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ABSTRACT

Modeling pronunciation variation is key for recognizing
conversational speech. Previous efforts on pronunciation
modeling by modifying dictionaries only yielded marginal
improvement. Due to complex interaction between dictio-
naries and acoustic models, we believe a pronunciation mod-
eling scheme is plausible only when closely coupled with
the underlying acoustic model. This paper explores the use
of flexible parameter tying for pronunciation modeling. In
particular, two new techniques are investigated: Gaussian
tying and flexible tree clustering. We report a 1.3% absolute
WER improvement over the traditional modeling framework
on the Switchboard task.

1. INTRODUCTION

Modeling conversational speech is an important, yet diffi-
cult task for speech recognition. While conventional tech-
niques work well on read, prepared speech, real life situ-
ations, such as meetings and telephone conversations, still
pose great challenges for current technology.

One way to model rampant pronunciation variation in
conversational speech is to add alternative pronunciations
to a dictionary [1]. The improvement, however, has been
quite limited. Recently, there has been a trend to model
pronunciation implicitly. The reasoning is that the mapping
from a phonetic string to the acoustic model sequence is a
complex one, influenced by context clustering and state ty-
ing. Therefore, simply modifying the lexical representation
of a word may not achieve the desired effect. Jurafsky et al.
have argued that triphones can capture many kinds of pro-
nunciation variations [2], including phone substitution and
reduction. Hain questioned the use of pronunciation vari-
ants in a recent work called “single pronunciation dictio-
nary” [3]. By systematically removing variants, he showed
a slight gain over a state-of-the-art Switchboard system.

The studies above suggest that pronunciation modeling
needs to be closely coupled with the underlying acoustic
modeling. The reason is multi-fold. Firstly, the boundary
between an acoustic model and a pronunciation model is
not clearly cut. Both seek to model variations in speech. For
certain weak forms of variation, it may be better to model

implicitly at the acoustic model level, rather than introduc-
ing a variant in the lexicon. Secondly, a joint approach al-
lows leveraging various acoustic modeling mechanisms for
pronunciation modeling, which translates to greater expres-
siveness and modeling power. For example, a pronunciation
variant, as a phone sequence, can always be translated into
a state/model sequence, but the reverse is not true. A major-
ity of state/model sequences cannot be represented as valid
phone sequences. Recently, there has been several works
in this direction, including state-level pronunciation model
(SLPM) [4] and Hidden Model Sequence Model [3].

Parameter tying is an important aspect in acoustic mod-
eling. In particular, decision tree based state tying [5] is
key to context dependent systems. Tying is originally de-
signed to achieve statistical robustness, but it also plays a
crucial role in the mapping from symbolic (phoneme) level
to state/model level. Hence it can be used for pronunciation
modeling purposes, too. As an example, phone substitutions
can be modeled by the tying of appropriate states.

In this paper, we explore two novel flexible parameter
tying methods for pronunciation modeling: Gaussian tying
and flexible tree clustering. While they seem to be purely
acoustic modeling techniques, we emphasize that our pri-
mary interest is in how they may improve modeling conver-
sational speech. We will introduce the two ideas first, then
give detailed discussion together with experiment results on
the Switchboard task.

2. GAUSSIANTYING

Gaussian tying is motivated by state level pronunciation model
(SLPM) [4]. If a baseform phone, say, AX, is alternately re-
alized as the surface form | X in certain contexts, such as

AFFECTI ONATE AXF EH K SH AX N AX T
AFFECTI ONATE(2) AX F EH K SH AX N IX T

SLPM augments the mixture model of AX with all Gaus-
sians from the mixture model of | X. Gaussian tying gen-
eralizes from SLPM in that it allows sharing of a selected
subset of Gaussians from the | X model (rather than all of
them), hence providing a finer level of control.

Gaussian tying is actually a general tying framework,
covering all different families of tied mixture models. Let



G, the Gaussian pool, be the complete set of Gaussians in
a system. A model, m;, is then defined by mixture weights
over a subset of G.

p(-|mi) = Z 595 (-)

JES;

where S; C G is the set of Gaussians used by m;. Any
acoustic modeling scheme can be completely specified by
the weights matrix (IL;; ), where the ith row represents model
m;, the jth column the jth Gaussian in G. Hence Gaussian
tying covers: tied mixture, senones , genones, soft tying,
etc.

Note most of the models allow only tying within the
same phone and the same sub-state (begin/middle/end), cor-
responding to a very constrained form of the tying matrix.
But this need not be the case. For example, neighboring
states, such as the end state of one phone and the begin state
of the next phone, tend to share many similarities.

