relative improvements averaged on the two
cross-validation turns. With five AFs, the WER tops 11.8% rela-
tive improvement, but there is no additional gain with more AFs.
Among the selected AFs, only four of them are selected in both
cross-validation turns. This inconsistency suggests a further investi-
gation of AF selection is necessary for generalization.

5. CONCLUSIONS

We have presented an EMG continuous speech recognition system
with a multi-stream architecture, which makes use of the informa-
tion from EMG articulatory feature classifiers besides HMM. The
proposed E4 EMG feature extraction method has been shown to out-
perform the traditional ST method for the EMG HMM decoder, the
EMG AF classifiers, and the combination of both. We have shown
that E4 improves the F-score of the EMG AF classifiers from 0.492
to 0.686, and E4 is better for EMG channel combination. With the
stream architecture consisting of HMM and AF classifiers, the WER
improves 11.8% relative from 33.9% to 29.9%.

In the future, we plan to investigate feature selection and weight-
ing schemes in order to effectively make use of the stream architec-
ture for the EMG phone-based continuous speech recognizer.

Fig. 5. Word error rates and relative improvements of incrementally
added EMG articulatory feature classifiers in the stream architecture.
The two AF sequences correspond to the best AF-insertion on the
development subsets in two-fold cross-validation.
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