In Section 4.1, we apply Gaussian tying on top of an
existing state-tying framework to fix this deficiency. While
gaussian tying allows more flexibility, it is not trivial to de-
termine the exact form of tying. Here are some potential
approaches:

o similarity based tying: Gaussians that are close in the
model space are tied;

e mapping baseform to surface form: as with SLPM,
we can augment the baseform model selectively with
Gaussians from the surface form model;

e error corrective tying: the idea is similar to [6]. We
monitor competition between models on the training
data. In a perfect world, the correct model, as speci-
fied by transcripts, should achieve the best likelihood.
If there is a strong competing model, we can augment
the reference model with Gaussians from the compet-
ing model.

3. FLEXIBLE TREE CLUSTERING

Conventional decision tree based state tying allows param-
eter sharing at leaf nodes of a tree. Typically, one decision
tree is grown for each sub-state (begin/middle/end) of each
phone. With 50 phonemes in the phone set, 150 separate
trees are built (Figure 1(a)). Parameter sharing is not pos-
sible across different phones or sub-states. Gaussian tying
is one way to introduce more sharing. A potentially better
approach is to build a single decision tree, from the very be-
ginning, for all sub-states of all the phones (Figure 1(b)). In
such a tree, any nodes can potentially be shared by multiple
phones/sub-states (hence the name flexible tree clustering).

Other than improving parameter tying, flexible tree clus-
tering may be beneficial in two important aspects:
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Fig. 1. (a) shows the traditional clustering approach: one
tree per phone and sub-state. (b) shows the concept of flex-
ible clustering using a single tree.

e dictionary over-specification and inconsistency: one
can find all kinds of artifacts in a dictionary. Certain
phones, such as DX (as in MATTER), may just be an
allophonic variation of another phoneme. As it may
not be marked consistently throughout the lexicon,
data belonging to the same linguistic category might
be splitted among several phone models. Cross-phone
parameter sharing can help in this case.

o reduced phoneme differentiation in sloppy speech: peo-
ple don’t differentiate phonemes as much in sloppy
speech as they do in read speech. This calls for an
even greater amount of cross-phone parameter shar-
ing in order to model them robustly.

4. EXPERIMENTS & ANALYSIS

Experiments are performed on the Switchboard (SWB) task.
The test set is a 1 hour subset of the 2001 Hub5e evaluation
set. The full training set includes 160 hours of SWB data
and 17 hours of CallHome data. We typically use a 66 hours
subset of the 160 hours SWB data for fast experimentation.
The baseline system is developed using the Janus speech
recognition toolkit [7]. The front-end uses vocal tract length
normalization, cluster-based cepstral mean normalization,
and a 11-frame context window for delta and double-delta.
Linear discriminant analysis is applied to reduce feature di-
mensionality to 42, followed by maximum likelihood linear
transform. We use a 15k vocabulary and a trigram language
model trained on SWB and CallHome.

The baseline acoustic model uses a quinphone tree based,
two level state tying scheme (described in [8], similar to
soft-tying [9]): 24k distributions sharing 6k codebooks, with
a total of 74k Gaussians. It has a WER of 34.4% [10]. All
results reported in this paper are based on first-pass decod-
ing, i.e. no adaptation or multi-stage processing.



4.1. Gaussian Tying

For similarity based tying, we tried three Gaussian distance
measures:

o Euclidean distance between Gaussian means (variances
are ignored)

e KL2 (symmetric Kullback-Leibler) distance:
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o Likelihood loss: this measures how much we lose in

likelihood if we choose to model samples as a single
Gaussian rather than two.

With a chosen distance measure, greedy iterative bottom-up
clustering is performed until a desired number of Gaussians
are tied. One design issue concerns the size and quality of
a cluster. Big clusters are likely to be problematic, as it
causes too much smoothing and reduces discrimination be-
tween models. A simple solution is to impose a hard limit
on the cluster size. We also tried complete linkage clus-
tering rather than single linkage clustering to create “tight”
clusters. In general, the improvement is quite small, despite
extensive experimentation.

For error corrective tying, we consider two model se-
quences side by side: the “correct” model sequence ob-

tained by viterbi alignment, and the most likely model/Gaussian

sequence. If a particular Gaussian g of model m' “out-
votes” a correct model m frequent enough, g is added to
the mixture of m.

We conducted a cheating experiment to verify the con-
cept. Model competition statistics is collected on the test set
itself, using reference text for the correct model sequence.
On our Broadcast News system, we are able to reduce WER
from 19.1% to 15.1% (on 1998 Hubd4e test set) by error-
corrective tying. However, the gain doesn’t hold when we
repeat the same procedure on the training data.

The ineffectiveness of these methods might be blamed
on their post-processing nature. It can be difficult to fix an
existing sub-optimal tying scheme (as determined by deci-
sion trees). This leads us to flexible tree clustering.

4.2. Flexible Tree Clustering

Computation cost is the main difficulty for growing a sin-
gle big tree. As the number of unique quinphones on the
Switchboard task is around 600Kk, directly clustering on all
of them is quite daunting. The traditional approach doesn’t
have this problem, since polyphones are divided naturally
according to center phone and sub-state identities. For this
reason, we conducted two experiments to investigate the
effects of cross-phone tying and cross-substate tying sep-
arately.

4.2.1. Cross-Phone Clustering

We grow six triphone trees for cross-phone clustering: one
for each of the begin/middle/end state of vowels and conso-
nants. We could have built three big trees, without differen-
tiating between vowels and consonants. But we expect little
parameter sharing between vowels and consonants. Further-
more, separating them reduces computation.

Initial experiment gives a small, albeit significant im-
provement (from 34.4% to 33.9%). As the tree is grown in
a purely data-driven fashion, one may wonder how much
cross-phone sharing there actually is. It is possible that
questions regarding center phones are highly important, there-
fore get asked early in the tree, resulting in a system which
is no different from a phonetically tied system. We exam-
ined the six triphone trees, and found that 20% to 38% of
the leaf nodes (out of a total of 24k) are indeed shared by
multiple phones.

Motivated by Hain’s work on single pronunciation dic-
tionary (SPD) [3], we tried to reduce the number of pronun-
ciation variants in the dictionary. The procedure to derive
a new lexicon is even simpler than Hain’s. First we count
the frequency of pronunciation variants in the training data.
Variants with a relative frequency of less than 20% are re-
moved. For unobserved words, we keep only the baseform
(which is more or less a random decision). Using this proce-
dure, we reduced the dictionary from an average 2.2 variants
per word to 1.1 variants per word. We are not using strictly
single pronunciation, so that we can keep the most popular
variants, while pruning away spurious ones. For example,

the word A has two variants in the resulted dictionary:
A AX

A(2) EY

Simply retraining the baseline system using SPD gives
a 0.3% improvement, which is comparable with Hain’s re-
sults. More interestingly, cross-phone clustering responds
quite well with SPD. As shown in Table 1, we achieve a
1.3% gain by cross-phone clustering on single pronuncia-
tion dictionary.

Dictionary | Cross-Phone Clustering | WER(%)
multi- no 34.4
pronunciation yes 33.9
single no 34.1
pronunciation yes 33.1

Table 1. Cross-Phone Clustering Experiment *

Note experiments in Table 1 are based on the 66 hours
training set and triphone clustering. The gain holds when
we switch to the full 180 hours training data and quinphone
clustering. Due to high computation, we only compared
two systems: one with multi-pronunciation lexicon and no
cross-phone clustering, and the other with single-pronunciation
lexicon and cross-phone clustering. WERs are 33.4% and
31.6%, respectively.



How to explain the interaction between cross-phone clus-
tering and SPD? Why does cross-phone clustering help more
with SPD (from 34.1% to 33.1%), comparing to from 34.4%
to 33.9% with a multi-pronunciation lexicon? Let us con-
sider the (unintended) side effects of pronunciation variants.
When a variant replaces phone A by phone B, we are dis-
tributing to model B the data that was originally used to train
model A, effectively allowing parameter sharing between
phones. Therefore, even with no explicit cross-phone clus-
tering, cross-phone parameter sharing already exists. How-
ever, those unintended sharing may be undesirable. This ex-
plains both why SPD works, and why cross-phone cluster-
ing doesn’t help as much with the multi-pronunciation sys-
tem as it does with SPD. Adding pronunciation variants also
increases confusability in the lexicon, while SPD does not.
In short, adding pronunciation variants is not as straightfor-
ward as it may seem. Changes to a dictionary should be
coordinated closely with acoustic modeling.

-1=voiced?
m
-1=consonant? 0=high-vowel?
M M

0=front-vowel? 0=high—-vowel? —1=obstruent? -1=L | R | W?

Fig. 2. Top part of Vowel-b tree (beginning state of vow-
els). “—1="questions ask about the immediately left phone,
“0=" questions ask about the center phone.

The top portion of the tree Vowel-b is shown in Figure 2.
It is clear that questions about center phone identities are
not necessarily preferred over contextual questions. Again,
20% to 40% of the leaf nodes are found to be shared by
multiple phones. Consonants that are most frequently tied
together are: DX and HH, L and W N and NG. Vowels that
are most frequently tied together are: AXRand ER, AE and
EH, AHand AX.

4.2.2. Cross-Substate Clustering

In this experiment, we build one tree for each phone, which
covers all three sub-states. Three new questions are added
regarding sub-state identities. Contrary to our experience
with cross-phone clustering, we find those three questions
to be highly important. They are chosen in most cases as
the top two questions. Hence the resulted tree is not any
different from three separate trees as in traditional cluster-

ing.

5. CONCLUSION

This paper introduces two new methods: Gaussian tying
and flexible tree clustering. While they are seemingly pure

acoustic modeling techniques, we have shown how they re-
late to, and how they interact with modeling pronunciations
in conversational speech. Flexible tree clustering gives a
significant improvement over state of the art decision tree
based tying. The fact that it works even better with a sin-
gle pronunciation dictionary demonstrates the importance
of tightly coupling pronunciation modeling and acoustic mod-
eling.
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